technische universitat : fakultat fur
dortmund informatik

TECHNICAL REPORTS IN COMPUTER SCIENCE

Technische Universitit Dortmund

LLIL E[‘r

Bus-Aware Multicore WCET Analysis through TDMA Offset Bounds
(Extended Version)

Timon Kelter, Heiko Falk, Peter Marwedel
Chair XII, TU Dortmund University, Germany

Sudipta Chattopadhyay, Abhik Roychoudhury

National University of Singapore

Number: 837
January 2011

Technische Universitit Dortmund — Fakultit fiir Informatik
Otto-Hahn-Str. 14, 44227 Dortmund, Deutschland

Timon Kelter, Heiko Falk, Peter Marwedel, Sudipta Chattopadhyay, Ab-
hik Roychoudhury: Bus-Aware Multicore WCET Analysis through TDMA
Offset Bounds (Extended Version), Technical Report, Department of Com-
puter Science, TU Dortmund University. (O January 2011

ABSTRACT

In the domain of real-time systems, the analysis of the timing behavior
of programs is crucial for guaranteeing the schedulability and thus the
safeness of a system. Static analyses of the WCET (Worst-Case Execution
Time) have proven to be a key element for timing analysis, as they pro-
vide safe upper bounds on a program’s execution time. For single-core
systems, industrial-strength WCET analyzers are already available, but
up to now, only first proposals have been made to analyze the WCET
in multicore systems, where the different cores may interfere during the
access to shared TDMA-arbitrated resources. An important example for
this are shared buses which connect the cores to a shared main mem-
ory. The time to gain access to the shared bus may vary significantly,
depending on the used bus arbitration protocol and the access timings.
In this report, we propose a new technique for analyzing the duration of
accesses to shared buses. We implemented a prototype tool which uses
the new analysis and tested it on a set of realworld benchmarks. Results
demonstrate that our analysis achieves the same precision as the best ex-
isting approach while drastically outperforming it in matters of analysis
time.

iii

ZUSAMMENFASSUNG

Im Bereich der Realzeitsysteme ist die Analyse des Zeitverhaltens von

Systemen von besonderer Wichtigkeit, um die Planbarkeit und die Si-
cherheit eines Systems zu gewihrleisten. Statische Analysen der WCET

(Worst-Case Execution Time) haben sich als Schliisselelement dieser Zeit-
verhaltensanalyse erwiesen, da sie sichere, von konkreten Eingaben un-
abhiéngige, obere Schranken fiir die Laufzeit von Programmen berech-
nen konnen. Fiir Einzelprozessorsysteme existieren bereits industriell

eingesetzte WCET-Analysatoren. Fiir Multiprozessorsysteme wurden bis-
her einzelne Vorschldge beziiglich der WCET-Analyse gemacht, aller-
dings fehlen hier vollwertige Losungen. Das grundlegende Problem fiir

die Analyse von Multiprozessorsystemen ist, daff Zugriffe auf gemein-
sam genutzte Ressourcen, wie z.B. Busse zwischen CPU und Hauptspei-
cher, miteinander kollidieren kdnnen. Diese Kollisionen miissen aufge-
16st werden, wobei nur ein einzelner Zugriff direkt stattfinden kann. Die

restlichen Zugriffe aus der Kollision miissen warten bis die Ressource

wieder freigegeben wurde. Diese Wartezeit kann erheblich variieren, je

nachdem welcher Zuteilungsalgorithmus fiir die Verwaltung der Res-
source verwendet wird. In diesem Bericht prasentieren wir eine neuarti-
ge Analyse, die die Dauer der Wartezeiten von Zugriffen auf nach dem

TDMA-Verfahren verwalteten Ressourcen sicher abschédtzen kann. Das

neue Analyseverfahren wurde in einem Prototypen implementiert und

auf einem Satz von industriell eingesetzten Programmen getestet. Die

Ergebnisse zeigen, dafs unsere neuartige Analyse dieselbe Genauigkeit

aufweist wie der beste bisher existierende Ansatz aber nur einen Bruch-
teil von dessen Analysezeit benotigt.

v

ACKNOWLEDGMENTS

This work was partially funded by the European Community’s Artist-
Design Network of Excellence and by the European Community’s 7"
Framework Program FP7/2007-2013 under grant agreement n° 216008.

CONTENTS

1 Introduction 1
2 Related Work 3

3 System and Application Model 5
3.1 Modeled Hardware 5
3.2 Input program model 6

4 Analysis Framework 9

5 Static Analysis of TDMA Offsets 11
5.1 Abstract interpretation in timing analysis 11
5.2 Abstract hardware states and contexts 16

6 Computing Loop Offset Bounds 17
6.1 Determination of offset results for single iterations 18
6.2 Deriving full loop WCETs 22
6.2.1 Global Convergence Analysis 23
6.2.2 Graph Tracking Analysis 24
6.3 Offset analysis in architectures without timing anomalies 31
6.4 Extensions for further micro-architectural analyses 31

7 Experimental Results 33
7.1 Precision gain 35
7.2 Analysis time 37

8 Conclusions 41

vii

INTRODUCTION

With the rising importance of multicore systems in the processor mar-
ket, including the embedded systems or cyber-physical domain, there is
a growing need for tools to verify the timing behavior of such systems,
and as such the WCET. For embedded systems, this may be the most im-
portant metric, because they often must work under real-time conditions
where a response must be delivered in a predefined time. Therefore, fine-
grained WCET analyses have been developed for single-core systems
in the last decade [21], resulting in a variety of commercially available
tools. In contrast, for multicores only first proposals exist. One of the
major difficulties in analyzing the WCET for multicore platforms is that
programs running on different cores may interfere with each other, for
example during accesses to a common shared bus which connects the
cores to a shared main memory. A possible approach to resolve these in-
terferences is to implement a Time Division Multiple Access (TDMA) bus
arbitration protocol which assigns a fixed-length time slot to each core
in round robin fashion. The TDMA arbitration scheme allows to derive
a simple upper bound for the bus delay which can be incurred by a sin-
gle access. As we will show, this bound is only a rough overestimation.
In this report, we present a new type of analysis which safely bounds
the access time for TDMA-arbitrated resources with high precision and
moderate analysis times thus enabling a tighter WCET estimation. The
results can be used to avoid pessimistic hardware overdimensioning and
to derive tighter system schedules.

The rest of this report is organized as follows: In Section 2, we will
present related work, Section 3 introduces our system model used in the
analyses and Section 4 and 5 introduce the overall analysis framework
as well as the general analysis concepts respectively. Section 6 presents
our new analyses which are evaluated in Section 7. Finally, we provide a
summary of our results and give directions for future work in Section 8.

RELATED WORK

The first approaches to multicore WCET analysis only modeled the shared
resources to some extent. Suhendra [20] and Zhang [22] analyzed the
effects of a shared L2 cache without considering the interference on a
shared bus that is used to access the shared cache. [22] provides a bound
on the number of additional cache misses due to the inter-core interfer-
ence, whereas [20] eliminates the interference altogether by exploring
different scenarios of locking and partitioning the shared cache. A simi-
lar approach is pursued by Hardy [7], where cache bypassing is used to
eliminate the cache conflicts between different cores.

Gustavsson [6] investigates a totally different approach, where the
whole multicore system is modeled as a set of timed automata. The
WCET is obtained by proving special predicates through model check-
ing. This approach allows for a detailed system modeling, but does not
scale very well as all system states have to be explored in the course of
the WCET analysis, leading to a state explosion. Lv [9] enhances this
approach by combining model checking with abstract interpretation of
cache states to increase the performance of the proposed analysis.

For analyses that include the shared bus, the choice of the bus arbi-
tration method is crucial. Pitter [16] compared the predominant arbi-
tration methods and TDMA arbitration resulted as the most predictable
method. Therefore, most of the works which include a bus analysis are
restricted to TDMA bus arbitration. To provide a better access time es-
timation than the mentioned D™%* cycles, Andrei [2] tries to determine
the precise time at which every single memory access takes place. The
bus delay estimation is then performed separately for each access. The
main problem is, that accesses in loops with an iteration count of i can
potentially have i different access times associated to the same memory
access. Therefore, the analysis has to unroll all loops virtually to de-
termine the access times for each access individually, which makes the
analysis runtime dependent on the loop iteration counts.

Chattopadhyay [3] circumvents this costly unrolling by aligning each
loop head execution to the first TDMA slot during the analysis. How-
ever, this artificial alignment of each loop iteration results in an addi-
tional penalty term to be added in WCET estimation. Therefore, the
analysis proposed in [3] is far more efficient but also less precise than
[2]. The analysis which we propose in the following, will present a com-

RELATED WORK

promise between the two approaches, being almost as precise as [2] and
only slightly less efficient than [3].

Finally, Pellizzoni [15] derives the worst-case bus delays in a multicore
system analytically with the help of memory traffic arrival curves. This
approach is different from ours since we do not require such curves.

A different direction in static timing analysis is the adaption of mul-
ticore hardware to exhibit better predictability properties. Paolieri [14]
proposed a multicore architecture in which the WCET of basic blocks is
measurable, whereas Mische [11] developed a superscalar SMT proces-
sor, which provides built-in real-time capabilities. These approaches are
orthogonal to ours since we focus on estimating the WCET of tasks on
existing hardware platforms.

SYSTEM AND APPLICATION MODEL

In the following we present the model of the hardware and software of
the system that we want to analyze. We state which prerequisites are
needed for the analyses and which application scenarios are covered.

