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ABSTRACT
The paper presents an overview of a major research project
on dependable embedded systems that has started in Fall
2010 and is running for a projected duration of six years.
Aim is a ‘dependability co-design’ that spans various levels of
abstraction in the design process of embedded systems start-
ing from gate level through operating system, applications
software to system architecture. In addition, we present a
new classification on faults, errors, and failures.

Categories and Subject Descriptors
B.8.1 [Performance and Reliability]: Reliability, Test-
ing, and Fault-Tolerance; D.2.4g [Software Engineering]:
Reliability;
General Terms
Reliability
Keywords
Resilience, Fault-Tolerance, Embedded Systems, MPSoCs,
Dependability

1. INTRODUCTION
Moore’s Law has been the pace maker for the semiconduc-

tor industry for more than four decades. It was accompa-
nied by a) decreased per-transistor costs, b) increased per-
formance through decreased signal delay, c) decreased en-
ergy consumption per switching activity, etc. However, as
Gordon E. Moore stated in a talk at ISSCC 2003: “No ex-
ponential is forever ... but we can delay ‘forever’ ...” [37] he
indicated that the exponential growth cannot be sustained
forever but that it may be possible to delay the point when
scalability finally comes to an end. The German national
research program “Design and Architectures for Dependable
Embedded Systems” (German Research Foundation, DFG
SPP 1500) aims at exactly this point: to find new means
for extending the applicability of Moore’s Law beyond the
currently predicted limits which are mainly related to de-
pendability issues. In fact, it has been predicted by var-
ious sources that on-chip systems will become inherently
undependable (see [47], for example) and that a paradigm
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shift needs to be applied by “... building dependable sys-
tems with non-dependable components ...” [6]. Interestingly,
this paradigm is not new as John von Neumann many years
before [51] already proclaimed this paradigm even though
not in the context of Moore’s Law reaching its limit. As for
the current paradigm shift, also the ENIAC Strategic Re-
search Agenda states: “Emerging devices are expected to be
more defective, less reliable and less controlled in both their
position and physical properties. It is therefore important
to go beyond simply developing fault-tolerant systems that
monitor the device at run-time and react to error detection.
It will be necessary to consider error as a specific design
constraint and to develop methodologies for error resiliency,
accepting that error is inevitable and trading off error rate
against performance (e.g. speed, power consumption) in an
application-dependent manner” [18] which summarizes the
purpose and the goals of our research program very well.

1.1 Goals
Among others, we are addressing the following depend-

ability concerns that arise when migrating to upcoming tech-
nology nodes:

a) Fabrication and Design-Time Effects

Yield and Process Variations: Yield defines the num-
ber of flaw-free circuits in relation to all fabricated circuits.
A high yield is so far considered vital for an economic pro-
duction line. Unfortunately, yield will dramatically decrease
because feature sizes reach a point where the process of man-
ufacturing underlies statistical variances. Future switch-
ing devices may be fabricated through ‘growing’ or ‘self-
assembly’. All known research suggests that these processes
cannot be entirely controlled, leading to fabrication flaws,
i.e. circuits with faulty switching devices.

Complexity: The steadily increasing integration complex-
ity is efficiently exploited by the current trend towards many-
core network-on-chip architectures. These architectures in-
troduce hardware and software complexities, which were
previously found on entire printed circuit boards and sys-
tems down to a single chip and provide significant perfor-
mance and power advantages in comparison to single cores.
The large number of processing and communication ele-
ments requires new programming and synchronization mod-
els. It leads to a paradigm shift away from the assumption
of zero design errors.

b) Operation and Run-Time Effects

Aging Effects: Transistors become far more susceptible to
environmental conditions like, for instance, heat. It causes
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Figure 1: Cross-layer representation of faults, er-
rors, and failures with bit error as resilience articu-
lation point

an irreversible altering of the physical (and probably chem-
ical) properties, which itself leads to malfunctions and per-
formance variability over time. Though effects like electro-
migration in current CMOS circuits are well known, they
typically did not pose a problem since the individual switch-
ing device’s life time was far higher than the product life
cycle. In future technologies, however, individual switching
devices will fail (i.e. age) earlier than the life cycle of the sys-
tem they are part of. Another emergent altering effect is the
increasing susceptibility to performance variability resulting
in changing critical paths over time. This, for instance, pre-
vents a static determination of the chip performance during
manufacturing tests.

