Embedded System Design 2.0:
Rationale Behind a Textbook Revision

Peter Marwedel
TU Dortmund, Informatik 12
Dortmund, Germany

ABSTRACT

Seven years after its first release, it became necessary to pub-
lish a new edition of the author’s text book on embedded sys-
tem design. This paper explains the key changes that were
incorporated into the second edition. These changes reflect
seven years of teaching of the subject, with two courses every
year. The rationale behind these changes can also be found
in the paper. In this way, the paper also reflects changes
in the area over time, while the area becomes more mature.
The paper helps understanding why a particular topic is in-
cluded in this curriculum for embedded system design and
why a certain structure of the course is suggested.

General Terms
Embedded Systems

Keywords

Embedded systems, embedded system education, cyber-phy-
sical system, curriculum, text books

1. INTRODUCTION

Back in 2003, we published our first text book on embed-
ded system design. The goal of the book was to suggest the
standard level of knowledge about embedded system design
for senior undergraduate students. In this way, we want to
propose a standard curriculum for embedded system
design and to support this curriculum with the necessary
teaching material.

At the time of writing the first book, the books by W.
Wolf [25] and F. Vahid [23] were the only text books on em-
bedded system design which were discussing the principles
of embedded system design. Therefore, pioneering work was
required in order to define the standard knowledge. The
knowledge finally selected was based on conference publica-
tions and journal papers. In 2007, a German translation of
the English original was published. The German translation
did already include some updates, like more detailed proofs.

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

WESE 2011 Taipei, Taiwan

Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Michael Engel
TU Dortmund, Informatik 12
Dortmund, Germany

In 2010, knowledge on embedded system design had ad-
vanced to a level where a new edition of the book became
necessary. Various extensions were deemed appropriate. In
a few cases, material was also dropped. Some of the chap-
ters were completely reorganized. More emphasis was placed
on cyber-physical systems, a term which did not exist when
the first edition was written. The current paper explains the
changes which were incorporated into the second edition. In
this way, it provides an update on the list of topics which
should be included —from the author’s point of view— in a
curriculum on embedded system design and it also explains
how the topics can be sorted and linked. As result, a struc-
ture for embedded system education is suggested.

2. RELATED WORK

In our approach to teaching embedded system design, we
want to focus on concepts and methods instead of partic-
ular tools. A key reason is that concepts and methods re-
main valid for a number of years, whereas tools may already
be obsolete by the time the student graduates. Neverthe-
less, we demonstrate concepts and methods using exemplary
tools. Many of the books on embedded system design cover
the programming of small systems. They cover subjects
such as programming with interrupts and memory maps. A
treatment of the concepts of embedded system design is fre-
quently lacking. Such books cannot be used for our teaching
and we do not include them in this list of related work.

Concepts include computational models, real-time sys-
tems, fundamentals of hardware components, etc. Compu-
tational models are presented by S. Edwards [5]. A detailed
in-depth coverage of models of computation (MoCs) is pro-
vided by A. Jantsch [8]. We found that this coverage is too
advanced to be used in our undergraduate courses.

A book written by F. Vahid focuses on the implementation
of finite state machines (FSMs) [23]. FSMs are also covered
in a recent text book by D. Gajski [6].

Real-time systems are the subject of a well-known book
by H. Kopetz [9] and its recent update [10]. G. Buttazzo
published the standard reference book on real-time schedul-
ing [3]. Also, Krishna and Shin [11] and Lui [14] published
books in the area.

Guidelines concerning graduate embedded system educa-
tion are listed in the Artist recommendations for embedded
system curricula [4]. In general, the proceedings of the work-
shop on embedded system education (WESE) contain con-
tributions toward embedded system education [18]. A de-
scription of the educational approach for embedded software
in Taiwan is one of the outstanding contributions resulting

from the workshop [22]. Various top-level contributions to
the area are included in a book edited by R. Zurawski [26].

Fundamentals of cyber-physical system design are covered
in a recent book by Lee and Seshia [13]. In contrast to other
books, it also comprises information on the physics of robots.