3.1 MODELED HARDWARE

We assume a system architecture where n. > 2 cores are present in a
single processor. Each of the cores has an in-order pipeline and a private
L1-Cache and all the cores are connected to a shared TDMA-arbitrated
memory bus with a uniform TDMA slot size of s; cycles per core. The
bus is used to access a shared L2-Cache, which itself is linked to the
main memory. The bus, the L2 cache and the main memory may be
located on-chip or off-chip.

Definition 1. In a scenario with n. cores each having a TDMA time slot
of length s; cycles a single bus access can incur a maximum bus delay of

D™ = ((ne =1)si) + (e = 1) (1)
cycles for a bus access which occupies the bus for e cycles.

Example 1. This maximum delay is encountered when the access request
is issued e — 1 cycles before the end of the executing core’s slot. The
bus cannot be granted then, since the access would span into the slot of
the next core. An example for this scenario is shown in Figure 3.1 for 2
cores, where core 1 issues a request “ACC” which gets delayed by D"**
cycles.

Figure 3.1: An example for a bus access which is maximally delayed.

SYSTEM AND APPLICATION MODEL

On the other hand, the bus access is granted instantly, if the access
request is issued when the bus is assigned to the executing core for
at least e remaining cycles, i.e. if access "ACC” from the example of
Figure 3.1 is issued during the time steps 0 to s; — e. Thus, an important
problem is to determine tighter bounds on the durations of bus accesses.
D™ cycles, as mentioned, is a valid but highly overestimated bound.

We do not allow split transactions on the bus, therefore, for the max-
imum duration T of a bus transaction, T"* < s; must hold. An
access to the TDMA bus may incur a variable delay, depending on when
the access is performed, but the delay cannot exceed D™** cycles. As
explained in the introduction, this bound is not tight in general. Due to
T <5y and D" > ((n. — 1)s;), the maximum bus delay will at least
be (n. —1) times as big as the maximum memory latency. Thus, the
bus access delay is the factor with the greatest variability and also with
the greatest potential for overestimations during WCET analysis. This
underlines the need for precise analyses of the bus access delays. In this
report we will provide such an analysis using a fixed TDMA schedule.
The optimization of the TDMA schedule itself is out of the scope of the
report.

All the caches in the considered system are non-inclusive and use the
least-recently-used (LRU) replacement policy. The cache hierarchy can be
easily extended e.g. with more private cache levels, because we apply
the generic framework from [8] to determine which accesses from cache
level i — 1 hit cache level i. We only model instruction caches and thus
assume that data accesses occur via a different bus and do not interfere
with the instruction accesses in any other way. The integration of a data
cache analysis into our analysis would remove these restrictions. We do
not allow self-modifying code hereby removing the need to deal with
cache-coherency in our model. Also, all shared libraries are duplicated
for each core that uses them.

3.2 INPUT PROGRAM MODEL

While Section 3.1 presented our assumed hardware model, this section
will introduce the model of the input programs / tasks. We start with a
definition of the basic unit of execution, the basic block.

Definition 2. A basic block b = (iy,...,i) is a sequence of instructions
which may only be entered at i; and only be exited at i;. In addition, b
must also either not contain any instruction which potentially accesses
the shared bus, or the block contains only a single instruction.

3.2 INPUT PROGRAM MODEL

This definition does not conform with the usual definition of basic
blocks, but this is motivated by the needs of our analysis as we will see
in Section 5.

Definition 3. A function f = (B Iz bé(tart, Bjef’dt) is a user-defined set of basic
blocks Bf together with a starting block bé[tart at which the execution of
the function starts and a set of exit blocks B;Xit C By such that there is
no possible flow of control from any by € By to a block b, € Bjeint.

For each loop L in the tasks, we require the minimum and maximum
loop iteration counts Bj*" and B}*** to be given.

Definition 4. The intraprocedural control flow graph Gy = (By, Ey, v?%urce) of
a function f consists of all basic blocks By which constitute the function.

For each possible flow

The source node of the graph is USG‘;”CE = bgtart.

of control from by € Vy to by € Vf there is an edge (b1,bp) € E 7. This
implies that:

|{e|e: (bx,by)AbxeB;xﬂAeeEf}|:o 2)

Definition 5. A task t = (F;, fl,«) consists of a set of functions F; and a
start function f{,,; (usually called main) which is executed when the task
starts.

Definition 6. The interprocedural control flow graph Gy = (Vi, Ey, v5"™¢) of
a task t has

Vi = U Bf (3)
fek

Er= |J EfUEq (4)
fek

where for every call from basic block b € By, from function f; € F; to

f2 € F; there is an edge (bcan, bgfart) € E.1. The source node of the graph

is Usource — bfsttart'
Gt start

Definition 7. A path through a control flow graph G = (V, E, vu¢) s

a sequence of nodes P = (vg,vy,...,v,) such that (v;_1,v;) € E for all

ie{l,...,n}

We require our input tasks to be well-structured, which we will detail
in the following. To formally define this term, we first need the notion
of dominance and back edges:

SYSTEM AND APPLICATION MODEL

Definition 8. For a given control flow graph G = (V, E, U%’ur‘:e), a node
u € V dominates a node v € V iff u € P holds for every path P =
(viouree, ., v). A back-edge (u,v) € E is an edge where v dominates u.

With these terms we can define the reducibility of a control flow graph.
Our definition follows the one in [12].

Definition 9. A control flow graph G = (V,E,v¥") is reducible iff E
can be partitioned into the disjoint sets Er (forward edge set) and Ep
(backward edge set), such that (V, Er) forms a directed acyclic graph in
which each node can be reached from the source node, and the edges in
Ep are all back edges.

In the following we will use well-structured as a synonym for reducible.
This is motivated by the fact that in a reducible control flow graph, loops
can be unambiguously identified and back-edges can be unambiguously
mapped to their corresponding loops [12]. Since we will need to iden-
tify loops in our analyses, we require the interprocedural control flow
graphs of our input tasks to be reducible.

The whole input is then given as an acyclic task graph with a fixed
mapping of tasks to cores. Each edge (x,y) in the task graph denotes
that task y can start execution only after task x has finished. We use
fixed-priority, non-preemptive scheduling. A preemptive scheduling
would require the integration of a cache-related preemption-delay (CRPD)
analysis which is out of the scope of this report.

ANALYSIS FRAMEWORK

We embed our new analyses into the CHRONOS timing analyzer frame-
work from [3]. Figure 4.1 shows the analysis process. The framework
first analyzes the cache behavior of each task in isolation and then com-
putes the maximum possible cache interference in the shared L2 cache.
This interference information is used to update the worst-case cache
states of the individual tasks. The cache analysis assigns to each sin-
gle access one of the following categories for each cache level:

AH “Always Hit”
AM “Always Miss”
PS “First Miss” / “Persistent”

UNKNOWN “Unknown Behavior”

PS means that the first execution of the instruction suffers a cache miss,
but every following execution hits the cache, which is most useful for
instructions inside of loops. For details on the cache analysis, the inter-
ested reader is referred to [3], since we are only using its results here. In
the next analysis step, the cache information is used to compute BCET"
and WCET values per task. This module (marked in bold in Figure 4.1)
has been equipped with our new analysis technique, whereas all other
modules have not been modified. After the tasks’” BCETs and WCETs
were computed, the overall system worst-case response time (WCRT) is de-
termined. This process repeats as long as the task interference changes,
e.g. due to altered task lifetimes. In the following, we will focus on the
determination of single task WCETs with given cache states as this is
our main contribution. Nevertheless, all of our analyses are applicable
to the computation of BCETs as well.

1 Best-Case Execution Time

10 ANALYSIS FRAMEWORK

/ Private Analysis \

/ Private Analysis \

Task 1 Taskn
L1 Cache L1 Cache
Analysis Analysis
L2 Cache L2 Cache
Analysis Analysis

/ N

\

Final WCRT

No

L2 Interference

—

A

Analysis

Bus-aware
BCET/WCET-
Analysis

v

WCRT computation

ask Interference
Changed?

Modified
Task
Inter-

ference

Figure 4.1: The analysis framework

STATIC ANALYSIS OF TDMA OFFSETS

Our new analysis builds upon concepts which are heavily used in the
analysis of other architectural features. To establish the link between
those existing analyses and our new analysis, we first give a short overview
of existing static analysis techniques. We also demonstrate why those
techniques are not sufficient in our scenario.

5.1 ABSTRACT INTERPRETATION IN TIMING ANALYSIS

A static timing analysis is usually composed of a microarchitectural anal-
ysis and a path analysis [21]. The microarchitectural analysis is responsi-
ble for determining abstract hardware states which describe the possible
concrete hardware states at every basic block entry. This microarchitec-
tural analysis is normally based on abstract interpretation, a technique
for static program analysis, which can provide safe approximations of
program or, in this case, hardware states. In the past it was success-
fully employed to analyze cache, branch prediction and pipeline behav-
ior. With these hardware states, a basic block WCET can be computed,
which in turn can be fed into the path analysis to compute the longest
path through the program.