Thermal Effects: Thermal effects will have an increasing
impact on the correct functionality of transistors in upcom-
ing technology nodes. Various degradation effects are ac-
celerated by thermal stress like very high temperature and
thermal cycling. Aggressive power management can pro-
duce opposite effects, e.g. hot spot prevention at the cost
of increased thermal cycling. Higher integration in the 3rd
dimension (3-D circuits [22]) increases the thermal problem
since the ratio of surface-area/energy significantly worsens.
Devices will be exposed to higher temperatures and acceler-
ated aging effects, etc. In addition, transient faults increase,
too.

Soft Errors: The susceptibility of transistors against soft
errors will increase significantly. Soft errors are caused by
energetic radiation particles (neutrons) hitting silicon chips
and imposing charge on the nodes that flips a memory cell
or logic latches. These errors are transient and randomize
the confluence of device and voltage scaling towards unac-
ceptable levels for future applications.

The relationship between the various physical fault sources
in technology and the final hardware/software level failure
consequences at system level is depicted in the following
hour-glass diagram in Fig. 1. Thereby, spatial and/or tem-
porally correlated bit flips represent resilience articulation
points between the domains of technology and hardware/
software systems. By using spatial bit flip correlation mod-
els, crosstalk faults as well as parametric drifts of sensors
and analog components can be expressed whereas temporal
correlation models are used to describe SEU and timing er-
rors for instance. This also means that bit flips can be used
by both digital and analog hardware as well as software de-
pendability methods for modeling various fault origins and,
thus, as means for error insertion to validate system behavior
with respect to their resilience against these fault sources.

1.2 Means
The major distinction of our research program is that de-

pendability concerns are addressed at various levels of de-
sign and architectural abstraction since we believe that a
maximum of dependability can only be achieved if various
abstraction levels work seamlessly together. This focus is
manifested in the SPP 1500 pyramid shown in Fig. 2, which
features the following means to enhance dependability:

Technology Abstraction: Upcoming technology nodes in-
troduce new effects that negatively impact dependability.
A clear interface between technology-related research topics
and the higher abstraction levels to address undependability
needs to be defined. Technology Abstraction’s goal is to en-
sure that the architectures, methods and other means are as
far as possible independent from technology since technology
is not a focus of this research program.

Dependable Hardware Architectures at the lowest level
may refer to logic-level architectures, i.e. logic components
that exhibit inherent undependability. Moving up in ab-
straction level, dependable architectures also stand for reg-
ister-transfer components and microarchitectures like pro-
cessor pipelines and instruction set architectures. At an
even higher level, system-on-chip architectures like multi-
core and many-core systems that are connected via on-chip
networks are to be researched with respect to dependabil-
ity. Methods that are playing a key role are fault-tolerance,
reconfiguration capabilities, self-organization etc.

Dependable Embedded Software refers to the kind of
software of an embedded system that interacts very closely
with the hardware. Embedded software is therefore aware of
the hardware components that are invoked and how they are
invoked when the software is executed [41]. For that reason,
software should be able to eliminate undependability effects
that are propagated from various abstraction levels of the
hardware, e.g. as presented by the application in [42].

Operation, Observation, and Adaptation: Both basic
components, Dependable Hardware Architectures, and De-
pendable Embedded Software need to be operated in a de-
pendable way. Undependability may be a result of the com-
bined execution/interaction of hardware and software and
as such may not be noticed by either one when viewed in an
isolated way. The operation of embedded resources should
be able to detect those scenarios. It therefore needs an in-
frastructure for observation and finally a means to adapt the
embedded systems to ensure a dependable operation. Capa-
bilities like failure-avoidance, failure-recovery etc. are among
the research activities.

Design Methodologies: During the design phase of the
embedded systems, the inherent undependability of the tran-
sistors needs to be taken into account. Above all, the design
methods and concepts must not handle undependability as
an exception. Instead, undependability is omni-present and
dealing with it must be viewed as the major design goal
whereas past major design goals like ‘area’ in the 1980s,
‘speed/performance’ in the 1990s and ‘power consumption’
in the 2000s now become secondary.

The rest of the paper outlines representative projects in
the five topics of error detection and test, thermal and com-
munication management, real-time OS, embedded software,
and resilient architectures. Besides these projects, there are
also the analog-related projects hexFPAA [54] (which in-
vestigates reconfigurable adaptive analog filters to bypass
manufacturing and runtime errors) and MixedCoreSoC [55]



which provides runtime self-adapatation for both digital and
analog cores to detect and bypass defective cores.

Figure 2: The pyramid for dependable embedded
system

2. ERROR DETECTION, LOCALIZATION
AND TEST

Fault-tolerance techniques are used to tolerate errors oc-
curring during system operation. Fault-tolerance techniques
include masking (e.g., Triple Module Redundancy), concur-
rent error detection, recovery (e.g., rollback and rollforward
recovery) and self-repair [40].