For our education of senior undergraduate students, the
books listed above do not meet our goals. Consistent with
the Artist guidelines, we want to provide a broad foundation
for more detailed courses. A focus on real-time systems or
finite state machines would be too narrow for our purpose.
Unfortunately, requiring students to attend more than two
or three courses related to embedded systems is not an op-
tion in our undergraduate education and we believe that
this is a rather common situation for many CS and possibly
also CE curricula. Considering this constraint, our approach
is to offer one introductory course with a broad scope, op-
tionally followed by one or more specialized courses, one of
which could train practical skills [15]. How could a text
book for such a broad scope look like? In the following, we
will demonstrate how the topics covered in the first edition
evolved over time.

3. CHANGES TO THE FIRST EDITION

3.1 Scope

In the first edition, embedded systems (ES) were defined
as “information processing systems embedded into enclos-
ing products such as cars, telecommunication or fabrication
equipment.”. This definition of embedded systems still ap-
plies. However, E. Lee wrote “Embedded software is software
integrated with physical processes. The technical problem is
managing time and concurrency in computational systems”
[12]. Lee’s definition places more emphasis on the integra-
tion with the physical environment and on the modeling of
time. Also, the term “cyber-physical systems” has been in-
troduced. Models of cyber-physical systems include a model
of the physical environment as well as a model of informa-
tion processing embedded into the environment:

Cyber-physical system (CPS) =
Information processing (ES) + physical environment

The description of embedded systems in the first edition still
is a relevant description of information processing in cyber-
physical systems. In this way, a curriculum on embedded
system design covers all information processing aspects of
cyber-physical systems and will provide the foundations for
modeling such systems.

In 2003, no major distinction was made between mobile
phones and other embedded systems. In the mean-time,
mobile phones have evolved into smart phones and more
general computing platforms. The distinction between ad-
vanced mobile phones and small laptops, such as tablet PCs,
is blurring. Just like PCs, they do typically allow a connec-
tion to the internet. The performance of mobile platforms
has also been increased. Even Gigahertz clock rates are
now feasible for smart phones. In this way, phones have
become more similar to general computing. However, con-
sequences of the lack of high capacity batteries have become
more drastic, which means that one of the constraints of em-
bedded systems still applies. Also, mobile platforms have
become much more important. Accordingly, we are keep-
ing smart phones within the scope of the curriculum, but

do distinguish more clearly between smart phones and other
embedded platforms.

3.2 Structure of the second edition

Over time, the structure of the first edition became in-
appropriate. There was too much emphasis on particular
languages and not enough on models, validation was lack-
ing, as was the mapping of applications to platforms.

For the redesign, major attention was paid to improve
the structure of the material to be presented. We decided
to structure the topics according to a generic design flow.
This design flow includes specifications, hardware compo-
nents, system software, evaluation and validation, mapping
of applications to platforms, optimizations and test as com-
ponents as shown in fig. 1.

design

T

application
mapping

(optimization W

1| evaluation & validation

test

application
knowledge

system software
(RTOS, ...)

Figure 1: Simplified design flow

In this figure we assume that evaluation, validation, map-
ping to platforms and optimization are interleaved. In the
general case, no strict sequence of these steps can be se-
lected. The design flow is very general and allows specific
design flows to be derived. Figure 2 demonstrates the new
overall structure of the book and how this structure relates
to the first edition.

Introduction

Specifications and modeling
Embedded system HW
System software

Evaluation and validation
Application mapping

Introduction
Specifications
Embedded system HW
Embedded OS, middle—
ware and scheduling
Implementing ES:

—
—
—
—

HW/SW Codesign Optimization

Validation Test
Simulation Appendix: integer linear programming
Emulation Appendix: Kirchhoff's laws, op—amp
Test

Figure 2: Overall structure of the book and the cor-
responding curriculum

Obviously, we will always start with an introduction. Next,
the new edition contains a chapter on specifications and
modeling, instead of just on specifications. This was done
as models are required throughout the design, and not just
at the very beginning.

The chapter on embedded hardware was kept (but ex-
tended, as will be explained below).

The next chapter is on embedded system software, not just
on operating systems and middleware. This change reflects
the fact that there may be system software other than just
operating systems and middleware. In fact, even the first
edition briefly covered real-time data bases.