As we have seen in Section 3, the execution time of a bus access heav-
ily depends on the time at which the access is made. Thus we will try
to determine or at least approximate that time in the following analyses,
to be able to more precisely predict how long it will take for the bus ac-
cesses to execute. As a first step towards this, we will introduce a special
notion of basic blocks. After our definition of basic blocks (see Defini-
tion 2), a basic block can either consist of multiple non-bus-accessing
instructions or of a single potentially bus-accessing instruction. The in-
formation whether an instruction potentially accesses the shared bus can
be extracted from the cache information. In our case it may access the
bus when it may access the L2 cache. This means that the WCET of basic
blocks following our definition is either fixed (no bus access) or variable
(bus access) which will simplify the analysis. The basic blocks execute
in-order, since we required an in-order pipeline. A generalization of our

11

12

STATIC ANALYSIS OF TDMA OFFSETS

0 1s, 2s, 3s,
Core 1 | | Core 2 I Core 3 | I Core 4

(a) Offset range

0 1s, 2s, 3s
| Corel| | I |C+Jr82 | I Core 3| | I Core 4 |

(b) Offset set

Figure 5.1: Different abstract representations for possible start offsets of a basic
block

concepts to out-of-order execution is possible, but is omitted for the sake
of presentation clarity”.

Since every possible bus access forms a basic block of its own, it is now
sufficient to be able to approximate the starting time of all basic blocks,
to obtain bounds on the times at which the bus is accessed. The abstract
hardware states which are used by our analyses thus must model a set
of time instants at which the execution of a basic block may start. Note
that the bus access delay does not depend on the absolute time at which
the access is performed, but only on the position of the access inside the
cyclic TDMA schedule (compare Figure 3.1).

Definition 10. The absolute time in the analyzed system is measured in
processor cycles®>. An absolute point in time in an execution is given
as t € INg which means the t-th clock cycle after the start of the sys-
tem. An offset 0 can be computed from an absolute point in time ¢ as
0 = (t mod ncs;).

To approximate the bus access delay it is therefore sufficient to ap-
proximate the offsets instead of absolute times. To be able to model the
fact that a block can be entered with more than one offset we devise two
offset representations:

e An offset interval I = [0yin, Omax]

e An offset set O = {01,02,...,04}

1 In case of out-of-order pipelines, the offset analysis would need to integrate with the
pipeline analysis to obtain all orders in which the instructions can possibly be executed.
The offset information must then be computed for every single one of these n orders
like in Algorithm 2. The offset results from these # alternative execution scenarios must
then be merged with the merge function m presented in this section.

2 We assume a processor with constant clock frequency.

5.1 ABSTRACT INTERPRETATION IN TIMING ANALYSIS

The sets of all possible offset intervals (offset sets) is denoted as I
(O™). These offset representations are the abstract hardware states that
will be used in the analyses.

Example 2. An example for the different representations can be found
in Figure 5.1. While Figure 5.1(b) shows the offset set representation
with the represented offsets marked in gray, Figure 5.1(a) presents the
same offset information, again marked in gray, for the offset interval
representation.

Obviously, the set representation is more precise, but it also requires
greater effort to maintain the sets during the analysis, thus leading to
a typical tradeoff between analysis precision and analysis duration. In
the following we will only use the set representation to keep the presen-
tation clear, but all of our algorithms can also be applied based on the
offset interval representations.

With our notion of basic blocks and the results from the other microar-
chitectural analyses which yield WCET values for the blocks without
bus accesses, we can formulate the offset analysis as a classical data-
flow analysis [1, 4]. The data-flow analysis requires a transfer function
up : Ot — O™ which returns the offsets which result after the execution
of a given basic block b and a join function m : O" x Ot — O which
merges the states at control flow joins in the control flow graph. Given
the set ET, C IN of possible execution times of b and either an offset set
S or an offset interval I, we have

Offexecute b never accesses bus
up (0) = Offexecute U Offaccess b may access bus (1)
offccess b always accesses bus
with
Offexecute = {(0+¢€) mod snclo € O,e € ETy} (2)
Offaccess = { (0 + P (0,)) mod snclo € O,e € ETy} (3)

The @, (0,e) function returns the time needed to finish the bus access
(including the bus delay), when the bus request is issued by core p €
{0,...,n. —1}, begins at offset 0 € {0,...,n.5,—1} and needs e €

13

14

STATIC ANALYSIS OF TDMA OFFSETS

{1,...,T™*} cycles to complete after the bus access was granted. In
the TDMA arbitration we can define @, (o, ¢) as:

s;p—o0 ifo <spp
Dy, (0,e) =e+ 40 ifsp<o<s(p+1)—e (4)

sine —o+s;p else

Definition 11. A TDMA hyperperiod is an absolute time interval [t,, t.)
with {;, mod n.s; and t, = t, + n.s;

Lemma 1. For any O € O", u;,(O) contains the offsets of all absolute time
instants t such that ¢ is the first cycle after the execution of basic block b,
starting at an offset 0 € O.

Proof. 1f a particular execution of the basic block does not access the bus,
Offexecute from equation 1 contains all possible resulting offsets, since ET,
is the set of all possible running times then. If the particular execution
of the block does access the bus, the block only consists of a single
instruction, after definition 2. ®, computes the offset of the first cycle
t after the execution of the basic block for any starting offset 0 € O
and runtime e € ET,. We show this by examining the three cases from
Equation 4:

¢ In the first case, the access has to be delayed until the start of core
p’s slot in the current TDMA hyperperiod.

¢ In the second case the access can be granted immediately, since the
bus is allocated to core p and will be allocated to p for at least e
cycles.

e In case three, the access cannot be served in the current TDMA
hyperperiod and thus must be delayed to the next TDMA hyper-
period (as shown in Figure 3.1).

By taking the union over all possible starting offsets 0 € O and execution
times e € ETj, in Equation 3 the lemma follows for this case, too. O

Note that ET;, may for example model the fact that we have a block
with variable-latency instructions or a block whose L2 instruction mem-
ory access was classified as UNKNOWN. The join function m is defined
as:

m (01,02) = 01 UO; (5)

5.1 ABSTRACT INTERPRETATION IN TIMING ANALYSIS

We generalize m to take n arguments instead of just 2 by defining
Vn>2:m(0q,...,0,) =m(01,...,0,-1) UO, 6)

Analogously, We generalize u; to sequences q = (b, by, ...,b,) of basic
blocks by setting

n=1:ug, (0)=u (O) (7)
V> 1w, g, b (0) = up, (“(bl,bz,...,bn,l) (O)) 8)

Definition 12. A b-trace q, = (by1,b,...,b,) for a basic block b in the
interprocedural control flow graph of a task t is a sequence of basic

blocks which starts at the entry block by = bﬁ;";{ of the entry function of

the task and ends at block b, = b with Vi € {2,...,n} : (bj_1,b;) € E:.
The set of all b-traces is called Q.

Definition 13. The Meet-Over-All-Paths (MOP) solution to the problem
of determining the possible offsets with which a basic block b may be
entered when the surrounding task is started with offsets S, is given as

OY'" = m ({ug, (S) lgs € Qv }) ©)

Theorem 1. The MOP solution provides a valid overapproximation of all
offsets with which block b can be entered.

Proof. m joins the offsets resulting from the single b-traces which rep-
resent all execution paths leading to b. We must thus only prove that
ug, (S) is an overapproximation of the offsets which result from the ex-
ecution of b-trace g, starting with an offset o € S. This can be proven
via induction over the length of g, where the induction step is made by
applying Lemma 1. O

Instead of directly computing the MOP solution, which would be com-
putationally expensive, we can establish a standard data-flow analysis
on the interprocedural control flow graph of each task. Since our trans-
fer function u is monotonic and S is a power set, this data flow analysis
will terminate and the result will be equal to the MOP solution. This
follows from the Kleene Fixpoint Theorem and the Coincidence Theo-
rem [4]. We will not go into more detail here, since this is a purely tech-
nical application of classical data-flow theory and is of no importance
for our own analyses.

Unfortunately, this data-flow analysis will not be very precise, because
branches and loops in the control flow force us to repeatedly merge the
offset information, which quickly leads to results where a block can be
reached with arbitrary offsets. In this situation, we cannot provide a

15

16

STATIC ANALYSIS OF TDMA OFFSETS

better estimation than the pessimistic assumption that each bus access is
delayed by D™ cycles. The imprecision that stems from branches can
be reduced through the offset set representation which allows to track
the offset development in more detail. Loops pose a bigger problem.
They can only be handled effectively with the concept of contexts in the
analysis.

5.2 ABSTRACT HARDWARE STATES AND CONTEXTS

Usually, the hardware states presented in Section 5.1 are computed in
a context-insensitive way, meaning that the abstract interpretation com-
putes states which are valid for all execution contexts of a basic block,
where an execution context denotes a certain loop iteration or calling
context. This can be observed e.g. in Equation 9, where we merge the
offset information over all b-traces. This behavior is insufficient for some
analyses like e.g. the cache analysis, where the first loop iteration may
have a significantly different cache behavior than the following ones.
For this purpose, analysis contexts were introduced, which describe the
hardware states for a certain execution context. The known methods
for dealing with contexts during bus access duration analysis are the
following:

e The loop is virtually unrolled by a factor equal to its loop bound
and thus, each loop iteration is explicitly analyzed [2]. This method,
called full virtual unrolling is very precise but also very inefficient
for larger loop bounds. It results in the analysis of Bf'™* analysis
contexts, which each represents exactly one execution context.

e The analysis is performed for a fixed offset 0, and a delay is added
that represents the maximum additional delay that can occur due
to execution with offsets s # o. This is the approach from [3], and
we will refer to it under the name fixed-alignment approach. It results
in a single analysis context which represents all Bj"** execution
contexts.

