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Abstract—In embedded consumer electronics devices, cost
pressure is one of the driving design objectives. Devices that
handle multimedia information, like DVD players or digital
video cameras require high computing performance and real-
time capabilities while adhering to the cost restrictions. The cost
pressure often results in system designs that barely exceed the
minimum requirements for such a system.

Thus, hardware-based fault tolerance methods frequently are
ignored due to their cost overhead. However, the amount of
transient faults showing up in semiconductor-based systems is
expected to increase sharply in the near future. Thus, low-
overhead methods to correct related errors in such systems
are required. Considering restrictions in processing speed, the
real-time properties of a system with added error handling are
of special interest. In this paper, we present our approach to
flexible error handling and discuss the challenges as well as the
inherent timing dependencies to deploy it in a typical soft real-
time multimedia system, a H.264 video decoder.

I. INTRODUCTION

Hardware design for consumer electronics devices is a
challenging task. Since most of the devices include embedded
systems, the typical restrictions inherent to embedded develop-
ment apply—the digital components of a consumer electronics
device are limited in factors like processing power, memory,
and available energy. In addition, rapid development cycles do
not leave much room for extensive optimizations.

An additional constraint will aggravate hardware develop-
ment in the near future. According to the ITRS roadmap
[1], the amount of faults showing up during the regular
operation of semiconductor components is expected to rise
sharply. This can be attributed to two major causes: shrinking
semiconductor structure sizes (to drive down manufacturing
costs) and reduced operating voltages (to prolong battery life).
Another point might also be valid for cost-sensitive devices.
Here, some hardware devices will not pass all tests perfectly.
They might show faults e.g. in extended temperature ranges. If
these devices could also be sold to customers instead of being
scrapped, this could reduce the cost pressure significantly.

However, hardware-based fault tolerance methods like ECC
protection of memories or providing redundant components

This work is supported by the German Research Foundation SPP1500
priority program under grant no. MA943/10-1

are in most cases too cost-intensive. Software-based fault-
tolerance methods, on the other hand, require a certain over-
head that increases a systems’ requirements of e.g. processing
speed and memory. In a video decoder, for example, a sim-
ple checkpoint-and-recovery approach might involve saving
the video frame buffer before a new frame is decoded and
restoring the previous checkpoint (and, possibly restarting the
decoding of the current frame) in case any faults shows up.

In a previous publication [2], we identified sections in an
H.264 decoder that are very vulnerable to faults. Using a
simulation with an extraordinary high fault injection rate it
was shown that if error correction is only applied to these very
critical sections, the rate of unwanted program terminations
can be reduced dramatically and the video quality will increase
significantly.

Based on this, the approach presented in this paper intends
to reduce the overhead of software-based fault-tolerance meth-
ods while providing acceptable quality-of-service in case of
errors. This is achieved by applying a classification indicating
the impact of an error—will the system crash, will only a
pixel in video memory be altered or might there be no effect
at all? Since the point in time at which an error shows up
is unpredictable, correcting an error disturbs the scheduling
of tasks in such a soft real-time system. Thus, in addition
to observing the semantics of an error, the current timing
properties of the system at the time the error shows up as
well as the timing properties of error correction have to
be considered in a flexible, software-based error handling
approach. We describe the semantics of errors showing up
in an embedded H.264 video decoder application and discuss
the influence of video decoding timing properties on error
handling.

The paper is organized as follows. We describe the underly-
ing problem of transient faults in section II. The basics of our
classification approach are described in section III. The timing
properties of H.264 video decoding and their impact on error
correction are described in section IV. Section V discusses
related work and section VI concludes the paper.

II. THE TRANSIENT FAULT PROBLEM

Faults in semiconductor devices can be divided into two
classes. Permanent errors show up at a certain point in time



and persist until repair. Those might be caused e.g. by bad sol-
der joints or electromigration. Transient errors are spontaneous
events that result in a single disturbance in the system (e.g., a
flipped bit in memory) at a certain point in time. Traditionally,
cosmic radiation and atomic decay were major causes for
transient faults; recently, thermal and electromagnetic effects
have also shown to be a major cause, since semiconductors
with shrinking structure sizes and reduced operating voltages
are less robust to these effects. A number of simulation
approaches exist to predict when permanent errors will show
up and research in the area of graceful degradation intends to
design systems that are able to handle such effects.