Errors can be either permanent or temporary. Permanent
errors are caused by manufacturing defects or components
that break due to some wearout mechanisms. A temporary
error is not present all the time for all operating condi-
tions. Temporary errors can be either transient or intermit-
tent. Some examples of causes of transient errors (faults)
include externally induced signal perturbation usually due
to electromagnetic interference, power-supply disturbances,
and radiation due to cosmic rays. An intermittent error
causes a part to produce incorrect outputs under certain
operating conditions. Examples of causes of intermittent er-
rors (faults) include weak components and cross-talk due to
coupling between signal lines.

Temporary errors are generally detected using concur-
rent error detection (CED) techniques and retry-based tech-
niques are used for recovery from temporary errors. A criti-
cal step in fault-tolerance is to identify the existence of errors
during the execution of the system. Once the errors are de-
tected, there are several options to recover from errors as
long as the errors are detected early enough. Error recovery
schemes include re-execution, rollback recovery, rollforward
recovery, and checkpointing [48, 40].

While there has been a considerable amount of work on
circuit level timing analysis, such analysis typically does not
consider specific inputs to the circuit. For the adaption of
software to technology characteristics of the chip the consid-
eration of specific inputs in circuit level timing analysis can
be beneficial. In [26] it is shown that the results of circuit
level timing analysis may substantially vary for specific in-
puts derived from program level analysis. These results open
up possibilities for compiler-level optimizations to mitigate
the problems associated with process variability.

Thorough testing and precise high-resolution location of
failing resources in a defective part are keys to successful im-
plementations of defect and fault-tolerance. Thorough man-
ufacturing testing is required to identify a defective manu-
factured part. During system operation, periodic testing
is required to identify a defective system component with
a permanent fault. Application-specific test and diagnosis

techniques are useful for defect tolerance and also for detec-
tion, location, and repair of permanent faults during normal
operation of the system. Test and error localization (diag-
nosis) techniques are also used after manufacturing, mainly
for identifying defective parts and also for defect tolerance,
in order to improve the manufacturing yield. Test and er-
ror localization during system operation are very complex
tasks; however, they help detect permanent and transient
errors and hence improve the overall system reliability.

2.1 Projects within this topic
Different projects in the SPP 1500 program address some

of the research challenges related to error detection and lo-
calization of analog and digital circuits.

The goals of the project LIFT [56] are to close the gap be-
tween device and software level error resiliency methods and
develop a holistic approach to error resilient system design.
The main challenges involved in such a cross-layer approach
include developing (i) abstraction techniques for propagat-
ing device characteristics upwards, (ii) compiler and pro-
gram analysis techniques to exploit these characteristics,
(iii) runtime monitoring techniques (e.g., to detect late glitches)
to trigger software-level error correction (e.g., repeat partic-
ular instructions), and (iv) reliability-aware instruction set
simulators.

In the project PERCEDES [64], techniques and method-
ologies to ensure robustness, reliability, availability, and re-
coverability of critical embedded systems at both the hard-
ware and the software levels in a very cost-effective way are
envisioned. This project aims to develop concurrent error
detection and localization methods (hardware-level) to en-
sure data integrity. Also, recovery mechanisms will be de-
signed which provide error localization from the design level,
and carefully consider how these interact with both the mi-
croarchitectural and architectural levels (software-level).

The project OTERA [59] aims to increase dependability of
runtime reconfigurable systems by a novel system-level strat-
egy for online tests and online adaptation to an impaired
state. This will be achieved by (a) scheduling such that tests
for reconfigurable resources are executed with minimal per-
formance impact, (b) resource management such that par-
tially faulty resources are used for components which do not
require the faulty elements, and (c) online monitoring and
error checking. To ensure reliable runtime reconfiguration,
each reconfiguration process is thoroughly tested by a novel
and efficient combination of online structural and functional
tests.

The project ARES [63] considers a SoC that includes a
coarse-grained reconfigurable core (CGRC). Besides its pur-
pose as a hardware accelerator the CGRC is used for the
verification of other SoC components or to assume their
functionality in case of defects. In this field of operations
it is mandatory for the CGRC to be fault-tolerant. This
is achieved by implementing logic for error detection and
masking. If hardware defects are detected, the configured
data paths are remapped in spatial [15] or temporal [16]
domain to relinquish defective resources.