A new chapter on evaluation and validation was intro-
duced. This was done due to the increased body of knowl-

edge on the evaluation of real-time systems, which we con-
sidered to be very essential. Evaluation and validation are
covered in the same chapter, since the two are frequently
using similar techniques, such as simulation or emulation.
Coverage of these two techniques was moved into the new
chapter.

Also, a new chapter on the mapping of applications to
execution platforms was added. We believe that this is a
very important area and it deserves its own chapter. This
chapter now comprises information about standard real-time
scheduling techniques, mapping techniques from high-level
synthesis, hardware-software partitioning techniques and spe-
cific new techniques. We believe that these techniques are
very essential and should be included in all courses on the
fundamentals of embedded system design.

Optimizations were moved into a separate chapter. This
was done due to the thousands of optimization techniques
for embedded systems. There is no hope that they can all
be presented. Only an exemplary set of methods can be in-
cluded. We consider this chapter as a “nice-to-have” feature.
No serious harm is caused if this chapter cannot be included
in a course. However, this chapter allows us to include some
of our own research results in the text book.

Test has been moved into its own chapter in order not
to overload the chapter on evaluation and validation. We
consider this chapter as a “nice-to-have” feature as well and,
again, no serious harm is caused if this chapter cannot be
included in an embedded system course.

Next, let us look more closely at each of the chapters.

3.3 Specifications, modeling and languages

In chapter 2, the first edition contained a set of specifi-
cation languages which we thought of being important for
embedded system design. Models of computation (MoCs)
were covered only briefly.

This was turned around in the second edition: models of
computation are now the key element for structuring the
chapter. Models based on finite state machines, on data
flow, on discrete event systems and on von-Neumann lan-
guages are now covered as such. Specific languages are in-
cluded as examples detailing the description of models of
computation. Figure 3 demonstrates how this chapter has
been reorganized.

Requirements

Models of computation
StateCharts

SDL

General lang. charact.

Requirements

Models of computation
Early design phases
Communicating FSMs
Petri nets

Message seq. charts Data flow

Petri nets Von-Neumann languages

UML Discrete event based languages
Process networks Levels of hardware modeling
Java Comparison of MoCs

VHDL Assignments

SystemC

Verilog, SystemVerilog

SpeC

Levels of HW modeling
Language comparison

Figure 3: Transition from a focus on languages to a
focus on MoCs

StateCharts and SDL became examples of languages based

on finite state machines. Process networks were moved into
a section on data flow models. VHDL, Verilog, SystemC,
and SpeC are now covered in a section on discrete event
based languages. Java (as well as CSP and Ada) became
part of a section on von-Neumann languages. Message se-
quence charts were moved into a section on early design
phases. UML is now covered in two ways. First, it provides
examples of languages useful during early phases. Second, in
a comparison of the different MoCs, we analyze the MoCs
available in UML. This approach simplifies understanding
the capabilities and limitations of UML. We believe that,
with the new approach, it became easier to understand the
similarities of languages such as VHDL, Verilog, SystemC,
and SpecC. The same applies to imperative languages such
as Java, CSP and Ada.

A table was been introduced in order to structure the
presentation of models of computation (see table 1).

Communic./ | Shared Message passing
Organiz. of | memory synchronous | asynchronous
components
Undefined Plain text or graphics, use cases
components (Message) sequence charts
Communi- StateCharts SDL
cating finite
state ma-
chines
Data flow (not use- Kahn
ful) process

net-

works,

SDF
Petri nets C/E nets, P/T nets, ...
Discrete VHDL, (Only experimental systems)
event (DE) | Verilog (Distributed DE in Ptolemy)
model® SystemC
Von- C, C++, C, C++, Java with libraries
Neumann Java CSP, ADA
model

Table 1: Overview of MoCs and languages consid-
ered

Furthermore, we took into account that specification lan-
guages are required beyond the initial specification. There-
fore, the chapter now also refers to modeling. The idea is
that any type of modeling, regardless of where it is used in
the design process, is covered in the chapter.