In the next section, we will present a third, novel approach to context
handling in bus access duration analysis, which will analyze 1 < x <
BJ"** contexts to provide a compromise between analysis duration and
analysis precision. Our approach is based on an analysis of TDMA off-
sets as presented above.

COMPUTING LOOP OFFSET BOUNDS

Our approach is based upon the observation that for each loop iteration
which starts from a given set of offsets, we can compute the set of offsets
in which the iteration may terminate. Therefore, our goal is to track the
development of the TDMA offsets of the loop header block and thus to
provide more precise offset bounds than by using the data flow analysis
from Section 5. This requires:

e A structural analysis to find loops in the CFG, and to build a di-
rected acyclic graph (DAG) from each loop or function body. Nested
loops are represented as single nodes in the surrounding DAG.
Due to this, we required our input tasks to be reducible in Sec-
tion 3.

e An analysis that computes the set of offsets that may be reached
when a loop body is executed once with given starting offsets.

The overall analysis will then proceed in a hierarchical way, starting
at the beginning of the task entry function and descending into called
functions or loops only when they are discovered in the CFG. The struc-
tural analysis is already present in the CHRONOS framework, whereas
a single-iteration offset analysis is presented in Section 6.1. Section 6.2
then introduces the core analysis which combines the single-iteration
results into a complete loop WCET.

-_— = | 0
| 1s,
| Cyclic I 2s,
| TDMA |

Schedule | (N-2)s,
! § ODs
L — — — NS

Figure 6.1: Mapping of a start offset to possible end offsets for a single loop
iteration. The iteration takes 3s; to n.s; cycles in this example, de-
pending on which path through the loop body is taken

17

18

COMPUTING LOOP OFFSET BOUNDS

6.1 DETERMINATION OF OFFSET RESULTS FOR SINGLE ITERATIONS

As mentioned, we are interested in determining the offsets that can be
reached after a single execution of the loop body finishes. This will be
called a loop iteration in the following, in contrast to a loop execution which
denotes the (possibly) repeated execution of the loop body until the loop
condition is false. Figure 6.1 shows a scenario where a loop iteration,
starting from a single, given offset may end at various different offsets,
e.g. due to different paths through the loop. These single-iteration offset
results can be determined by iterating over the loop’s basic block DAG
in topological order, as sketched in the following.

Algorithm 1 AnalyzeBlock
Require: block b, offsets O;,
1: if b is head of inner loop /.- then

2. return AnalyzeLoop (linner, Oin)

3: else

4 wcet =0

5: if b consists of bus access instruction then
6: for all offset 0 € O;,,,e € ET}, do

e wcet = max (wcet, P, (0,e))

8: end for

9: else
100 wcet = max (ETy)
11: end if
122 result = (weet, uy (Ojy))
13: if b is terminated by call to function f then
14: tmp = AnalyzeFunction (f, result.of fsets)
15: result = (tmp.wcet + result.wcet, tmp.of fsets)
16: end if
17: return result
18: end if

In our analysis of a single loop iteration, each basic block is seen as
a transformation function which maps input offsets O;, (either an offset
set or an offset interval as explained in Section 5.1) to resulting offsets
Oout and produces WCET values which are valid for the given O;,. Al-
gorithm 1 shows the analysis of single basic blocks. Function calls (lines
13 - 16) or blocks which represent inner loops (line 2) are handled by
specialized analysis functions. Note that function calls terminate basic
blocks in our model. The WCET and offsets which result from bus ac-
cesses (lines 4 - 12) or simple instructions (line 10) are computed with

6.1 DETERMINATION OF OFFSET RESULTS FOR SINGLE ITERATIONS

the known ET, values and @, and u;, functions from Section 5.1, where
p is the core which executes the currently analyzed task.

Each DAG analysis, on either a function or a loop body, then com-
poses the single-block results in topological order and forms its own
WCET and offset result out of them. Algorithm 2 shows this for the case
of a single loop iteration, where bg;,x and bje,4., are the sink and header
node of loop I, respectively and pred (b;) returns the set of predecessor
blocks for block b;. By supplying the starting offsets to the loop iteration
analysis (lines 3 - 4), this information becomes part of the analysis con-
text, as explained in Section 5.2. The iteration analysis then analyzes the
behavior of each single block (lines 9 - 11) and propagates the results to
the successor blocks (lines 6 - 7). Finally the results per loop iteration
are summarized (line 13). The analysis of functions in “AnalyzeFunc-
tion” (Algorithm 3) works analogously as “AnalyzeLooplteration”. As
stated, recursive calls must be converted to standard loops before our
analysis can handle them.

Algorithm 2 AnalyzeLooplteration

Require: loop [, offsets O,
1: for all blocks b; of loop I in topological order do

if bi = bheader then

wStart =0

oStart = Oy,
else

wStart = mMaxy, e pred(v,) (WFinish [by])

oStart = m ({oFinish [by] | by € pred (b;)})
end if
(weety,, Oy,) = AnalyzeBlock (b;, 0Start)
wFinish [b;] = wStart + wcet),
11: oFinish [bj] = Oy,
12: end for
13: return (wFinish [bg,x], oFinish [bsink])

e ® N 2w R RN

R
e

Theorem 2. For a given interprocedural control flow graph of a task t and
given starting offsets Oy, the results w € IN and O € O" as computed
by Algorithm 3 for function f;''"* are overapproximations of the WCET
and the resulting offsets of any execution of t which starts with an offset
0 € Ojy.

Proof. We cannot present the full proof at this point, since we have not
yet presented the ”AnalyzeLoop” function. Nevertheless we will intro-
duce the structure of the proof here and add the missing parts later. We

19

20 COMPUTING LOOP OFFSET BOUNDS

Algorithm 3 AnalyzeFunction

Require: function r, offsets O,
1: for all blocks b; of function 7 in topological order do
if b; = b5 then

wStart =0
oStart = Oy,
else

wStart = maxy, cpred(p,) (WFinish [by])
oStart = m ({oFinish [by] | by € pred (b;)})
end if
(wcety,, Oy,) = AnalyzeBlock (b;, 0Start)
wFinish [b;] = wStart + wcety,
11: oFinish [b;] = Oy,
12: end for
13: return (wFinish [byx] , 0Finish [bsiy])

_
Q

prove the proposition by structural induction over the interprocedural
control flow graph.

Base case: The smallest possible graph is a single basic block. There-
fore we have to prove the proposition for a single basic block to give the
induction base case. After Definition 2 the basic block either consists of
a single instruction, which accesses the bus, or of multiple instructions
which do not access the bus.

e A basic block with a bus access
In this case, the returned WCET is a valid overapproximation since
we compute the maximum over all possible completion times as
returned by @,

e A basic block without a bus access
In this case the returned WCET is a valid overapproximation since
we maximize over the given ET}, values.

The correctness of the offset result follows from Lemma 1, since the
result is computed through a single application of the transfer function
u.

Induction step: The induction step must consider the possible struc-
tures which can appear in the CFG. We required our interprocedural
control flow graphs to be reducible in Section 3. A reducible control flow
graph can be inductively defined with the patterns shown in Figures 6.2
and 6.3. Every graph which adheres to Definition 9, which includes

6.1 DETERMINATION OF OFFSET RESULTS FOR SINGLE ITERATIONS

A\
(a) Sequence (b) If-Then (c) If-Then-Else (d) Proper

Figure 6.2: Sequential structural patterns

\j

(a) While loop (b) Natural loop (c) Self loop

Figure 6.3: Cyclic structural patterns

our control flow graphs, can be constructed using those inductive pat-
terns [12]. In the patterns, the circles indicate reducible subgraphs. For
the induction step, we can assume, that the proposition was already
shown for the subgraphs. We then must prove that the proposition is
also true for the depicted graphs as a whole. This is done by looking at
the different cases:

e Sequential patterns
By the induction hypothesis, the WCET and offset results for the
subgraphs are valid overapproximations. For the sequential case
shown in Figure 6.2a we add up the WCETs and combine the off-
set results in lines 9 to 11 of Algorithm 3. This obviously yields
overapproximations for the whole sequence.

For the case of branches as shown in Figure 6.2b and 6.2c we com-
pute safe overapproximations, since we take the maximum WCET
of any path leading to the end block in line 6 of Algorithm 3. Simi-
larly we merge the result offsets of all paths reaching the end block
in line 7 of the same algorithm.

21

22

COMPUTING LOOP OFFSET BOUNDS

The last sequential case as shown in Figure 6.2d is a combination
of an if-then with a sequence. Therefore the correctness for this
case follows from the same arguments as in those cases.

e Cyclic patterns
The possible cyclic patterns are shown in Figure 6.3. We omitted
patterns for loops which contain break or continue statements,
since the generalization to these cases is a pure technicality. The
induction step for the case of loops has to be supplied when the
analysis function ”AnalyzeLoop” was presented.

O]

For the analysis of complete loop executions (all iterations) in “An-
alyzeLoop”, we need to combine the context-sensitive single iteration
results to form an overall loop WCET and offset result. This will be
discussed in the next section.

6.2 DERIVING FULL LOOP WCETS

To implement “AnalyzeLoop” for a given loop I and starting offsets O;;, ;,
full unrolling could be performed by analyzing all iterations and supply-
ing the offset results from one iteration as inputs to the next one. Alter-
natively, only a single iteration can be analyzed, with a forced alignment
at the TDMA schedule border and an added alignment penalty as sug-
gested in [3]. Section 5.2 already mentioned that our goal is to avoid
these two approaches, because they are computationally too expensive
or lose precision, respectively. In this section we devise two new meth-
ods which present a compromise between those two extremes.