3. THERMAL MANAGEMENT AND COM-
MUNICATION VIRTUALIZATION

A major dependability concern of current and future MP-
SoC (Multi-Processor System-on-Chip) are thermal prob-
lems resulting from the dynamic and static electrical energy
dissipation densities in deep sub-micron CMOS technologies.
Short term effects may lead to transient malfunction in sig-



nal timing or integrity, whereas long term effects include
irreversible physical damages due to, for example, electro-
migration. The problem worsens with the inception of 3D
integration as the per-surface dissipated thermal energy in-
creases. Virtualization, i.e. the ability to separate applica-
tion tasks, stored data and communication channels between
tasks from the underlying physical resources have the poten-
tial to cope with thermal and other dependability exposures
of MPSoC at architecture level.

Existing approaches to dynamic run-time thermal man-
agement at the MPSoC architecture level include dynamic
voltage and frequency scaling [10, 24] and power gating of
SoC IP cores and temperature-aware task scheduling [11, 38,
13] or remapping [53]. VMM (Virtual Machine Manager)
and Hypervisors [5] are established software-based concepts
for processor virtualization. Few hybrid hardware/software-
based concepts (VMDq [8] and RiceNIC [52]) have been pro-
posed for I/O virtualization with the primary objective to
maximize throughput of the network interface card. The
scalability of today’s thermal management and virtualiza-
tion techniques towards hundreds of cores in future 3D many-
core processors is a major concern because of the domi-
nantly centralized manner for gathering and evaluating sys-
tem state information, the computational complexity of the
specific heuristics and the associated communication over-
head. Furthermore, centralized approaches represent a de-
pendability exposure due to their single point of failure char-
acteristic. In order to find optimized initial task mappings
with respect to thermal stress, approaches for ESL power
and temperature analysis can be applied at design time [44].

3.1 Projects within this topic
Within this research, we consider task and thread migra-

tion as key counter measures to the dependability exposure
of a task running in a high temperature area of a 3D MP-
SoC at system and architecture abstraction levels. Unlike
DVFS, where the task has to remain on a high temperature
core unless heat conductivity or convection slowly lowers the
temperature, the dislocation of a task onto a cooler core re-
sults in immediate cool-down and allows resuming reliable
computation of the task in a more dependable environment.
However, since tasks are typically parts of an application
(e.g. represented by an interconnected task graph), task mi-
gration may not lead to a ‘dangling lead’ with respect to the
specified connectivity between tasks.

Goal of the VirTherm-3D [58] project is to provision a
scalable and robust thermal management concept for both
2D and 3D stacked many-core architectures. A single layer
of such a many-core is shown in Fig. 3. The tiled many-
core hardware and layered system and application software
platforms depicted in Fig. 3 provide generic architecture
templates used by several SPP 1500 projects beyond the
ones described in this section. A distributed and hierar-
chical agent system in addition to the runtime environment
initiates proactive task migrations onto cooler processing re-
sources while a communication virtualization layer dynam-
ically adapts and protects connectivity between (migrated)
tasks and external I/Os [14] (See transition between left and
right section of Fig. 4). Scalability of the thermal manage-
ment is achieved by constraining the number of compute
tiles managed by a single software agent. Agents are hier-
archically structured to supervise and manage agents at the
next lower layer. In order to achieve low latency and service
class differentiation for Gb/s link interfaces, the communica-
tion virtualization aims at a multi-context hardware-based
finite state machine approach with multi-priority buffering

services in the I/O tile and network adapter functions of
compute tiles. The SMASH [62] project targets proactive,
temperature-driven thread migration and shadowing on het-
erogeneous multicore processor platforms by corresponding
enhancements to the ReconOS framework [30]. SMASH ex-
tends the notion of threads to apply for hardware threads
running on dedicated function or reconfigurable cores as well
(see coexistence of RISC and HW accelerators in upper com-
pute tile of Fig. 3). The runtime system maintains ther-
mal sensitivity maps to balance the temperature gradients
among multiple hybrid cores. To catch core failures, shadow
threads are assigned to dependable cores with low thermal
stress. Signature traces are evaluated between threads run-
ning on hot and cold cores and may trigger thread restart
or migration.
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Figure 3: Tiled many-core hardware and software
platforms

Open research challenges of these distributed and scal-
able approaches to improve dependability of heterogeneous,
2D and 3D MPSoC are: Meeting soft and hard real-time
requirements during task migration and communication vir-
tualization in embedded applications; Interplay between the
virtual communication layer and service guarantees provided
by the underlying physical Network-on-Chip (NoC) inter-
connect structure; Characterizing thermal sensitivity of cores
during runtime using learning approaches; Identification of
suitable techniques for thread shadowing considering OS in-
teractions and memory accesses. As a prerequisite it is nec-
essary to examine the basic thermal properties of our system
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Figure 4: VirTherm-3D: Agent-based thermal man-
agement with hardware-assisted I/O virtualization

and to calibrate on-chip thermal sensors. This is done using
an infrared thermal camera, with our setup shown in Fig. 5.

