
Unreliable yet Useful – Reliability Annotations for Data in
Cyber-Physical Systems

Michael Engel, Florian Schmoll, Andreas Heinig, and Peter Marwedel
Design Automation for Embedded Systems

Faculty of Computer Science
TU Dortmund, Germany

Email: {firstname.lastname}@tu-dortmund.de

Abstract: Today, cyber-physical systems face yet another challenge in addition to
the traditional constraints in energy, computing power, or memory. Shrinking semi-
conductor structure sizes and supply voltages imply that the number of errors that
manifest themselves in a system will rise significantly. Most cyber-physical systems
have to survive errors, but many systems do not have sufficient resources to correct all
errors that show up. Thus, it is important to spend the available resources on handling
errors with the most critical impact.

We propose an “unreliability” annotation for data types in C programs that indi-
cates if an error showing up in a specific variable or data structure will possibly cause
a severe problem like a program crash or might only show rather negligible effects,
e.g., a discolored pixel in video decoding. This classification of data is supported by
static analysis methods that verify if the value contained in a variable marked as un-
reliable does not end up as part of a critical operation, e.g., an array index or loop
termination condition. This classification enables several approaches to flexible error
handling. For example, a cyber-physical system designer might choose to selectively
safeguard variables marked as reliable or to employ memories with different reliability
properties to store the respective values.

1 Introduction

Ongoing advances in fabrication technology and new demands on energy conservation re-
quire the use of continually shrinking semiconductor sizes and supply voltages in proces-
sors, peripherals, and memories for cyber-physical systems. These reductions, however,
also bring along some undesirable consequences. The most dire consequence is that the
number of transient faults, caused by natural radioactive decay, cosmic particles like neu-
trons, or disturbance in supply voltages, will be increasing significantly, as predicted by
the International Technology Roadmap for Semiconductors [ITR].

The common approach to build systems tolerant to transient faults is to introduce some sort
of redundancy into a system, like additional Error Check and Correction (ECC) bits and
control logic safeguarding main memory, register, or cache contents, or Triple Modular

This work is supported by the DFG Priority Program SPP1500 under grant no MA943/10-1

Redundancy (TMR), which triplicates all code execution in a system and uses a voting
mechanism to detect incorrectly calculated results.

Cyber-physical systems, however, often cannot afford to spend too many resources on
redundancy. Consequently, typical cyber-physical systems will be victim to an increased
rate of system failures. A novel approach is thus required to increase the likelihood that a
system survives the effects of a transient fault.

Our resource-conserving approach to fault tolerance applies a classification to the occuring
faults in order to assess the worst possible outcome of a fault. For faults affecting main
memory, we have already applied this method successfully to an H.264 video decoder
[HESM10b]. In this application, certain faults lead to insignificant effects like a discolored
pixel on the screen or even no effect at all, while other faults may cause the application to
crash or cause severe image distortions. Accordingly, priority is given to the correction of
errors with the most significant impact.

However, it is still an open question which information should be provided to a system
in order to support the classification. One possible approach is to selectively correct er-
rors only in certain code sections (e.g., specific functions) of an application [HESM10a].
However, certain pieces of data traverse through multiple functions of an application. A
fault affecting the integrity of this data in any location in the related code flow might have
a fatal consequence, since, e.g., this data finally will end up being added to a base pointer.
An incorrect value added to a pointer may lead to any number of undesirable fatal con-
sequences from overwriting some unrelated value in memory to accessing an unmapped
region of memory, possibly leading to a system crash.

Thus, in this paper we propose an approach to annotate requirements to variables and data
structures in an application using reliable and unreliable identifiers. Unexpected modifica-
tions of variable values marked as reliable may possibly have dire consequences, whereas
transient faults affecting an unreliable variable will only have minor consequences. To
apply such a classification, a large amount of application knowledge is required (typically
provided by the application’s developers), since it must be known where a value might
end up while considering possible side-effects. However, not all of this required applica-
tion knowledge is readily available to create classification annotations that mark a specific
variable as reliable or unreliable. Thus, we propose an aid for the annotation process that
applies static analysis methods to the source code to identify candidates that might be
marked as unreliable.

The rest of this paper is organized as follows. Section 2 describes the idea behind reliabil-
ity annotations, followed by a discussion of applicable data flow analyses to support the
annotations in section 3. Section 4 describes our first prototypical implementation and an
evaluation based on a JPEG image decoder. Section 5 discusses related work, and section
6 concludes the paper and gives an outlook to future work.

2 Reliability Annotations

In traditional fault-tolerant systems, every error showing up is handled in the same way,
i.e., there is no distinction between errors according to their impact. In many cyber-
physical systems, however, providing methods to correct every error will exceed the avail-
able resources. For example, in a real-time system, applying error correction might violate
the timing constraints if a processor is used that is just fast enough to handle the task.
Thus, conventional fault-tolerant systems are often rather overspecified.

If a sufficient amount of resources is not available, a system should at least provide a
best-effort approach to handle errors. In practice, this means that the most critical errors
showing up in a system, like program crashes, should be corrected while errors with a
less significant impact, like a pixel of a wrong color that is displayed on the screen of a
video player, will be ignored. Obviously, the definition of a critical error is application-
dependent. A green instead of a red pixel in a video frame will in most cases not be
perceived, whereas a green instead of a red light shown on traffic lights can have more
dire consequences. Thus, in order to distinguish between critical and less critical errors,
application knowledge has to be provided in the form of annotations. This knowledge is
then used to provide a classification of faults according to their impact.