3.4 Extension of the chapter on embedded sys-
tem hardware

Embedded hardware was already covered in the first edi-
tion of the book. However, we found that key knowledge
was frequently lacking among students, especially computer
science students. Therefore, this chapter was significantly
extended in the new edition.

First of all, the impact of timing predictability and energy-
efficient designs is now given more attention in general. There-

IThe classification of VHDL, Verilog and SystemC is based
on the implementation of these languages in simulators.
Message passing can be modeled in these languages “on top”
of the simulation kernel.

fore, the impact of the need for power-efficient and timing-
predictable designs is now frequently referred to in the text.

Another extension concerns the modeling of signals. Com-
puter science students are typically unaware of digital signal
processing. Therefore, the basic terms and definitions are
now included in the book. Signals are defined as mappings
from a time domain to a value domain.

Fig. 4 contains the hardware-related content which we
consider being an essential part of any embedded system
curriculum.

Introduction
Input
Sensors
Discretization of time
Discretization of values
Processing units
ASICs
Processors
Reconfigurable logic
Memories
Communication

Guaranteeing real-time behaviour
Output

D/A-converters

Sampling theorem

Actuators
Secure hardware
Assignments

Figure 4: Hardware-related content

Our hardware-related content now includes a more de-
tailed discussion of the conversion between analog and dig-
ital signals, partially due to the reference to cyber-physical
systems. The first set of extensions concerns discretiza-
tion and the sampling theorem (including A/D- and D/A-
converters). It turned out that students had problems un-
derstanding simple circuits. Many of the discussions evolved
along attempts to explain the behavior of circuits. We found
that it became necessary to “remind” CS students of Kirch-
hoff’s laws. A special appendix was added for this pur-
pose. Also, understanding D/A-converters requires an un-
derstanding of op-amps. A short description (2.5 pages) of
the relevant properties of op-amps was also added to the ap-
pendix. In this way, we used the appendix to ensure that stu-
dents are aware of prerequisites which we found frequently
lacking. We found that the level of detail that was added is
absolutely sufficient.

Also, we found it very important that students under-
stand limitations of the conversion from the digital domain
back into the analog domain. However, a comprehensive
presentation of this topic would require a detailed explana-
tion of sampling theory, using Fourier transforms. This was
clearly beyond the material which we wanted to include in
a general embedded systems course. So, we were faced with
the problem of developing a “short” introduction to sam-
pling theory. We decided to use a special approach in which
Fourier decomposition is explained with examples. Then,
the restriction to linear systems is employed to motivate

the independent consideration of each of the wave forms.
Finally, it is explained how analog signals can be recovered
from the digital samples and which limitations exist for such
a recovery. Fig. 5 demonstrates the resulting difference be-
tween the original signal and the analog signal reconstructed
from digital sequence values.

15

Figure 5: original (solid), at D/A output (dashed),
reconstructed analog (dotted)

The essential limitations such as quantization noise, im-
perfect filters, and knowledge of only a finite segment of
the signal, can be easily motivated with this approach. For
example, fig. 5 assumes sampling at integer times. Due to
quantization noise, original and reconstructed signal differ
at times ¢ =1, 3, 5, and 7, whereas the original signal can
be exactly represented at times ¢ =0, 2, 4, 6, and 8.

For communication, emphasis is on the real-time behavior.
We believe that the need to guarantee real-time behavior is
a key difference between general and embedded computing.

Our content includes a brief section on secure hardware.
This section allows a more detailed coverage of the topic to
be linked to our structure.

3.5 Redesign of the chapter on operating sys-
tems

The first edition of the book contained a chapter on em-
bedded and real-time operating systems, real-time schedul-
ing and a brief subsection on real-time data bases. Since
the writing of the first edition, middleware gained increased
interest. Moreover, we saw scheduling as a special case of
mapping applications to execution platforms.

Therefore, this chapter was completely reorganized. The
chapter was renamed into a chapter on system software.
Middleware and real-time data bases are now very natural
elements in the reorganized chapter. Resource access pro-
tocols such as the priority inheritance protocol remain an
appropriate topic to be discussed in the context of operating
systems. However, general real-time scheduling was moved
into the chapter on the mapping of applications to execution
platforms (see below). Fig. 6 describes the suggested system
software related content.

