
Timing and Schedulability Analysis for Distributed
Automotive Control Applications

Samarjit Chakraborty
TU Munich

Munich, Germany
samarjit@tum.de

Marco Di Natale
Scuola Superiore Sant’Anna

Pisa, Italy
marco.dinatale@sssup.it

Heiko Falk
TU Dortmund

Dortmund, Germany
heiko.falk@udo.edu

Martin Lukasiewycz
TUM CREATE

Singapore
martin.lukasiewycz@tum-create.edu.sg

Frank Slomka
University of Ulm & INCHRON GmbH

Ulm, Germany
frank.slomka@uni-ulm.de

ABSTRACT
High-end cars today consist of more than 100 electronic con-
trol units (ECUs) that are connected to a set of sensors and
actuators and run multiple distributed control applications.
The design flow of such architectures consists of specifying
control applications as Simulink/Stateflow models, followed
by generating code from them and finally mapping such code
onto multiple ECUs. In addition, the scheduling policies
and parameters on both the ECUs and the communication
buses over which they communicate also need to be specified.
These policies and parameters are computed from high-level
timing and control performance constraints. The proposed
tutorial will cover different aspects of this design flow, with a
focus on timing and schedulability problems. After review-
ing the basic concepts of worst-case execution time analysis
and schedulability analysis, we will discuss the differences
between meeting timing constraints (as in classical real-time
systems) and meeting control performance constraints (e.g.,
stability, steady and transient state performance). We will
then describe various control performance related schedu-
lability analysis techniques and how they may be tied to
model-based software development. Finally, we will discuss
various schedule synthesis techniques, both for ECUs as well
as for communication protocols like FlexRay, so that control
performance constraints specified at the model-level may be
satisfied. Throughout the tutorial different commercial as
well as academic tools will be discussed and demonstrated.

Categories and Subject Descriptors
C.3 [Special-Purpose And Application-Based Systems]:
Real-time and embedded systems

General Terms
Algorithms, Design, Performance

Keywords
Timing Analysis, Schedulability Analysis, Distributed Au-
tomotive Systems, Control Applications

Copyright is held by the author/owner(s).
EMSOFT’11, October 9–14, 2011, Taipei, Taiwan.
ACM 978-1-4503-0714-7/11/10.

Implementation
/ Co-Design

• code generation
• scheduling
• analysis
• simulation
• integration
• testing

Control Applications

• control requirements
(stability, settling time)

• timing requirements
(end-to-end latencies,
WCETs)

Automotive Architectures

• communication (CAN,
FlexRay, LIN, Most)

• computation (OSEK,
OSEKTime)

Figure 1: Illustration of a concurrent design of dis-
tributed automotive control systems.

1. OUTLINE
In the following, different aspects of a design flow for

timing and schedulability analysis of distributed automotive
control application are discussed. These aspects break down
to state-of-the-art automotive architectures, control applica-
tions, and a design methodology that considers a concurrent
co-design. An overview is illustrated in Figure 1.

1.1 Automotive Architectures
Modern cars consist of a large number of electronic com-

ponents that carry out highly diverse applications with the
goal to increase the safety and comfort of the driver. Recent
innovations in the automotive domain like adaptive cruise
control or lane, parking, and, traffic assistant systems are
put into practice by integrated hardware/software solutions.
As a result, modern high-end cars consist of more than
100 electronic control units (ECUs) that are connected to
a set of sensors and actuators, running a multitude of dis-
tributed control applications. These automotive architec-
tures are highly heterogeneous, consisting of many different
computational and communication components. This grow-
ing complexity issues enormous challenges to designers and
developers of automotive systems.

Computing devices in the automotive domain have to ful-
fill stringent safety and reliability requirements. Moreover,

349



these devices and their corresponding operating systems have
to offer a predictable behavior to enable a sound timing and
schedulability analysis. In order to cope with complexity of
novel control applications, the introduction of novel hard-
ware architectures such as multi-core processors becomes
necessary, making the analysis even more challenging.

The well-established bus protocols in the automotive do-
main are CAN, FlexRay, and LIN. In particular, the novel
FlexRay bus, see [5], is a promising candidate for upcom-
ing automotive architectures and control applications which
have much higher demands on bandwidth and real-time be-
havior. The FlexRay protocol has been developed to meet
these requirements and provides a robust, scalable, deter-
ministic, and fault-tolerant communication system for ad-
vanced automotive control applications. However, the sche-
duling and timing analysis of the bus is a challenging task.
The configuration requires 70 network parameters as well
as a schedule that fulfills the real-time requirements of the
control applications.