In the following sections we will use wcett? (O) and ul? (O) to denote
the (safe) WCET and offset results of a single loop iteration starting at an
offset 0 € O as computed by Algorithm 2. In the proofs of correctness
of the proposed ”“AnalyzeLoop” functions, we can use the induction
hypothesis from Theorem 2, that wcet? (O) and ul? (O) compute valid
overapproximations.

Our analyses will concentrate on the case of natural loops (see Fig-
ure 6.3b). Self loops (see Figure 6.3c) are a special case of a natural loop,
which consists of a single basic block. For while loops (see Figure 6.3a),
the loop condition is evaluated one more time before the loop is exited,
which must be accounted for in the analysis. Since this a purely techni-
cal issue, we will omit this in the following.

6.2 DERIVING FULL LOOP WCETS

6.2.1 Global Convergence Analysis

Starting with the initial offset information O}n = Oy, we iteratively an-
alyze single loop iterations i € {1,2,...} and record the WCET wcet; =
weetf® (O!) and offset result O}, = ul® (Ol). With the merge function
m from Section 5.1 the offset inputs O], for iteration i are then com-

puted as m (OZ:’1 Oi’1>. The analysis stops after iteration j when either

in 7 out

j=B"*or0O = O{; ! is true. In the first case we have hit the loop
bound and thus have performed full unrolling implicitly, therefore this
is the undesired case. In the second case we have reached a fixpoint of
the starting offsets and thus the result from iteration j stays valid for all
following iterations. In total there can’t be more than min (Bl’”“x,ncsl)
iterations, which is the number of possible offset values. The final loop
WCET can then be easily computed as:

j
weet; (Ojp) = (Z wceti> + (B"™ —j) - wcet; (1)
i=1

The offset result for the loop is equal to the offset result from iteration
j, because this result stays valid for all following iterations.

Observation 1. For two offset sets O ad O, with O; C O, we observe
that weet® (01) < weett? (O;) and ut? (01) C ul? (O,). For weett? this
can be derived from the monotony of ®, and for u}" it can be derived
from the monotony of the m and u;, functions. Thus weet[® and ul? are
monotone.

Theorem 3. For given starting offsets O;,,;, the global convergence anal-
ysis computes safe overapproximations of the loop WCET and result
offsets.

Proof. If we would set O! = Ol 1 in the analysis, then we would per-
form a fully unrolling analysis, which would be unlikely to converge
at any time step before the loop bound. The safeness of this fully un-
rolling analysis then follows from the safeness of the single-iteration
analysis which we can assume since this is the outer induction hypothe-

sis. We use O}, =m (Of;l, Oé;}), therefore in our algorithm O} 2 O}
holds. With Observation 1 it then follows that the WCET and offset re-
sults which we compute per iteration are overapproximations of the real
WCET and offsets. This proves the correctness of the algorithm for the

first j loop iterations. Then we have two cases:

23

24

COMPUTING LOOP OFFSET BOUNDS

o j= Blmux
In this case all loop iterations were analyzed and thus the correct-
ness of the analysis was shown for all loop iterations.

j _ At
° Oin - Oin .
In this case, since O/, is a safe overapproximation of the offsets in
loop iteration j and O{: = ut® (Ofn) is a safe overapproximation
of the offsets in loop iteration j + 1, the loop can never be entered
with offsets 0 ¢ O/ in any succeeding iteration k > j. Therefore

the offset and WCET results for the j-th iteration are safe overap-
proximations for all B/"** — j remaining iterations.

6.2.2 Graph Tracking Analysis

The global convergence analysis is superior to the static unrolling insofar,
that it implicitly unrolls the loops selectively, as long as new information
can be obtained. This is more suitable than a static unrolling, but it still
relies on the idea of unrolling the first j iterations and handling the rest
of the iterations under a single analysis context. The drawback is that
cyclic progressions of offsets cannot be captured by the analysis.

Example 3. Consider e.g. a loop in which all even iterations start with
offset x and all odd iterations start with offset y > x, because only the
even iterations have to wait for the TDMA bus access, whereas the odd
iterations can then proceed with direct bus access. The global conver-
gence analysis will analyze the first two iterations (j = 2), compute
O! = {x,y} and use this offset information for all following iterations.
This is clearly valid, but still imprecise.

The example shows the need to handle cyclic contexts which do not
distinguish the first j execution contexts from the remaining ones, but
which distinguish groups of execution contexts which repeat cyclically.
In our case, a cyclic context consists of all iterations starting with offset
0, which leads to s;n. contexts. Thus, we can identify a cyclic context via
the offset which it represents.

To obtain the final timing results using cyclic contexts we construct a
weighted, directed graph from the contexts and compute the loop WCET
by solving a flow problem on that graph.

Definition 14. An offset graph G = (V,E, c) consists of a set of nodes V =
{o", 07} U Vs with source v, sink v, context nodes Vy¢r = {vo, ..., Usn. },

6.2 DERIVING FULL LOOP WCETS

Figure 6.4: An example offset graph

of a set of edges E = Ecnter U Epxit U Epransition and of a weight function
¢ : E — IN. We have

Eenter = {(U+, vx) ’ X e Oin,l} (2)
Eexit = {(Ux/ vi) ’ X e [0/ SlnC]} (3)

For all edges e € (Eenter U Ecxit) we set the weight ¢ (e) to 0. Egausition
is then constructed by iteratively analyzing single iterations. For each
iteration i, we compute wcet; = weet!? (Ol) and O} ,, = ulB (Ol). O},
is set to O;;,; and for the other iterations Ofn = Oé;tl applies. After the
analysis of each iteration we extend Ejqpsition by all edges e = (v;,v,)
withi € Ol ,0 € O!, and c (¢) = wcet;. We stop the iteration analyses
when we reach an iteration where no edge is added or when i = Bj"**.

Example 4. An example for such a graph is given in Figure 6.4 where the
first iteration starts with offset s and the succeeding iterations alternate
between starting offset x and y as sketched in Example 3.

The offset graph can then be used to obtain the final loop WCET by
solving a dynamic flow problem [19]. In contrast to standard flow prob-
lems, dynamic flow problems have an explicit notion of time built into
the problem formulation. Based on the offset graph we can derive two
different dynamic flow problems: one for determining the WCET and
one for the resulting offsets. The basis of the problem formulation is a
flow function x : E x T — IN, which specifies for each edge e = (u,v)
the amount of flow x (e, t) which leaves u at the discrete time instant
t. This flow arrives at v at time t + 7 (¢) where 7 (e) is the constant
runtime of the edge. Conceptually, in our graph, a single time step of
the flow problem corresponds to a single iteration of the loop, which
implies T = {0, .., B/"*}. Thus a flow of x(e,t) = 1 through an edge

25

26

COMPUTING LOOP OFFSET BOUNDS

e = (v,w) € Epansition Tepresents the loop iteration t which starts at offset
v and ends at offset w and has a maximum runtime of c(e). Therefore
we set T (e) = 1 for all e € Ejypsition, since these edges model single loop
iterations, and we set T (e) = O for all e € Eyter U E,yit, modeling entry
into and exit from the loop. Both dynamic flow problems share a com-
mon constraint that ensures that all flow which enters a node at a time
step must leave it in the same step (i.e. there must be one loop iteration
per time step):

VteT:VoeVys: Y x(et—1(e))=), x(et) (4)

ecé (v) e€d™(v)

Here, 5~ (v) and 67 (v) denote the sets of incoming and outgoing edges
at node v € V. For the start node v* and the sink node v~ we need to
provide explicit bounds on the flow. We want F units of flow to leave v™
at time 0 and to arrive at v~ at time B/"** (i.e. we can model F full loop
executions in a single flow problem). Therefore we have:

Y x(e0)=F)
ecdt(vt)
v€€(5+(’0+) : Vt S T\ {O} X (e, t) =0 (6)
x (e, B™) = F 7)
e€d—(v™)
vee‘sf(vf) Ve T\{B/""} :x(e,t) =0 (8)

For the WCET analysis we only model the single worst-case loop execu-
tion scenario by setting F = 1 and by maximizing the objective function

max)) c(e)x(et) (9)
ecEteT
The loop WCET is then given by the value of the objective function.
For the offset analysis, we use F = s;n. flow units which must arrive
at the sink between time step B"" and B7"**. We therefore need different
sink flow constraints which replace Equations 7 and 8:

Y x(et)=F (10)

8657(07) t€ Theave
v€€57(07) : Vi’ E T\ TIGLIUE X (e/ t) = 0 (11)
with Tiome = {t | Bt <t < B,’”“"} (12)

The flow of each of the flow units through the graph models a possible
loop execution scenario. If K is the (unknown) set of offsets with which

6.2 DERIVING FULL LOOP WCETS

the loop can be left, then we have |K| < s;n. since this is the total num-
ber of possible offsets. With F = s;n. flow units we can thus model at
least one loop execution scenario which terminates with offset k for each
offset k € K. Therefore we can compute an overapproximation of K by
maximizing the objective function

max | {z | 3t € Tjeape : X ((vz,07),t) > 0} | (13)

The offsets O,,;; which result after the loop execution are then given as
the elements of the set from Equation 13 with K C Oy,

In the following we will prove that the results of the graph problem
are valid overapproximation of the WCET and offset results of the loop
execution. For an offset graph G = (V,E,c) we assume the following
notations:

e VE, C E:src(Ey) = {v| (v,w) € Ey}
e VE, C E :dest(Ey) = {w]| (v,w) € Ey}

o Ol is the set of offsets with which the loop header may be entered
in the t-th iteration in any real execution of the loop.