Figure 5: Infrared camera setup and thermal image
of Xilinx Virtex-5 FPGA with computation in lower
left corner

4. RESILIENT REAL-TIME OS
The operating system (OS) plays a key role in any complex

computing system, especially in real-time systems. A cur-
rent OS supporting software integration with memory man-
agement and virtualization contains several core functions
that depend on error-free hardware. Errors in these func-
tions quickly and irreversibly propagate through the system
making it virtually impossible to recover from a function
failure. Other OS functions can recover from failures with
appropriate mechanisms. Such functions inherit the depend-
ability requirements of the applications using it. Therefore,
it is necessary to integrate operating system and hardware
mechanisms that utilize the hardware and communication
resources of a many-core system to efficiently provide the
required dependability. The requirements to the design of
a resilient OS are: to (1) identify the critical core function-
ality, (2) to minimize the hardware and software resources
needed for the core, (3) to establish interfaces and signalling
between hardware, operating system, and applications so as
to provide system integrity which shall be guaranteed by
corresponding formal safety analysis, and (4) to extend the
underlying hardware architecture to provide the necessary

fault handling mechanisms. These are the major concerns
of the ASTEROID [57] project, which targets at an efficient
trade-off between hardware and software measures to tackle
unreliable hardware.

4.1 Error Detection and Recovery
Two basic mechanisms are required to harden an operat-

ing system and thus the mapped applications against errors
of the underlying hardware: There must exist a framework
to detect error conditions and in case the error already prop-
agated in the software, there must be a mechanism to recover
from that error.

The OS can for instance be executed on multiple cores
which execute in a lock-step fashion. Here, both cores ex-
ecute exactly the same instructions in parallel and a vot-
ing mechanism decides on correctness. This will protect all
software running on the joint lock-step cores. However, for
noncritical software this duplication imposes an unaccept-
able overhead. It is desirable to execute only those services
redundantly which are critical, which is not possible using
a plain lock-step mechanism. Instead a technique called fin-
gerprinting, initially presented by Smolens et al. [49] and
LaFrieda et al. [27] can serve this purpose. A small hard-
ware fingerprint circuit hashes the execution stream in the
processor-pipeline. Then, at any later time, the code can
be executed on the same or another core and the voting is
based on the fingerprint result.

To recover from errors, checkpointing is usually used, in
which the system-state is saved on a volatile medium (check-
pointed) on a regular basis. When recovery is necessary,
a recent checkpoint state can be restored. This appealing
concept of fault-tolerance in time has high pervasiveness in
fault-tolerant systems because it can be implemented in soft-
ware, hardware, or a combination thereof.

4.2 The role of Safety Standards
Deployment of embedded systems in safety-critical do-

mains enforces a strongly safety oriented product life-cycle
to qualify a product for deployment in safety-critical mis-
sions. This is not only crucial in order to minimize the risk
of casualties in case of system failure but also to handle
liability issues. To unify safety requirements, safety stan-
dards such as the industrial-oriented IEC-61508 [23] specify
a safety certification process.

Of special interest in this scope is how to integrate ap-
plications with both safety and timing requirements. It is
especially challenging because techniques from real-time and
dependability domains need to be combined.

The classical IEC 61508 is to identify safety-functions first.
These are technical functions which are intended to achieve
or maintain a safe state of the system. Secondly, a risk as-
sessment identifies the safety integrity level (SIL) of each
safety function. This SIL is a general starting point for sys-
tem design and defines guidelines for fault-tolerance, testing
and validation effort. As the underlying framework, the core
of the operating system itself is obviously the most critical
piece. Thus, it is advised to keep the core software lean
(e.g. by using a microkernel) in order to decrease certifica-
tion effort and reduce the error-proneness. Then, additional
software services (e.g. noncritical, best-effort applications)
can be added if the core enforces sufficient temporal and
functional isolation.