1.2 Control Applications
In a modern car, the complexity of control applications

is highly diverse, putting different demands on the safety
and real-time behavior of the system. These demands have
to be derived from typical control requirements such as the
stability or settling time of the control model, see [3]. While
some control applications are implemented isolated on sin-
gle ECUs, others are distributed throughout the entire in-
vehicle network. Here, the amount of data that has to be
exchanged might be very high with strict end-to-end timing
delays.This will require novel scheduling approaches and an-
alytical techniques to verify the correct implementation of
the control algorithms on the distributed architecture.

The software implementation of distributed control appli-
cations running on automotive architectures is typically re-
alized by model-based software development. This involves
automatic code generation from high-level control models
in description languages such as Simulink/Stateflow, along
with the communication driver stack and the operating sys-
tem. To cope with the complexity of the software devel-
opment in the automotive domain, AUTomotive Open Sys-
tem ARchitecture (AUTOSAR), see [6], was introduced by
several car manufacturers and suppliers. The AUTOSAR
initiative enables a standardized and platform-independent
development of distributed and concurrent control applica-
tions.

A model-based design flow requires an appropriate set of
compilers. Traditionally, compilers are unable to use precise
estimates of execution times for optimization, and timing
properties of code are derived after compilation. A spe-
cific number of design iterations is required if timing con-
straints are not met. A reconciliation of compilers and tim-
ing analysis becomes necessary to create a worst-case exe-
cution time (WCET) aware compiler in this way [2]. Such
WCET-aware compilers can exploit precise WCET informa-
tion during compilation.

1.3 Co-Design
The model-based development of complex distributed em-

bedded systems requires a much tighter integration of com-
petencies in controls, formal methods and software archi-
tectures and platforms, which will require substantial inno-
vation in the education programs and immediate help from

the research community. Today, the number of distributed
control applications in vehicles is rapidly evolving while fur-
ther complexity is added with the integration of the upcom-
ing AUTOSAR standard for the definition of application-
level components and automotive hardware/software archi-
tectures.

A model-based flow and continuous tool support is a pro-
mising approach to cope with existing challenges and provide
possible solutions, see [7]. Schedules for the bus systems and
operating systems have to be synthesized in compliance with
the requirements of the distributed applications. In case of
control applications, a methodology becomes necessary that
also takes the specific characteristic and requirements of the
control models into account [3].

Predicting real-time behavior of distributed automotive
control systems is an enormous challenge [4]. For the analy-
sis of real-time behavior of distributed control systems there
exists a gap between analytical approaches like SymTA/S [8]
and simulation environments like chronSIM [1]. On the
one hand, simulation as well as emulation is very time-
consuming such that results of the experiments are available
late in the design process. On the other hand, an analytical
approach might lead to overly pessimistic results. There-
fore, simulation and analysis have to be combined to make
a system understandable in its real-time behavior for the
designer and system architect in early design stages of the
development.

2. REFERENCES
[1] ChronSIM. http://www.inchron.de/chronsim.html.

[2] H. Falk and P. Lokuciejewski. A Compiler Framework
for the Reduction of Worst-case Execution Times.
Real-Time Systems, 46(2):251–300, 2010.

[3] D. Goswami, R. Schneider, and S. Chakraborty.
Co-design of cyber-physical systems via controllers with
flexible delay constraints. In Proceedings of the 16th
Asia and South Pacific Design Automation Conference
(ASPDAC), pages 225–230, 2011.

[4] F. König, D. Boers, F. Slomka, U. Margull, M. Niemetz,
and G. Wirrer. Application Specific Performance
Indicators for Quantitative Evaluation of the Timing
Behavior for Embedded Real-time Systems. In
Proceedings of the Conference on Design, Automation
and Test in Europe (DATE), pages 519–523, 2009.

[5] M. Lukasiewycz, M. Glaß, P. Milbredt, and J. Teich.
FlexRay Schedule Optimization of the Static Segment.
In Proceedings of the 7th International Conference on
Hardware/Software Codesign and System Synthesis
(CODES+ISSS), pages 363–372, 2009.

[6] R. Racu, A. Hamann, R. Ernst, and K. Richter.
Automotive software integration. In Proceedings of the
44th annual Design Automation Conference (DAC),
pages 545–550, 2007.

[7] A. Sangiovanni-Vincentelli and M. Di Natale.
Embedded System Design for Automotive Applications.
Computer, 40(10):42–51, 2007.

[8] SymTA/S.
http://www.symtavision.com/symtas.html.

350