Definition 15. An offset node v, is reachable at time t iff there exists a flow
function x : E x T — IN, subject to the constraints from Equations 4-8
with F =1and Jv,, € V : de = (v, v,) € E : x(e,t —7T(e)) > 0. We
define reachable(t) = {o|v, is reachable at time ¢}.

Lemma 2. For a loop [, assume O;,,; is an overapproximation on the set
of offsets at the entry of the loop before the first iteration. We claim that
reachable(i) O Ol is true for all iterations of the loop.

Proof. Let us assume that the construction of the offset graph terminates
at iteration m (thus m is the last iteration of the construction) and the
loop bound is i. We prove the proposition by induction over the loop
bound.

Base case: We can use the outer induction hypothesis, that the offset
results computed by the single-iteration analysis are valid overapprox-
imations. With O;,; being an overapproximation of the input offsets
and i = 1 this already proves the proposition, since only a single loop
iteration is modeled then.

Induction step: By the induction hypothesis we know, that reachable(i)

O, We must show that reachable(i +1) 2 O holds. To perform this,

V)

27

28

COMPUTING LOOP OFFSET BOUNDS

we assume that there is an offset 0., € Ofiall with 0., & reachable(i+1).
We will show that this leads to a contradiction.

If such an offset 0., exists, then by definition of Ofiall there must be
a possible execution scenario A in which the (i + 1)-th loop iteration is
entered with offset 0.,. Let (a1,a2,...,a;11) be the offsets with which
the first i 4- 1 iterations of the loop are entered in scenario A. Note that
this implies a;;1 = 0. Since we assume that o, & reachable(i + 1),
there must be at least two such offsets a,, and a, for which (vgp, Ua q) ¢ E.
By the induction hypothesis it follows, that a, € reachable(i) and thus
thatp =iandg=1i+1.

Since ay is reachable in the graph, there must have been a construction
iteration j < min (m, i) with a, € O}, and a, ¢ O/, where offset a, was
reached for the first time. In construction iteration j 4 1 we add all edges

Eip = Oﬁut x 011 to the graph. Since ol = ulB (Oj) and a, € o’

out out out out”’
j+1

it follows that a; € O,,, since MZLB yields a safe overapproximation of
the offsets and offset a,, is followed by offset 4, in scenario A. Therefore
(0a,, va,) € E which is a contradiction. O

Theorem 4. Let us assume O;,; is the set of offsets reaching at the entry
of loop I. Given that O;,,; is an overapproximation on the set of offsets
at the entry of the loop and the offset graph is correctly constructed, the
graph tracking analysis always computes an overapproximation of the
total execution time of the loop.

Proof. We prove this by induction on the loop bound B;***.

Base case: In this case, the objective function (Equation 9) simply
takes the maximum of c(e) where e € E}gpsition and src(e) € O;y, ;. Note
that for any e € Ejpusition, ¢(€) represents the worst case execution time
of one loop iteration (computed by Algorithm 2) with TDMA offset in
src(e). Therefore, maxy.,(e)co,, c(¢) precisely represents the WCET of
the first loop iteration.

Induction step: We assume that the WCET computation is sound for
loop bound B;"** = n. We shall show that the computation is also sound
for loop bound Bj"** = n + 1. Let us assume that the actual WCET of the
entire loop ! with n iterations is denoted by WCET(l,n). On the other
hand, the actual WCET of the n-th iteration of the loop is denoted by
WCETjr(I,n). According to the graph tracking analysis, we compute
the WCET of the loop with n + 1 iterations as

max Y) c(e)x(e,t) (14)

ecEteT

6.2 DERIVING FULL LOOP WCETS 29

where E is the set of all edges in the offset graph and T = {0,...,n +1}.
However,

max)) c(e)x(e,t) =max)_ Y c(e)x(e,t) +max)_ c(e)x(e,n+1)

ecEteT ecEteT’ eck
(15)
where T" = {0,..., n}. By induction hypothesis, we have
max)) c(e) > WCET(I,n) (16)

ecEteT’

From Lemma 2 we know that reachable(n +1) 2 O. If an offset

node is not reachable in iteration n + 1, then he cannot contribute to
Equation 15, therefore

max) _ c(e)x(e,n + 1) = max Y. cle)x(e,n+1)
ecE ec{(v,w)€E|vereachable(n+1)}
(17)
> max) c(e)x(e,n+1) (18)
ee{(v,w)eE\veOf‘*ﬂl}
— WCETy (1,1 +1) (19)

Inserting Equation 19 and 16 into Equation 15 provides the induction
step. Thus the proposition is proven. O

Theorem 5. Computation of O, is sound. More precisely, O, pre-
dicted by the graph-tracking analysis always overapproximates the set
of offsets with which a loop may be left.

Proof. We are sending s; * n. flow units through the graph. Each one of
these units models an independent execution of the loop. Each of these
modeled executions (say they are numbered with i € {1, ..., 1. *s;}) will
exit the loop with some offset 0,,4 ;. The unknown set of all possible exit
offsets is K. What we must show, is that K C {0,,4;|i € {1,...,nc %51} }.

What we maximize in Equation 13 is the cardinality of the set of offsets
with which the s; * n. flow units exit the loop. By Lemma 2 the reach-
able offsets in the flow graph are an overapproximation of the reachable
offsets in the real loop execution for all iterations j € {1, ..., B }. There-
fore, if the loop can be left in iteration k € {B}"", ..., B"™* } with offset o,
during a real loop execution, then there is the possibility to construct a
flow with one flow unit i which starts at v at time 0 and takes the edge
e = (0o, v) at time step k, thus 0eua; = 01ef; for a given og,f.

Up to this point we have then shown, that for each exit offset 0,5 € K
we can construct a flow with one flow unit that exits the loop with this

30

COMPUTING LOOP OFFSET BOUNDS

offset. It is also possible that we get flows which end with offsets 0., ¢
K, but that is no problem since we only require an overapproximation
of the offsets. If we now assume that we compute a solution O,,;; with
an offset k € K and k ¢ O,,;; then we can easily show that this is a
contradiction:

1. ‘Oaut,l| = Sp*kN¢
In this case the set O,,;; represents all possible offsets, therefore
an offset k ¢ O,,;; cannot exist.

2. |Opyt1| < sp%ne

In this case there must be at least two flow units i and j with
Ocnd,i = Oend,j, Since we used F = n. * s; flow units in total. Since
k € K holds, there exists a valid flow f through the graph which
exits the loop with offset k (as shown in paragraph 2). If we let one
of the flow units, say i, follow that flow f instead of the flow which
it followed in the original solution, then we get a new solution to
the flow problem in which O, | is increased by 1, compared
to the previous solution. Since the original solution to the flow
problem must have been maximal with respect to |O,,; |, this is a
contradiction.

O]

Corollary 1. The analysis framework, using the graph-tracking analysis,
provides overapproximations of the WCET of any task t executed with
starting offset O;,, ; on our assumed platform.

Proof. Theorem 4 and Theorem 5 provide the missing induction step
case for the proof of Theorem 2. The WCET for the ff" function is
the WCET of the task. Following Theorem 2, our analysis framework
together with the graph-tracking analysis produces valid WCET overap-
proximations for this function and thus also for the task. O

Using either the global convergence or the graph tracking analysis,
the analysis of tasks as a whole now only requires the offset information
at the entry point of the task, which is provided by the overall analysis
framework through the known processor mapping and task dependen-
cies. All internal offset information, and with this, the WCET of the task,
can then be computed through the presented framework.

63 OFFSET ANALYSIS IN ARCHITECTURES WITHOUT TIMING ANOMALIES 31

63 OFFSET ANALYSIS IN ARCHITECTURES WITHOUT TIMING ANOMA-
LIES

Timing anomalies are a phenomenon which complicates WCET analysis.
According to the definition from [17] a system shows timing anoma-
lies whenever local worst-case behavior does not forcedly lead to global
worst-case behavior, thus for example whenever a cache hit instead of
a cache miss does trigger the global worst-case behavior. This may be
the case e.g. on systems with instruction prefetching and speculative
execution [18]. In the static analysis of systems with timing anomalies it
is not feasible to prune the search space of the analysis [17]. Therefore
in a cache analysis for a system exposing timing anomalies we may not
assume an UNKNOWN access to be a cache miss (AM), but instead we
must then consider both possibilities, a hit and a miss, in the analysis.
On systems without timing anomalies we can safely assume the local
worst-case (AM) to increase the analysis performance and precision.

In our offset analysis we did not prune the search space (the set of
reachable offsets) at any point up to now. To increase the analysis preci-
sion for timing-anomaly-free architectures we can thus reduce the offset
result of any merge or update operation to the offset o which is reached
by the local worst-case path. Therefore, the differentiation between off-
set sets and offset intervals is of no importance for the analysis any
longer, because we are only tracking single offsets after this reduction.
The graph-based analysis is then ideally suited to track the development
of the worst-case offsets inside of loops using the known ILPs from Sec-
tion 6.2 to compute the total loop WCET. This reduction to the local
worst-case makes the analysis highly precise, because the main source
of imprecision, the divergence of offset information, is eliminated.