Transient faults, however, are single-shot phenomena. They
affect a component of a system at a given, unpredictable
moment in time and only persist until a status change. A
transient fault in RAM, for example, will cease to exist
when the affected memory cell is overwritten. While several
transient faults might show up in a short time interval, it is
generally unpredictable when such an error will hit a system
and the probability that the same component is affected by
two unrelated transient faults is expected to be rather low.
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Fig. 1. Possible impact of a transient fault

An example for the impact of a transient fault is shown
in fig. 1. A program consists of several memory sections:
the text section contains executable program code, the data
section contains statically allocated data (having a constant
memory location), while the heap and stack sections contain
dynamically allocated data allocated under program control.
The contents and sizes of stack and heap change over time.

Here, three cases for bit flip in memory (e.g., a bit changed
from ’1’ to ’0’ or vice-versa) at time terror are depicted.
The three depicted error cases Aerror,1, . . . , Aerror,3 show
errors affecting different memory sections. In the first case,
a transient fault affects memory location Aerror,1, which is
in the data segment. The second case hits Aerror,2 in the
heap segment. The third case, Aerror,3 is the easy one. Here,
memory that is currently unused (in the “empty” area between
stack and heap) is affected. The first two memory locations
contain an object with differing lifetimes and semantics, while
the third one is not allocated to any object in the system.

Simple error handling methods (like hardware-based ECC)
incur the same overhead for every error, since they have no
way to determine the consequences of an error. A software-
based flexible error handling approach should at least be able
to distinguish between the cases described above and apply

the required minimum amount of corrective actions to fix the
error. Advanced methods, described below, will be able to take
the current execution state of an application, the current timing
conditions of a system and the severity of an error into account.

The system we analyze in the following sections is an
example of a typical embedded system with soft real-time
requirements and related embedded constraints. We analyzed
an H.264 video decoder [3] that is able to decode the H.264
constrained basic profile. This H.264 subset is typical for
small embedded devices like pocket video players or simple
mobile phones which have to restrict the displayable format
due to memory, computing power and energy constraints. The
decoder is analyzed running on the Synopsys CoMET [4]
simulation platform simulating a single-core ARM926 CPU
at 1,2 GHz.

III. FLEXIBLE ERROR HANDLING

A. Error Semantics

Error detection mechanism (e.g., parity bits or software-
based error detection) indicate the location of an error in
the system at a memory address Aerror

1. The three error
cases Aerror,1, . . . , Aerror,3 in fig. 1 each belong to objects
with differing characteristics. The location Aerror,1, lies in
the data segment. Since elements in the data segment do not
change their location, we can apply a simple mapping from
address ranges to objects to obtain the affected object. The
second case, Aerror,2, is located the heap segment2. Since heap
contents change over time, we need runtime information (the
current memory map of the heap) to obtain the related object,
which requires some overhead. The third location, Aerror,3

affects memory that is currently unused (in the “empty” area
between stack and heap). If we know that a memory location
is currently unused, we can safely ignore the related error.

From information about the affected object alone we are not
able to deduce the impact of an error. This impact depends on a
set of parameters describing the error context. Most important
are the point in time terror at which an error that is the result
of a transient fault shows up related to a program’s execution,
the program code that was being executed when the error hit
(Aexecute) and the data or code affected by the error.

The examples above show that handling transient errors
cannot be statically decided except for the brute-force ap-
proach to handle every error regardless of its impact. Thus, a
classification of transient errors is required. The classification
according to the location Aerror of an error can be performed
statically by (automatically or manually) annotating code and
data sections of an application. The temporal properties, i.e.
the impact of an error showing up at time terror, have to be
analyzed ad-hoc while the affected program is being executed.

One question that has not been discussed so far is how to ac-
tually mitigate the effects of an error. Literature on dependable
systems provides a plethora of possible approaches, including

1For the sake of simplicity, we only consider transient memory errors in
the context of this paper. Our approach can be extended to errors in other
components like registers, busses, etc.