The need for customizing embedded operating systems
was emphasized and a brief subsection on virtualization was
added.

The section on hardware abstraction layers is new and

Embedded operating systems
General requirements (e.g. configurability)
Real-time operating systems
Virtual machines
Resource access protocols
Example of an embedded operating system
Hardware abstraction layers
Middleware
Real-time data bases
Assignments

Figure 6: Operating system related content

the description of middleware has been extended, due to the
increasing importance of communication middleware.

The section on real-time data bases is short. Its main
purpose is to link a possible more detailed coverage of the
topic to the suggested standard curriculum.

3.6 New chapter on evaluation and validation

In the original book, evaluation and validation were a mi-
nor topic. One of the reasons was the fact that the state of
the art concerning the evaluation of embedded systems was
still immature. In the mean-time, several evaluation tech-
niques have been proposed. These techniques are considered
to belong to the essential curriculum for embedded system
design. Therefore, they are now included. The contents of
this chapter are listed in fig. 7.

Introduction
Scope
Multi-objective optimization
Relevant objectives
Performance evaluation
Early phases
WCET estimation
Real-time calculus
Energy and power models
Thermal models
Risk— and dependability analysis
Simulation
Rapid prototyping and emulation
Formal verification
Assignments

Figure 7: Contents concerning evaluation and vali-
dation

The need of considering several objectives for an evalua-
tion of embedded systems has become more obvious. There-
fore, the fundamentals of multi-objective design and Pareto-
optimality are now given more room.

Regarding particular objectives, worst-case execution ti-
mes (WCETSs) are now given more emphasis. Their safe
computation has become more mature. The technique pro-
posed by R. Wilhelm et al. [24] as incorporated into the
aiT timing analyzer is a standard reference. Implicit path
enumeration evolved as a technique capable of avoiding the
complexity of complete path enumeration.

Also considering worst-case delays, L. Thiele’s real-time

calculus (see, for example, [20]) is now regarded as a kind of
basic calculus for evaluating real-time designs. The essence
of this calculus should be known by everyone working in the
area. It is therefore now included.

Reliability is another objective which is now covered in
more detail in this chapter. This is motivated by the trend
toward circuits which are inherently including faults, as pre-
dicted by the ITRS road map [7].

Brief sections on energy, power and thermal modeling have
been added as well. We assume that these sections will be
extended in future editions, as these issues are of increasing
importance.

Formal verification is covered only briefly. This section
puts formal verification into perspective and allows presen-
ters to link this topic to the other topics.

3.7 New chapter on the mapping of applica-
tions to execution platforms

In embedded system design, the use of more or less stan-
dardized execution platforms is becoming more widespread.
The increasing cost of semiconductor fabrication is one of the
reasons for this. Therefore we came to the conclusion, that
the mapping of applications to execution platforms should
be given more emphasis. This is also in-line with the intro-
duction of the new series of workshops on the mapping of
applications to MPSoCs (see [16] for the most recent work-
shop). In the first edition of the book, the mapping of ap-
plications was included in a general chapter of implement-
ing embedded system designs. We decided to distinguish
between general mapping techniques and examples of op-
timization techniques. General mapping techniques are in-
cluded in the content listed in fig. 8.

Scheduling in real-time systems
Aperiodic and periodic scheduling,
without and with precedence constraints
Hardware/software partitioning
Mapping to heterogeneous multi—-processors
Assignments

Figure 8: Mapping-related content

We consider standard scheduling techniques to be a special
case of mapping techniques. They are mostly designed for
single-processor or homogeneous multi-processor systems.
For tasks with precedence constraints, we include techniques
from high-level synthesis. Hardware/software partitioning
algorithms consider heterogeneous systems, but usually they
do not exploit global knowledge about schedulability. New,
dedicated algorithms have been developed for the mapping
to heterogeneous processors (e.g., DOL [21]). A survey of
such algorithms is now included.