64 EXTENSIONS FOR FURTHER MICRO-ARCHITECTURAL ANALYSES

In an analysis that includes the analysis of more microarchitectural fea-
tures like pipeline and branch prediction, the computed overapproxima-
tions of the hardware states must become part of the analysis context, in
addition to the offset information. For the global convergence analysis,
this means that a global overapproximation of the hardware states at the
loop header is built and used in the analyses. For the offset graph, ev-
ery context node must be annotated with an overapproximation of the
hardware states with which the node may be entered, including cache,
pipeline and branch prediction states. In such a scenario, the graph must
be iteratively refined until

1. No more edges are added

32

COMPUTING LOOP OFFSET BOUNDS

2. The hardware states on all nodes have converged

Alternatively it is also possible to construct only a single, global over-
approximation of the hardware states, depending on which degree of
precision is required.

EXPERIMENTAL RESULTS

In the following, the different approaches to bus-aware WCET analysis
are compared. As mentioned, we have implemented our approaches
based upon the code from [3] which enables a precise comparison. The
prototype tool analyzes executables compiled for the SIMPLESCALAR plat-
form and includes a thorough cache analysis. Unfortunately, no pipeline
or branch prediction analysis is integrated yet, so all instruction laten-
cies are set to 1 cycle. Section 6.4 nevertheless introduced the general
concept of how to perform such an integration. It can be expected that
the classification of the approaches with respect to precision and analy-
sis time stays the same even after additional microarchitectural analyses
were integrated, since the number of analysis contexts is directly depen-
dent on the analysis type as explained in 5.2. The number of contexts
in turn has the biggest influence on the analysis precision and duration.
All experiments were run on an Intel Xeon 2.13GHz machine with 4GB
of main memory under Debian Linux. Concerning the solution of the
dynamic flow problems during the graph-tracking analysis, we used the
CPLEX ILP solver in the experiments.

The experiments were performed on a subset of the MRTC test bench [10]
where the tasks are independent from one another. Thus we map each
MRTC test case i € [0,23] from Table 7.1 to core (i mod n.) with priority i,
where 0 is the highest priority. We also tested the presented algorithms
with the publicly available PapaBench [13] and Debie [5] benchmarks
which are an unmanned aerial vehicle control software and a space de-
bris monitoring software, respectively. The mapping of tasks to cores
was done manually for these two benchmarks. The default system con-
figuration is a 2-core system with 1KB L1 cache (direct-mapped, block
size 32 byte) and 2KB L2 cache (4-way associative, block size 64 byte).
Only for Debie, the cache configuration was changed to 2KB L1 cache
(2-way associative) and 8KB L2 cache to account for the bigger program
sizes of Debie. In any case, the L1 hit penalty is 0 cycles, the L2 hit
penalty is 1 cycle and the main memory access time is 5 cycles modeling
a Flash-based main memory. The default TDMA schedule assigns a slot
of 8o cycles to each core. A more detailed overview of the used bench-
marks is provided in Table 7.1, including the byte size spyie of the “text”
section of the executable (excluding startup code), the lines of code LOC
(excluding comments and empty lines), the number of loops L, the max-
imum loop nesting level D and the average loop bound @p. The Debie

33

34 EXPERIMENTAL RESULTS

Benchmark | LOC Sbyte | L | D DB
adpcm 468 12480 | 18 | © 69
bs 79 480 | 1| o 4
bsort100 74 1024 | 3| 1 100
cnt 72 1552 | 4| 1 40
cover 228 9312 | 3| O 60
crc 66 1936 | 3| o| 102
edn 196 8ooo | 11 | 2 61
fdct 148 5088 | 2| o 8
fft 97 8368 | 7| 2 88
fir 188 1056 | 2| 1| 375
insertsort 20 752 | 2| 1 10
jfdcint 165 5424 | 3| O 26
ms 146 4576 | 10 | © 50
ludcmp 71 4544 | 11 | 2 4
matmult 81 1536 | 5| 2 20
mergesort 266 9152 | 23 | 3 | 126
minver 135 6160 | 17 | 2 2
ndes 201 6256 | 12 | © 19
nsichneu 2362 63632 | 1| O 2
qurt 87 1952 | 1| O 19
select 55 3120 | 4| 2 8
sqrt 42 912 2| 0 12
st 98 60528 | 1| O | 1000
statemate 1128 11728 | 4| © 20
Debie 24528 | 1622912 | 39 | 0| 157
PapaBench 4663 | 200256 | 10 | © 3

Table 7.1: Benchmark properties

7.1 PRECISION GAIN

WF- OOC+ OOT+ mOT-

300,00%

481% 356% 402% 321% 358%

371%)|
275,00%

250,00%

225,00%

200,00%

175,00%

150,00%

125,00%

100,00% |-" N h
75,00%

& A o & e g X 3 o o .
S ¢S & S & e°(\ & & (,@Q @& a°{\ S (\e}‘ o?{\ & e& ® ° .ZP\Q & &
& O § & & F & F &S) & Qo &
& &£ N & &€ By g & N
& & & & & L3

Figure 7.1: WCET results per benchmark and average WCET results for
(ne,s1) = (2,80)

and PapaBench benchmarks consist of 35 resp. 32 individual tasks which
have a relatively simple structure, especially since they have no nested
loops.

7.1 PRECISION GAIN

In this section, we will distinguish between the approaches that assume
no timing anomalies on the target hardware and those which do not
make such an assumption. The fully unrolling and fixed-alignment anal-
yses that are built into CHrRONOs do make this assumption. Therefore,
strictly speaking, only the comparison to our approaches with the exten-
sion from Section 6.3 is feasible. In Figure 7.1, we have listed the WCET
results for the different approaches on the MRTC test bench subset with
the mentioned default machine configuration. In Figures 7.1 and 7.2 as
well as in the following, all WCET results are relative to the WCET result
of the fully unrolling analysis which does not consider timing anomalies.
We use the following shorthands for the different approaches:

35

36

EXPERIMENTAL RESULTS

\% Assume worst-case bus delay of D" cycles for each bus
access
F- Fixed alignment (No timing anomalies) [3]

OC+ Offset analysis (Global convergence, allow timing anoma-
lies)
OT+ Offset analysis (Graph-tracking, allow timing anomalies)
OT- Offset analysis (Graph-tracking, no timing anomalies
- with extensions from Sec. 6.3)

U- Full virtual unrolling (No timing anomalies)

The results for OC- are not displayed here, because the graph-tracking is
the most suitable method for the case without timing anomalies. As can
be seen in Figure 7.1 OT- almost always (except for minver) reaches the
same precision as U- (100% = U-). It also outperforms F- which does
not analyze cyclic contexts (compare Section 6.2), but instead analyzes
all the loop iterations with a fixed alignment and finally adds a penalty
term to the result which accounts for the ignored actual alignment of the
loop iterations. This leads to imprecision because the actual blocking
time due to bus accesses may be much lower than the blocking time for
the fixed-alignment situation plus the penalty.

In contrast to OT-, our general analyses OC+ and OT+ are less pre-
cise, which was expected, but still they outperform F- on benchmarks
which show deeply nested loops or loops with high loop bounds, like
for example mergesort, edn, ludcmp or select. On benchmarks which
have a flat structure with many branches, like statemate, OC+ and OT+
are outperformed by F-, because they lose track of the offsets and must
revert to worst-case assumptions. Nevertheless, even in those cases, they
are still much more precise than the pessimistic assumption (W) that all
bus accesses incur maximum delay, which results in an average WCET
ratio of 414%. A surprising result is, that OT+ is worse than OC+ on
average for the MRTC test bench subset. This is possible, because the
global convergence analysis implicitly unrolls the first iterations as dis-
cussed in Section 6.2, whereas the graph-tracking analysis summarizes
the iteration behavior in the offset graph. Therefore, once the offset
information gets highly imprecise, the graph will be imprecise for all it-
erations, whereas the global convergence may achieve a better precision
during its implicit unrolling. For loops with few iterations, this can have
a strong impact on the precision of the WCET estimations. The graph
tracking only shows its strength on the rather sparse graphs of OT-.

On Debie and PapaBench F- performs much better than on the MRTC
test bench, because there are no nested loops at all and the loop bounds
are rather small. Nevertheless, F- is still outperformed by OT-, and

7.2 ANALYSIS TIME

F- | OC+ OT+ OT- U-
MRTC 0.4s | 1555 | 927.3s | 52.4s | 1770.6s
Debie 0.6s | 5.8s | 400.6s | 198.5s | 1458.7s
PapaBench | 0.05s | 1.7s 1.7s 0.4s 0.05s
Sum 1.05s | 23.0s | 1329.6s | 251.3s | 3229.4s

Table 7.2: Analysis time comparison

also OT+ performs consistently better than OC+ which emphasizes its
applicability for realworld programs.

All presented results of the offset analyses use the offset interval repre-
sentation, from Section 5.1. Using the offset set representation the WCET
estimation is further reduced by a maximum of 89% for bsort160 (avg.
1.3%) when combined with graph-tracking, or by a maximum of 0.3%
for bs (avg. 0.0%) when combined with the global convergence. This un-
derlines the suitability of the combination of offset sets with the graph
tracking analysis.