2The same would be valid if Aerror,2 is located in the stack segment.



hardware redundancy, voting decisions, and error-correction
codes. One particularly simple approach is checkpointing and
recovery. This method takes snapshots of the mutable state of
an application in regular intervals. In case of an error, the most
recent snapshot is restored and the actions since the snapshot
repeated. In the case of our video decoder, a checkpoint could
be taken after each frame is successfully decoded. If an error
shows up during the decoding of the subsequent frame, the
decoding could be terminated, the snapshot containing the last
frame restored and the decoding of the current frame would
start from the beginning. Obviously, this has impact on the
system’s timing. This impact is analyzed in section IV.

B. Error Modeling

We now present a model of our classification approach that
takes the location Aerror of a transient error into account.
Further on, we describe how the timing properties of H.264
video encoding affect our model.

In most cases, the only information provided by error
detection methods is the affected memory address Aerror and
the location in the application’s address space Aexecution from
where the related memory access was initiated. However, the
hardware does not provide information about the semantics
of those locations. In our error correction approach, the error
correction mechanism has to consult a mapping function fmap

to deduce the affected object. This information alone, however,
is not sufficient to obtain information about the impact of
the error. Here, a semantics function fsem that provides a
classification of the error impact is required. In general, fmap

has to consider the error location, the code location executed
at the time of the error and the time of the error itself:

Object := fmap(Aerror, Aexecution, terror)

Classification := fsem(Object)

The classification returned by the fsem function consists of a
triplet of data describing the impact and error handling:

Classification := (Impact, Urgency, {M |M ∈Methods})

The Impact is an indicator for the loss in quality-of-service that
results: Impact = ∆QoS, the Urgency is an indicator telling
how soon this error has to be handled. The set of Methods
consists of the following triplets M :

M := (fhandle,∆thandle,∆QoS)

Thus, the error handling system can select from a set of error
handling methods fhandle with differing QoS gains ∆QoS and
timing properties ∆thandle.

The basis for selecting a certain error handling method
depends on the current timing properties of the system. For
our video decoder, only a certain amount of time tcorr is
available to correct the error. The value of tcorr is the amount
of time from the detection of the error until the planned start
of the subsequent frame. In case error correction requires more
time, the visible effect of performing the correction is jitter,

i.e., the point in time at which the following frame (and,
possibly, subsequent frames) start deviates from the planned
time deduced from the frame rate.

tcorr := f(tcurrent, tstart,frame, tframe)

Depending on the value of tcorr, the selection function fsel can
select the appropriate and affordable error handling method:

Method := fsel(Methods, tcorr)

The selected method can then be executed in order to correct
the error. To ensure that executing the correction method will
not exceed the real-time constraints, information on the run-
time of the correction method and the available time to correct
an error tcorr is required.

The estimation of tcorr is an important factor that increases
the complexity of this method. Our approaches to calculate
values for tcorr for our H.264 video decoder example and the
related complications are described in the following section.
The run-time of an error correction method, in comparison,
is rather easy to obtain using standard methods. An approach
for the checkpointing and recovery method described above is
also shown below.

IV. TIMING PROPERTIES OF H.264 VIDEOS

In order to perform error correction while keeping the given
real-time constraints, we would need to know how long the
decoding of the current frame will take. The basic real-time
constraint for the system is the frame rate of the video. E.g,.
with 25 frames per second, the decoding time tdecode for each
frame must be ≤ 40 ms, the frame duration tframe. A simple
model for the distribution of tdecode among the various tasks
involved is shown in fig. 2.
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Fig. 2. Decoding of a single frame

The processing of each frame consists of several steps. After
decoding the current frame, the decoder can stay idle until
tframe has passed and the decoding of the subsequent frame
begins. In reality, the decoder will not decode every frame
on demand, but rather buffer a number of decoded frames.
However, the amount of bufferable frames is restricted by the
amount of memory available in the system. Thus, reducing the
amount of frames to buffer reduces the memory requirements
and the cost of a system. Thus, slack time in a system might
accumulate over a small number of decoded frames; following
the simple model of fig. 2, we ignore the accumulation of
slack.

In order to assess the amount of time available for error
correction, it would now be beneficial if the slack time
tframe− tdecode, which would be available for our correction
method, could be calculated.



A. WCET estimation

A first approach to obtain timing information is trying
to calculate an upper bound for the decoding time of a
frame, the so-called worst case execution time (WCET) [5].
In general, the WCET of a given program is not precisely
computable, thus WCET analysis tools generate a safe upper
bound WCETEST for the WCET. This safe upper bound is
guaranteed to be larger than any execution time for arbitrary
input data sets, however, it is not guaranteed to be close to
the real WCET. Fig. 3 (adapted from [6]) shows the relation
of the various execution times of a process.