3.8 New chapter on optimizations

Optimization techniques were moved into a separate chap-
ter further towards the end of the book. This way, their cov-
erage becomes somewhat more optional and can be skipped
if not enough time is available. This positioning of this mate-
rial is motivated by the observation that we are seeing an in-
creasing number of optimizations. Therefore, only examples
can be covered. A comprehensive overview of optimizations
for embedded systems design is neither feasible nor appro-

priate. Fig. 9 includes the list of exemplary optimizations
which we have included in our book.

Task level concurrency management
High-level optimizations

Compilers for embedded systems

Power management and thermal management
Assignments

Figure 9: Exemplary coverage of optimizations

The new chapter is supplemented by a new appendix on
integer linear programming. We found that many students
are unaware of this technique and that a minimum knowl-
edge regarding this technique is required for many optimiza-
tions and also for implicit path enumeration as covered in
the discussion on computing worst case execution times.

3.9 Separate chapter on testing

Testing was moved out of the chapter on validation, since
validation is now covered together with evaluation. A sepa-
rate chapter on testing reflects the fact that testing is typi-
cally done as a separate step after the design has been com-
pleted. However, it would also make sense to include testa-
bility evaluation in the chapter on evaluation and validation.
Torn between an inclusion in that chapter and making the
topic a separate chapter, we have finally chosen the second
approach. Reasons include the risk of overloading the chap-
ter on evaluation and validation too much, the need to skip
this topic in shorter courses and the lack of integrated test-
ing in industrial practices. Fig. 10 structures those topics
which we would like to include in a standard coverage of
embedded system fundamentals.

Test procedures
Test pattern generation
Self-test programs
Evaluation of test patterns and system robustness
Fault coverage
Fault simulation
Fault injection
Design for testability
Scan design
Signature analysis
Pseudo-random test pattern generation
The built=in logic block observer (BILBO)
Assignments

Figure 10: Test-related content

We observed that the topics covered in this chapter are
frequently referred to in conference talks and that students
working on embedded systems should therefore be aware of
them. Briefly covering these topics seems to be sufficient.
A more detailed discussion would be nice to have, but com-
puter science curricula as well as other curricula frequently
do not include a standard course on the topic.

3.10 Other extensions

The design of embedded systems involves many dynamic
behaviors. Such dynamic behaviors are sometimes diffi-

cult to understand without any visualization. Therefore,
the LEVI simulation software was developed. LEVI allows
the visualization of time-distance charts, Kahn process net-
works, the FlexRay™™ protocol, and real-time scheduling.
References to LEVI have been integrated into the book where
appropriate. As an example, fig. 11 shows a screen shot of
the FlexRay™™ simulation tool®. Boxes in the lower part of
the window demonstrate how messages are transmitted over
the two buses.

MacroTick: 25 |Cycle: 7 |Siots; A5 /BT, Nogesie | — | =

Figure 11: Screen shot from FlexRay’™ simulation
tool

The first edition did not include any assignments. We
believed that the situation would be too dynamic and that
assignments available in the internet would be more appro-
priate. In the mean-time, the situation became more stable
and it is therefore possible to include assignments in the
book itself.

Due to the increased level of maturity, it became now pos-
sible to tape the lectures. Recorded lectures are now avail-
able on the internet [17]. Fig. 12 demonstrates the approach
taken for the videos®.

roe = L512 = DAES = Staff » Peter Marwede! » Embedded System Text Book = ES Videos » videosrv.php

re 19: M of Applications to Platforms |
mbedded System Dasign” by Pster Marwedel, University of Dortmund

't- technische universitat f' fakultat for
J dortmund ! L informatik

» Mapping of
Applications to
Platforms

Peter Marwedel
TU Dortmund, Informatik 12
Germany

20105 07 A 07 B et

Copyright 2011 Peter Marwedel

Figure 12: Screen shot from recorded lecture video

The focus is on a high resolution capture of the entire
video stream available at the presentation laptop. All an-
imations, simulations, and cursor movements are recorded.

2Will be shown in the presentation
3Will be shown in the presentation

The presenter is just shown in a small window which is kept
empty on the slides.