From the real-time perspective, fault-tolerance concepts
must be handled with care because the scheduling of repli-
cas, creation of checkpoints, and the process of recovery
may lead to deadline misses, because these mechanisms are



potentially unbounded in time. Thus it is not only suffi-
cient to have a resilient operating system. But the addi-
tional computation load must be considered. Moreover, if
an application depends on an OS service, the error detec-
tion and recovery procedure inherits the application deadline
requirements. These timing requirements strongly impacts
the overall system scheduling threatening system efficiency.
Currently, we could not even prove correctness, as existing
real-time analyses such as [21] are not applicable because
they only represent the error-free case, so real-time analy-
sis must be combined with probabilistic error modeling, as
in [4].

4.3 Dependability across the Software Stack
As argued above, the operating system is a primary can-

didate to use and provide software measures to compensate
for unreliable hardware. However, dependability in this re-
spect is a nonfunctional concern that affects and depends
on all parts of the system. Tackling it in a problem-oriented
way by the operating system is an open challenge: (1) It is
still unclear, which combination of software measures is most
beneficial to compensate certain hardware failures – ideally
these measures should be understood as a matter of config-
uration and adaptation. (2) To achieve overall dependabil-
ity, the implementation of these measures, even though pro-
vided by the operating system, cannot be scoped just to the
operating system layer – it inherently crosscuts the whole
software stack. (3) To achieve cost-efficiency with respect
to hardware and energy, the measures have, furthermore,
to be tailored with respect to the actual hardware proper-
ties and reliability requirements of the application: The goal
of the DanceOS project [60] is to provide dependability of
software running on unreliable hardware by the fine-grained
and tailorable application of (software-based) fault-tolerance
techniques. [45]

This calls for the application of advanced software technol-
ogy, in particular program analysis and aspect-oriented pro-
gramming [50], to separate the what and where of software-
based dependability in a reusable way, that is, to separate
the implementation of the fault-tolerance concern from the
functional parts of the software. Thereby, fault-tolerance
measures can flexibly be applied to, for instance, the whole
software system, only its most critical parts, or only those
parts that are actually affected by malfunction of some con-
crete hardware instance. The application of these measures
shall be possible in this realm across the complete software
stack, including the application itself and the (tailored) em-
bedded operating system [29].

5. RELIABLE EMBEDDED SOFTWARE
Software for embedded systems is constrained by a lack

of resources like time, energy, or memory. One common de-
sign principle that increases the predictability of embedded
software is to reduce the number of run-time decisions and
replace these with static behavior. In fault-tolerant systems,
this implies that every error is corrected in the same way.
Since the occurrence of errors is in general unpredictable,
this may result in missed deadlines and inefficiently utilized
resources.

To overcome this problem, one can make use of the fact
that not all errors have fatal consequences that lead to a
crash or an otherwise unusable system. Some errors show
no effect at all, while other errors only affect the quality of
service.

This observation is the basis for constructing reliable, real-

time and resource-aware embedded software for which sev-
eral conflicting objectives exist. One of the most obvious
conflicts is adhering to real-time constraints vs. the achieved
quality of service. If strict adherence to real-time constraints
is required, correcting non-critical errors is only feasible dur-
ing the currently available idle time. If real-time require-
ments could be softened, e.g., for a video player, this would
allow a system to also correct less critical errors even if this
would introduce a certain amount of jitter in the display.
Additional constraints, like the amount of energy available
to a mobile device, may also influence the decision taken.
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Figure 6: Separate Error Detection and Correction

5.1 Flexible Error Handling
In order to achieve flexibility, a system has to classify er-

rors according to their impact and possess a detailed knowl-
edge of the current timing and resource conditions of the
system and the possible correction methods. Essential for
flexible error handling is the separation of error detection
and error correction, as shown in Fig. 6. When an error is
signaled, error detection (∗) only has a short amount of time
to decide if, how, and when to handle that error based on
its impact and the current timing and resource conditions
of a system. Regular system operation can then commence
to keep deadlines until the error correction takes place.

Figure 7: Type Qualifiers

In general, it is hard to assess the impact of an error on
a system. Error detection usually only provides information
about the affected memory address or hardware component.
However, no information on the semantics of the error, e.g.,
which data is affected, is provided. Here, a specific property
of embedded systems helps to obtain the required semantics.
In most embedded systems, the set of applications is known
in advance. This allows to perform a part of the error impact
analysis at compile-time, based on application annotations.
An example is shown in Fig. 7. There, “reliable”/“unreliable”
qualifiers indicate if errors affecting to the annotated vari-
able have to be corrected or an unexpected change of the
value will not have a severe impact.