Distribution of
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WCETBCET

WCETBCET

execution times

t

Fig. 3. Timing properties of a process

One of the major problems in WCET estimation is the
calculation of upper bounds for the number of iterations of
a given loop. Here, H.264 poses a rather large set of problems
including the large variability of parameters for videos (even
using the restricted base profile) and the run-length encoding
of numerical values that is used in H.264.

Using the code of our H.264 decoder, we performed an
analysis of the decoder function using the aiT [7] WCET
analysis tool for an ARM7-based platform and compared
the results with the measured execution time. This WCET
estimation yielded a WCETEST that is ten times higher than
the highest observed frame decoding time. Obviously, this
estimation is useless for our low-overhead error correction
approach.

B. Variations in frame sequences
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The subsequent approach employed was to try finding rela-
tions between subsequent frames by analyzing typical H.264

Video Resolution frame count
A TV series 320 × 352 15499
B Computer animated movie 320 × 352 14314
C Music video 640 × 360 9083
D TV movie 620 × 476 62952
E Computer animation 848 × 480 21244

Fig. 6. Analyzed videos

encoded videos, as shown in fig. 63. Fig. 4 depicts the required
decoding time in ms per frame for a section of video C.
The figure shows that we cannot expect to find a dependency
between subsequent frames. The diagram shows that it is
useful to distinguish between P- and I-frames. In contrast to
P-frames, I-frames are decoded faster and the number of I-
frames is smaller by an order of magnitude or more.

C. Encoded frame size vs. decoding time

Neither static WCET analysis nor knowledge about frame
sequences are a suitable basis to estimate the decoding time
of a frame. Thus, our next approach was to use the size of the
encoded NAL unit4 to estimate the time needed for decoding.
The results for our sample videos are depicted in fig. 5. In
the case of I-frames, we are able to define a probabilistic
upper bound. For example, if we have a frame with an average
macroblock size of 40 bytes, then we will know that in most
cases, we do not need more than 70µs to decode this macro
block. For a complete NAL unit, if the decoded I-frame is
4000 bytes large representing 100 macroblocks, then it is likely
that we need at most 7 ms for decoding.

We cannot define such an upper bound for P-frames. Hence,
before decoding a P-frame, we do not know how long the
decoding will take. Thus, when an error hits, we can obtain
the amount of time left until the decoding of the next frame
should start, but we do not know if the restoration of a previous
checkpoint and restarting of the decoding of the affected frame
will violate the timing constraints. If one could deduce the
decode time of the current frame from available data, this
question could be answered. Unfortunately, no information
about the NAL unit content like the number of encoded motion
vectors or intra macroblocks is known until the complete NAL
unit has been decoded.

D. Encoded frame size vs. decoding time, classified

Among the information that is available while decoding
a frame is the overall size of the frame represented by the
current NAL unit and the amount of data that has already
been processed for that frame. To obtain more information on
the relation between the NAL unit size and the decoding time
of a frame, we analyzed the videos shown in table 6.

The decoding progress of P-frames is depicted in fig. 7,
which shows measurements taken during decoding of a frame.

3The encoding of all videos was performed by the x264 encoder running
on Linux with parameters generating the required restricted base profile.

4Network Abstraction Layer
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Fig. 5. Decoding time in relation to NAL unit size

On the x axis, we show the ratio of the NAL unit part that
has already been decoded to the complete NAL unit size. On
the y axis, the ratio of the elapsed time to the decoding time
for the complete frame is displayed.

We are interested in a lower boundary which represents
a prediction of the complete decoding time based on the
knowledge of the elapsed time when a certain amount of the
NAL unit has been decoded. For the diagram in fig. 7 (a),
it is very hard to find such a boundary. Since a significant
disturbance is observed, a precise estimation is not possible.

However, if we filter NAL units which are smaller then
2 KiB (b) resp. 4 KiB (c), then we can define a lower boundary
for the relative execution time by the curve fest,p. Now, we
can estimate the decoding time of the frame depending on the
decoding progress of the NAL unit so far.