To evaluate the impact of different TDMA slot sizes or processor con-
figurations on the precision of the WCET estimations, the analyses were
performed for a varied number of cores (with manually adapted task
mapping) and varied TDMA slot lengths. The average WCET results
of these experiments are shown in Figure 7.2 where each configuration
is described as a tuple (n,s;). The experiment shows that OT- is able
to compute results which are almost equal to those of U-, whereas the
other analyses suffer from the increased maximum bus delay, F- even
more so than OC+ and OT+.

7.2 ANALYSIS TIME

Table 7.2 summarizes the analysis duration in seconds for the WCET
analyses that generated Figure 7.1. Here it becomes visible that all anal-
yses are much faster in total than U-, which takes 53.8 minutes. OT-
only requires 7.7% of that time and delivers WCET results which devi-
ate by less than 1% from those of U-. Therefore OT- is the best choice
when high analysis precision with moderate runtimes is required. For
applications where an extremely short analysis time is required, F- can
be better suited. It delivers results with 79% overestimation compared
to U- in only 0.4% of the analysis time of OT-.

The unrolling is quick for benchmarks with few loops and low loop
bounds like e.g. PapaBench. Since its analysis time is directly dependent
on the loop structures and the loop bound values, it performs much

37

38 EXPERIMENTAL RESULTS

Figure 7.2: Average WCET results for varying number of cores and TDMA slot
sizes (1, s;)

W & F- -4 OC+ = OT+ - OT-

800,00%

700,00%

600,00%

500,00%

400,00%

300,00%

200,00%

100,00%

0,00%
<2,10> <2,20> <2,40> <2,80> <4,80> <2,160>

7.2 ANALYSIS TIME 39

worse for Debie and MRTC where nested loops and higher loop bounds
are found (see Table 7.1). This indicates that the unrolling is unsuitable
for bigger realworld applications.

CONCLUSIONS

We have presented a new approach to the WCET analysis of TDMA-
arbitrated shared resources, and applied it to a multicore system with
shared bus. Our new analysis type is based on a static analysis of the
TDMA offsets with which basic blocks may be entered and uses the key
concept of cyclic contexts to improve the analysis precision. Concerning
precision and analysis time, our solutions provides a good compromise
between the fastest and the most precise approaches. The best variant
(OT-) reduces the WCET overestimation by 79% compared to the quick-
est preexisting approach (F-) and achieves a speedup of 12.9 compared
to the most precise preexisting approach (U-). Possible improvements to
our methods are

e The integration of further microarchitectural analyses

e Specialized algorithms for the graph-based approach, possibly based
on the polynomially solvable Maximum Dynamic Flow problem [19]

e A tailored graph clustering or graph expansion to fine-tune the
precision of the graph-tracking analysis

e Heuristics which combine the presented analysis techniques to op-
timize runtime and precision

41

BIBLIOGRAPHY

[1]

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman.
Compilers: Principles, Techniques, and Tools. Addison-Wesley, 2nd edi-
tion, 2006.

Alexandru Andrei, Petru Eles, Zebo Peng, and Jakob Rosen. Pre-
dictable Implementation of Real-Time Applications on Multiproces-
sor Systems-on-Chip. In Proceedings of the 21st International Confer-
ence on VLSI Design, VLSID 08, pages 103—110, Washington, DC,
USA, 2008. IEEE Computer Society.

Sudipta Chattopadhyay, Abhik Roychoudhury, and Tulika Mitra.
Modeling shared cache and bus in multi-cores for timing analysis.
In Proceedings of the 13th International Workshop on Software & Com-
pilers for Embedded Systems, SCOPES "10, pages 6:1-6:10, New York,
NY, USA, 2010. ACM.

Patrick Cousot and Radhia Cousot. Systematic design of program
analysis frameworks. In Proceedings of the 6th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL),
pages 269—282, San Antonio, Texas, 1979. ACM Press, New York,
NY.

European Space Agency. DEBIE - First Standard Space Debris Mon-
itoring Instrument. http://gate.etamax.de/edid/publicaccess/
debiel.php, 2008.

Andreas Gustavsson, Andreas Ermedahl, Bjorn Lisper, and Paul
Pettersson. Towards WCET Analysis of Multicore Architectures Us-
ing UPPAAL. In 10th International Workshop on Worst-Case Execution
Time Analysis, WCET "10, pages 101-112. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, Germany, July 2010.

Damien Hardy, Thomas Piquet, and Isabelle Puaut. Using Bypass
to Tighten WCET Estimates for Multi-Core Processors with Shared
Instruction Caches. In Proceedings of the 2009 30th IEEE Real-Time
Systems Symposium, RTSS "o9, pages 68-77, Washington, DC, USA,
2009. IEEE Computer Society.

Damien Hardy and Isabelle Puaut. WCET Analysis of Multi-level
Non-inclusive Set-Associative Instruction Caches. In Proceedings of

43

http://gate.etamax.de/edid/publicaccess/debie1.php
http://gate.etamax.de/edid/publicaccess/debie1.php

44

Bibliography

the 2008 Real-Time Systems Symposium, pages 456—466, Washington,
DC, USA, 2008. IEEE Computer Society.

[9] Mingsong Lv, Nan Guan, Wang Yi, and Ge Yu. Combining Abstract

[10]

[11]

[12]

[13]

[16]

[17]

Interpretation with Model Checking for Timing Analysis of Multi-
core Software. In 31st IEEE Real-Time Systems Symposium (RTSS),
2010.

Mailardalen WCET Research Group. Milardalen WCET Benchmark
Suite. http://www.mrtc.mdh.se/projects/wcet, February 2010.

Jorg Mische, Irakli Guliashvili, Sascha Uhrig, and Theo Ungerer.
How to Enhance a Superscalar Processor to Provide Hard Real-
Time Capable In-Order SMT. pages 2-14, February 2010.

Steven S. Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann, 1997.

Fadia Nemer, Hugues Cassé, Pascal Sainrat, Jean-Paul Bahsoun,
and Marianne De Michiel. PapaBench: a Free Real-Time Bench-
mark. In Frank Mueller, editor, 6th Intl. Workshop on Worst-Case
Execution Time (WCET) Analysis, Dagstuhl, Germany, 2006. Inter-
nationales Begegnungs- und Forschungszentrum f'ur Informatik
(IBFI), Schloss Dagstuhl, Germany.

Marco Paolieri, Eduardo Quifiones, Francisco J. Cazorla, Guillem
Bernat, and Mateo Valero. Hardware support for WCET analysis of
hard real-time multicore systems. In Proceedings of the 36th annual
international symposium on Computer architecture, ISCA “09, pages 57—
68, New York, NY, USA, 2009. ACM.

Rodolfo Pellizzoni, Andreas Schranzhofer, Jian-Jia Chen, Marco
Caccamo, and Lothar Thiele. Worst case delay analysis for memory
interference in multicore systems. In Proceedings of the Conference
on Design, Automation and Test in Europe, DATE "10, pages 741—746,
2010.

Christof Pitter and Martin Schoeberl. A real-time Java chip-
multiprocessor. ACM Transactions on Embedded Computing Systems,
10:9:1-9:34, August 2010.

Jan Reineke and Rathijit Sen. Sound and Efficient WCET Anal-
ysis in the Presence of Timing Anomalies. In Niklas Holsti, edi-
tor, 9th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis,
Dagstuhl, Germany, 2009. Schloss Dagstuhl-Leibniz-Zentrum fiir
Informatik, Germany.

http://www.mrtc.mdh.se/projects/wcet

[18]

[19]

[20]

[22]

Bibliography

Jan Reineke, Bjorn Wachter, Stephan Thesing, Reinhard Wilhelm,
Ilia Polian, Jochen Eisinger, and Bernd Becker. A Definition and
Classification of Timing Anomalies. In 6th Intl Workshop on Worst-
Case Execution Time (WCET) Analysis, WCET “06, 2006.

Martin Skutella. An Introduction to Network Flows Over Time.
Research Trends in Combinatorial Optimization.

Vivy Suhendra and Tulika Mitra. Exploring locking & partitioning
for predictable shared caches on multi-cores. In Proceedings of the
45th annual Design Automation Conference, DAC '08, pages 300-303,
New York, NY, USA, 2008. ACM.

Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Hol-
sti, Stephan Thesing, David Whalley, Guillem Bernat, Christian Fer-
dinand, Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle
Puaut, Peter Puschner, Jan Staschulat, and Per Stenstrom. The
worst-case execution-time problem Overview of methods and sur-
vey of tools. ACM Trans. Embed. Comput. Syst., 7:36:1-36:53, May
2008.

Wei Zhang and Jun Yan. Accurately Estimating Worst-Case Exe-
cution Time for Multi-core Processors with Shared Direct-Mapped
Instruction Caches. volume o, pages 455-463, Los Alamitos, CA,
USA, 2009. IEEE Computer Society.

45

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	1 Introduction
	2 Related Work
	3 System and Application Model
	3.1 Modeled Hardware
	3.2 Input program model

	4 Analysis Framework
	5 Static Analysis of TDMA Offsets
	5.1 Abstract interpretation in timing analysis
	5.2 Abstract hardware states and contexts

	6 Computing Loop Offset Bounds
	6.1 Determination of offset results for single iterations
	6.2 Deriving full loop WCETs
	6.2.1 Global Convergence Analysis
	6.2.2 Graph Tracking Analysis

	6.3 Offset analysis in architectures without timing anomalies
	6.4 Extensions for further micro-architectural analyses

	7 Experimental Results
	7.1 Precision gain
	7.2 Analysis time

	8 Conclusions