3.11 Topics which have been dropped

Specific tool flows included in the first edition have been
dropped, since we came to the conclusion that they do not
need to be included in a standard curriculum. Their appli-
cation range is too limited and they may have become ob-
solete. In particular, the descriptions of the Cosyma design
flow [19] and the Octopus design flow [1] have been dropped.
The SpecC design flow is listed only as an example of a flow
which is compatible with our generic flow.

4. EVALUATION

The book became available during the course that was
held in German during the winter of 2010/2011. Many of
the students preferred to follow the German translation of
the first edition instead of switching to the English second
edition. Once again, this demonstrates that there is a mar-
ket for local language translations, despite the wide-spread
use of English for publications and for course slides. A Ger-
man translation of the second edition will become available
during the fall of 2011.

The first English course using the new edition was held in
the summer of 2011. 26 students participated in the course.
Unfortunately, only two of them responded to the request
for comments on the book. Both suggested to include more
material on the programming of embedded systems, in par-
ticular on programming robots. It is difficult to follow this
recommendation. Only a very limited number of lab hours
is available (about 12 weeks of 90 mins. each). These labs
are intended to be used for discussions of concepts and to
teach practical skills. Additional emphasis on programming
would reduce the time available for concepts. Unfortunately,
increasing the weight of the course in the CS curriculum is
not an option.

Other comments have been received by colleagues. In one
case, the book was considered to be very useful, but the
inclusion of an introduction to evolutionary algorithms was
suggested. Initially, the plan was to include such an intro-
duction as an appendix, next to the introduction to integer
linear programming. However, we came to the conclusion
that a serious introduction would require quite some space
and it would be essentially identical to one of the stan-
dard introductions to evolutionary algorithms. This plan
was therefore dropped.

In another case, a colleague is recommending the book for
his course on embedded systems. This colleague reported
that he is always tempted to go more into details about the
material that is covered and to provide more background.
Indeed, it would be nice if the material could be covered
in more detail. However, the material currently included in
the book fills our course up the maximum. We have to ac-
cept that a course on the fundamentals of embedded system
design cannot cover more that what is currently included.

A quick walk through the book has also been selected as
the first part of a summer school on embedded systems [2].
At the summer school, advanced topics are linked to this
first part (see fig. 13). This selection confirms the view of
the book as a source for the fundamental knowledge required
for any advanced work on embedded systems.

Three comments about the first edition of the book ap-
ply to the second edition as well: there seem to be several

Real-Time Communication mm Control for

in Embedded Systems Embedded Systems

N 7

Embedded System Foundations

of Cyber—Physical Systems

L N\

Validation, Synthesis and
Performance Evaluation of
Embedded Systems

Platform—Based Design:
From Multi-Core Platforms

to Biochips and beyond m

Figure 13: Linking advanced topics to the contents
of our embedded systems book

universities, for which the basic education in the computer
science program is insufficient for students to understand
the book. In such cases, an additional course on computer
organization (or similar) needs to be introduced in order to
enable the comprehension of the text book.

E. Lee mentions the second edition as one of the few books
covering the principles of embedded system design [13]. In
still another case, a strong demand for copies of the book
was reported. Obviously, plans are under way to include the
topics of the book in the standard curriculum of several uni-
versities. Plans for translation into various languages such
as German, Greek and Portuguese can be seen as an indi-
cation of meeting the needs of universities throughout the
world for a text book in the topic.

5. CONCLUSION

From our point of view, the second edition of the text book
“Embedded systems design” is a big step forward, enabling
the easy integration of a course on the subject into computer
science and computer engineering curricula.

The authors acknowledge the partial support of this work
via the “Ruhr Campus Online” initiative as well as via the
funding of the ArtistDesign network of excellence by the
Commission of the European Communities.

6. REFERENCES

[1] M. Awad, J. Kuusela, and J. Ziegler. Object-Oriented
Technology for Real-Time Systems. Prentice Hall,
1996.

[2] B. Bouyssounouse. Schedule of the ARTIST summer
school in china. http:// www.artist-embedded.org/
artist/ Schedule, 2321.html, 2011.

[3] G.C. Buttazzo. Hard Real-time computing systems.
Kluwer Academic Publishers, 4th printing, 2002.