If, for example, a transient fault affects the decoder and error
correction has to be applied, the fraction x of the NAL unit size
that has been decoded is calculated. Using the function fest,p
the fraction of time that has been elapsed so far is determined
with a high probability. In this way the time that is required
to decode the complete NAL unit can be estimated:

fdecode =
telapsed
fest,p(x)

It is obvious that the precision of this estimation increases
with the amount of data already decoded. Nevertheless, this
estimation is very vague. With our definition of fest,p, we
chose to be conservative. For NAL units with a size less
than 2 KiB, no meaningful estimation seems possible, however,
these frames are expected to have a short decoding time.

E. Timing analysis of checkpointing and recovery

For checkpoint and recovery we implemented a simple
method that simply copies relevant data structures to a second
storage location. Relvant data structures include the decoded
frame header and the buffers that contain the reference frame,
the NAL unit to be decoded and the input data of the next NAL
units that has been received so far. The time for checkpointing
and recovery is quite constant, since we record checkpoints

only directly before a frame is decoded. At this point, the
amount of data that has to be saved or restored is known
rather exactly and is restricted to some global data structures.

For the video with the highest resolution, video E, the
measured execution time for the creation of a checkpoint is
21.5 ms. The same amount of time is needed for recovery,
since the checkpointed data is just copied in the opposite
direction. The average decoding time for a single frame is
85 ms and the largest observed decoding time is 147 ms.
Thus, the time required for recovery is a significant fraction
of the decoding time for a complete frame. While recovery
will only be applied in case of a fault, checkpointing will
cause a repeating significant overhead. Thus, lightweight error
correction techniques are required here.

V. RELATED WORK

So far, only few publications address error correction for
multimedia applications. Polian et al. [8] analyze the effects of
transient faults on the motion estimation curcuits of an MPEG-
2 encoder. They observe that several faults are not critical,
since their effects disappear after a few cycles. However, faults
that affect these circuits will only result in a lower compression
rate, while the correctness of the output is retained.

There are many approaches that suggest common error
corrections techniques ([9], [10], [11], [12]). Since they are
not designed to consider specific features and requirements
of embedded multimedia applications, they can scarcely be
applied and would result in excessive resource requirements.

Moreover, some publications analyze the runtime perfor-
mance of multimedia applications. Hughes et al. [13] analyze
a couple of video and audio encoders as well as decoders. They
measure the execution time and count the executed instructions
per frame. Large variations in these metrics can be observed
for the H.263 decoder. They come to the conclusion that the
variations depend on the applications and the inputs. Features
of the execution platform have only little influence.

An H.264 decoder is studied in [14] and [15]. In [14], an
optimized main and high profile decoder is compared with
an H.264 reference implementation, MPEG-4, and MPEG2
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Fig. 7. Relative decoding times within one frame

decoders. Here, the characteristics and average performance
parameters of the decoders are studied intensively from points
of view. In contrast to our observations, they state that the
variations per frame type within a video are very small.

Horovitz [15] suggests an analytical approach to estimate
the time and space complexity of a baseline profile decoder
that uses UVLC encoding. Here, the H.264 decoder is also
analyzed to create inputs for the estimation model and to
evaluate it. Whereas the storage requirements of the decoder
can be estimated easily due to the static nature of the decoder,
the estimation of the execution time lacks accuracy.

To our knowledge, our publication is the first one that
analyzes the runtime performance of a video decoder regarding

the slack time that is available for error correction.

VI. CONCLUSIONS

In this paper, we discussed the problems of error correction
in a real-time sensitive H.264 decoder. Our model extends our
previous approaches [2], [16] that describe the idea of error
classification and its implications for soft real-time systems.

The structure of the H.264 video format is obviously op-
timized for size. Some of the optimizations, like run-length
encoding of numerical values, prove to be very hard cases for
timing analyses. The WCET analysis of the H.264 decoder
shows that a useful static estimation of frame decoding times
cannot be performed, since the resulting overhead just to per-
form error correction with given real-time constraints would
be unacceptable. However, the WCET estimation for the error
correction approach works well, so that only the time available
for correction has to be estimated differently.

We propose statistical methods to estimate the available
amount of time. However, finding correlations to deduce this
value from known parameters has proven to be difficult. The
models described above need improvements to be used as basis
for real-time calculations in a flexible, software-based error
correction system. This is an important future research topic.
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