5.2 Reliability Annotations
Manually annotating every variable of a program is te-

dious. Compiler-based static methods extract application
knowledge by analyzing the control and data flow to deter-
mine where values marked reliable or unreliable may show
up during execution. In the example of Fig. 8, the value of
the reliable variable r is copied to one of two different vari-



Figure 8: Tracking Reliability in the CDFG

ables, depending on the control flow. From the graph, the
impact and urgency of error correction can be derived.

Reliability annotations provide an additional benefit when
mapping the components of an application onto a complex
architecture. Future architectures will contain components
that exhibit varying dependability characteristics, like pro-
cessor cores with different arithmetic precision and memories
with different reliability guarantees. Using reliability anno-
tations, the compiler can create a mapping that ensures the
assignment of reliability-critical code and data objects to the
most reliable components of a system.

5.3 Challenges
The temporal behavior of many applications is hard to

predict and in many cases it is data-driven. For example, in
an H.264 video decoder [19, 20], the time required for decod-
ing a specific video frame is hard to determine. Thus, the
idle time available for error correction is not known before-
hand. Here, heuristic models [43] may help to obtain useful
estimates. These heuristics, however, do not guarantee an
upper bound for the timing, so in rare cases, using this in-
formation might introduce jitter into the system [17]. This
fits well to the flexible trade-offs considered in the project.

Classification of error impact is application-dependent; no
single classification can cover all possible applications. Only
the extreme cases, program crashes and no effect at all, are
common to all applications. In addition, the system designer
must consider use cases. In a video display, e.g., a discolored
pixel may be acceptable for consumer electronics, but not
when using the same code for safety-critical applications.

An additional challenge is that the amount of compiler-
generated data required for the run-time decisions may po-
tentially be huge. Thus, efficient consolidation and compact
representations of that data to enable fast accesses are re-
quired so that the run-time overhead is minimized.

Another important challenge is the tailoring of reliability-
increasing techniques on the software-level to the system’s
architecture. This requires application-driven reliability anal-
ysis techniques capable of considering both hardware and
software aspects cross-layer. Within this SPP, existing app-
lication-driven reliability analysis techniques like [31], that
are restricted to hardware aspects, are extended accordingly.

5.4 Projects within this topic
The FEHLER [61] and CRAU [65] projects view the re-

source and real-time requirements from different perspec-
tives. While FEHLER treats real-time conditions of a sys-
tem as being of primary importance, the CRAU project

takes a resource-centric approach to assess the error cor-
rection capabilities of a system composed of multiple com-
ponents and applications.

Both projects meet in the middle. The compile-time pro-
cessing in FEHLER generates reliability information for code
and data objects of the given application. This information
can be used at run-time to implement flexible error handling
and at design-time to create a mapping of objects with differ-
ent reliability requirements to architecture components with
different reliability characteristics.

Overall, flexible error handling that employs reliability an-
notations in the FEHLER project together with the compo-
sitional view of component and system reliability provided
by the CRAU project will enable future embedded system
designers to explore the design space of a system under given
constraints for reliability and additional resources.

6. RESILIENT ARCHITECTURES
Exploring the knowledge of multiple abstraction layers

from circuit and micro-architecture up to algorithm and ap-
plication layer is key to minimize dependability cost in terms
of area, energy and performance. Until today such a cross-
layer design approach has mostly been addressed at the lower
design levels. At higher levels, systems were designed under
the premise of fault free underlying hardware. Thus, a large
body of related work focuses on low level techniques of pre-
senting a practically error-free platform built from poten-
tially unreliable elements to higher abstraction and design
levels[35].

The majority of robust systems assume the co-existence
of high-reliability components, based on conservative de-
sign with corresponding implementation overhead, and low-
reliability components. This differential or asymetric re-
liability is exploited in various ways to protect individual
system components like buses, network-on-chip, memories,
datapaths etc. against transient or permanent errors. This
is performed by employing built-in redundancy or built-in
self-recovery techniques. All these techniques basically com-
prise information and/or execution redundancy. Examples
are checker processors, ECC and residue checking, Razor
FFs and BISER Latches just to name a few [34]. An error
resilient hardware architecture which can be seen as practi-
cally error free can then be composed of protected compo-
nents. Applications on these platforms can be implemented
in a traditional way, still assuming fault free operation of
the underlying hardware.

In addition to this horizontal integration, recent research is
also evaluating the additional potential of a vertical integra-
tion of error resilience on the application level with platforms
with a reduced reliability. True cross-layer optimization ap-
proaches do not only exploit the fact that some important
classes of algorithms have inherent error resilience, but also
adapt the applications and architectures jointly to achieve
the best trade-offs.