[4] P. Caspi, A. Sangiovanni-Vincentelli, L. Almeida,

A. Benviste, B. Bouyssounouse, G. Buttazzo,

I. Crnkovic, W. Damm, J. Engblom, G. Fohler,

M. Garcia-Valls, H. Kopetz, Y. Lakhnech,

F. Laroussinie, L. Lavagno, G. Lipari, F. Maraninchi,
Ph. Peti, J. de la Puente, N. Scaife, J. Sifakis, R. De
Simone, P. Verissimo M. Torngren and, A. J. Wellings,
R. Wilhelm, T. Willemse, and W. Yi. Guidelines for a
graduate curriculum on embedded software and
systems. ACM Transactions on Embedded Computing
Systems (TECS), pages 587—611, 2005.

[5]

(6]

7]

[13]

[14]

[15]

[16]

[17]

[18]

[23]

[24]

[25]

Stephen A Edwards. Languages for digital systems.
Kluwer Academic Publishers, 2000.

Daniel. D Gajski, Samar Abdi, Andreas Gerstlauer,
and Gunar Schirner. Embedded System Design.
Springer, Heidelberg, 2009.

ITRS Organization. International technology roadmap
for semiconductors (ITRS). http:// public.itrs.net,
2009.

A. Jantsch. Modeling Embedded Systems and SoC’s:
Concurrency and Time in Models of Computation.
Morgan Kaufmann, 2004.

H. Kopetz. Real-Time Systems —Design Principles for
Distributed Embedded Applications— Kluwer Academic
Publishers, 1997.

H. Kopetz. Real-Time Systems: Design Principles for
Distributed Embedded Applications. Springer, 2011.
C.M. Krishna and K. G. Shin. Real-Time Systems.
McGraw-Hill, Computer Science Series, 1997.
Edward A. Lee. The future of embedded software.
ARTEMIS Conference, Graz,

http: // ptolemy. eecs. berkeley. edu/ presentations/ 06/
FutureOf EmbeddedSoftware_Lee_Graz.ppt, 2006.
Edward A. Lee and Sanjit A. Seshia. Introduction to
embedded systems, a cyber-physical systems approach.
http:// LeeSeshia.org, ISBN 978-0-557-70857-4, 2011.
Jane W.S. Liu. Real-Time Systems. Prentice Hall,
2000.

P. Marwedel. Towards laying common grounds for
embedded system design education. ACM SIGBED
Review, pages 25-28, 2005.

P. Marwedel. 4th workshop on mapping of
applications to MPSoCs. http: // www.artist-embedded.
org/ artist/ Program, 2298.html, 2011.

P. Marwedel. Home page for the book “embedded
system design”. hittp:

// 1s12-www. cs.tu-dortmund.de/ “marwedel/ es-book/ ,
2011.

P. Marwedel, J. Jackson, and K. Ricks. Workshop on
embedded system education. http:

// www.artist-embedded.org/ artist/ WESE-10.html,
2010.

Achim Osterling, Thomas Benner, Rolf Ernst, Dirk
Herrmann, Thomas Scholz, and Wei Ye. The
COSYMA system. http://www.ida.ing.tu-bs.de/
research/ projects/ cosyma/ overview,/ nodel.html,
1997.

L. Thiele. Performance analysis of distributed
embedded systems. In: R. Zurawski (Ed.): Embedded
Systems Handbook, CRC Press, 2006.

Thiele, L. et al. SHAPES TIK.

http: // www.tik.ee.ethz.ch/ “shapes/ dol.html, 2009.
Shiao-Li Tsao, Tai-Yi Huang, and Chung-Ta King.
The development and deployment of embedded
software curricula in taiwan. SIGBED Rev., 4:64—72,
January 2007.

F. Vahid. Embedded System Design. John Wiley&
Sons, 2002.

R. Wilhelm. Determining bounds on execution times.
In: R. Zurawski (Ed.): Embedded Systems Handbook,
CRC Press, 2006.

W. Wolf. Computers as Components. Morgan

Kaufmann Publishers, 2001.
[26] R. Zurawski, editor. Embedded Systems Handbook.
CRC Press, 2006.