A large number of important and relevant applications
have some type of inherent error resilience. They can be
attributed to one of the two following categories:

• Algorithmic resilience is given when a certain amount
of errors can be tolerated by the algorithm itself. This
is the case for probabilistic applications and applica-
tions which can tolerate statistical behavior. Examples
are Recognition, Mining and Synthesis (RMS) appli-
cations [12] and wireless systems. Further applications
in this context are fixed point DSP and numerical al-
gorithms.



• Cognitive resilience stems from the interaction of an
application with a human being like in audio and video
processing. Here, errors are tolerable as long as the
user cannot discern quality differences, or accepts them
as trade-offs for a longer battery life-time, for example.

Taking into account this application resilience at the ar-
chitectural level opens the door for further strong reduction
of the architectural overhead for resilience. The potential
for such approaches has been recently shown by various re-
searchers. Examples are algorithmic noise tolerance (ANT)
[46], significance driven approach (SDA) [36], probabilistic
CMOS [39], error-resilient system architecture (ERSA) for
RMS applications [28, 9], architectures for multimedia [7]
and wireless communications [25, 33, 32, 3]. It is important
to mention that the exploitation of application resilience is
not limited to hardware implementations but can also be
applied to software implementations.

6.1 Project within this topic
We investigate the aforementioned cross-layer-reliability

approach using a wireless baseband transmission system as
application [66].

A multiple-input, multiple-output (MIMO) detector is taken
as demonstrator vehicle. Such a MIMO detector could be
considered as an IP block in the tiled many-core Architec-
tures shown in Fig. 3. Special focus is put on adaptive relia-
bility tuned by the application at run-time according to the
required system performance and oberved disturbances and
operating conditions. Wireless communication systems are
an excellent application to investigate such an approach [2].

While run-time adaptivity is common in todays communi-
cations standards, these techniques have never been applied
to increase system error resilience with respect to hardware
failures. The Quality-of-Service (QoS) in wireless systems
is typically defined as the bit error rate with respect to a
given signal-to-noise (SNR) ratio. In current standards, like
HSPA or LTE, these service parameters and the desired sys-
tem throughput are dynamically adjusted at runtime, e.g.,
higher throughput rates are specified only for higher SNR.
This is due to the fact that the computational requirement
on the different algorithms is decreasing with higher SNR.
But in future, the negotiated QoS may also depend on the
reliability of the receiver hardware under given operation
conditions.

This leads to an entirely new paradigm – adaptive QoS
with respect to communications reliability and implementa-
tion reliability. To illustrate this, instead of providing higher
throughput at high SNR, relaxed reliability requirements on
the underlying hardware are possible. In other words, at
high SNR the error-resilience requirements can be relaxed
for the same QoS. In this way, QoS, hardware reliability,
and implementation efficiency can be traded-off against each
other.

7. CONCLUSION
We would like to conclude with a view from Dr. Sani

Nassif, IBM (July 2011): “It is clear that without signifi-
cant innovation, the reliability of deeply scaled integrated cir-
cuits will worsen to the point where it might no longer make
sense to continue scaling. Trends that have been present
for several generations in SRAM, which uses the smallest
and most dense devices on a typical integrated circuit, will
likely broaden to include normally robust circuits such as
latches and possibly even logic gates. A lot of innovations at
the technology, circuit, micro-architecture and system levels

were introduced to handle the unreliability of SRAM, like re-
dundancy, error correction, 8-transistor cell structures and
the like. New innovations at an even wider scale will be
needed to create reliable systems in the future, and the chal-
lenges are not solvable at any one level alone, but will require
deep cooperation between hardware, software and system de-
signers” [1].

We consider it of paramount importance to involve sev-
eral layers of abstraction when designing dependable embed-
ded hardware/software systems. Experts from hardware and
system-on-chip-design, system software and OS, and appli-
cation specialists, among others, need to cooperate in order
to ultimately achieve the required adaptability in order to
build truly reliable future embedded systems.

This SPP 1500 priority program brings together researchers
from these diverse areas to assess the behavior of future de-
vices and invent new dependability solutions for future gen-
erations of embedded devices. The combined experience and
expertise unique to this research program is aimed to enable
embedded systems researchers to break with traditional ap-
proaches of embedded system design and architectures in
what we call a ‘dependability co-design.’ This will enable
us to comprehensively tackle dependability problems of fu-
ture embedded systems and to develop innovative solutions
to improve the dependability of embedded systems while in-
corporating the traditional optimization objectives common
to embedded systems. The solutions developed in the con-
text of this program take a holistic view on dependability
problems and consider them as combined hardware/software
challenges.
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