In the following sections, we describe an approach that provides annotations that indicate
if the data contained in a variable or data structure is expected to be reliable – i.e., faults
in the specific item cannot be tolerated – or unreliable, indicating that a modification to
that specific item will have non-fatal consequences.

2.1 Reliability-aware Data Types

We propose to provide the annotations in the form of a type qualifier that explicitly ex-
presses reliability requirements. These requirements can on the one hand express that a
piece of data is critical for the dependability of a system, thus the demand for reliability
has to be marked using a reliable qualifier (e.g., a reliable int).

On the other hand, to reduce the resource requirements of error handling, it is desirable to
explicitly mark data that only cause minor disturbance in case of a transient fault using the
unreliable qualifier. If a fault affects a data item marked as unreliable, error correction is
not required. Nevertheless, if sufficient resources are available, an error in such a piece of
data may be corrected in order to improve a system’s quality of service. In the absence of
errors, data marked as unreliable behaves like the regular, non-qualified data type.

2.2 Type Synthesis for Reliability Annotations

Marking a variable or data structure as unreliable alone is not sufficient to ensure that
unreliable data has no effect on pieces of code that may lead to critical errors. Thus, the
unreliability notion of a data element has to be propagated.

If an expression in a program’s source code contains at least one unreliable data type, the
complete expression is tainted. The result of such an expression may not be automati-
cally assigned to a reliable data type; instead, a compiler has to notify an error. Thus, an
expression like

unreliable int u; reliable int r; r = u + 2;

will cause a compiler error, whereas

unreliable int u; reliable int r; u = r + 2;

is a legal construct.

2.3 Assigning Unreliable Data

In some cases it may actually be desirable to assign the result of an operation containing
an unreliable data type to a reliable data element. If required, this – potentially dangerous
– assignment can be realized by using an explicit typecast to a reliable data type, such as:

unreliable int u; reliable int r; r = (reliable int)(u + 2);

Using this type cast, the programmer explicitly acknowledges that precision may be lost
in this assignment.

2.4 Unannotated Data

If every piece of data in use by an application would have to be annotated, the over-
head for the developer would be significant. However, it is not obvious how to handle
non-annotated data in case of a fault. In fact, this behavior should be selectable by the
developer.

2.5 Application of Annotations

Providing the annotations is only the first step to support a flexible, classification-based
approach to error handling. Additionally, the system developers have to provide a separate

implementation for the annotation-based fault tolerance. In this paragraph, we describe
several possible approaches to fault-tolerance methods that can profit from reliability an-
notations. We expect that several of these approaches have to be combined in order to
create a consistently reliable system.

Memory hierarchy In a system using several types of memory (e.g., caches, scratchpads
and regular DRAM), like shown in Figure 1, a system designer may decide to selectively
protect certain elements of this memory hierarchy. One example for this would be a system
using an ECC-protected scratch pad memory, whereas for cost reasons, the larger main
memory is unprotected against transient memory faults.

CPU
Memory
Range

1

Memory
Range

2

ECC reliable

unreliable

Figure 1: Memories with different reliability

According to the annotations, the compiler is instructed to place reliable and unreliable
data in different sections. An appropriate linker script can then take care of mapping reli-
able data objects to an ECC-protected memory space, whereas objects marked unreliable
will be mapped to non-protected memory.

This approach, however, will only work for global objects without extensive modifications
of the compiler’s memory management. Since function-local variables are expected to re-
side in contiguous regions on the system’s stack, the stack will have to reside in reliable
memory. A multi-stack setup could enable a compiler to allocate local data marked as un-
reliable on a separate stack in unprotected memory. However, such a setup would require
considerable changes to the compiler backend and ABI for the target system. A similar
approach has been proposed in [YPPJ06] to protect a system against buffer overflows.

In addition, this solution will only protect data from faults in main memory. To build
a comprehensive fault-protection solution, additional parts of the system’s memory, like
registers and caches, would need to be protected against transient faults.

Mapping to multicores In multicore systems, a parallelizable application is usually
mapped to the available cores in order to speed up its average or worst case execution
time. A multicore system may, however, also contain cores with different reliabilities –
e.g., some cores might be running on lower supply voltages in order to conserve energy
and are, thus, more susceptible to transient faults. Using a parallelization approach driven
by reliability annotations, pieces of code operating on unreliable variables only could be

explicitly mapped to unreliable cores, thus improving the overall reliability of the applica-
tion.

A similar mapping approach on a task level, providing certain tasks of a system with dual
modular redundancy, whereas other high-performance tasks run without redundancy, was
proposed in [WCS09]. However, that system only provided task-level granularity, which
may be too coarse-grained for our approach.

Redundant execution Yet another way to reduce the overhead of fault-tolerance meth-
ods is selective redundant execution. Systems performing redundant executions perform
the same operation multiple times, often using different hardware resources, e.g., differ-
ent source and destination registers. The results obtained are compared to each other; if
the results differ, the operation is considered to be affected by a (transient or permanent)
fault and the redundant execution is repeated. One example for a system implementing
redundant execution is the SWIFT system [RCV+05].

Using reliability annotations, obviously, redundant execution is only required for sections
of code that handle data annotated as reliable or unannotated data, if data without annota-
tions are interpreted as reliable. Thus, the overhead in execution time caused by redundant
execution only affects a fraction of the overall code base; consequently, the system will be
able to fulfill real-time tasks with a reduced processing speed, which in turn will reduce
the energy consumption of a system.

3 Static Analysis

The use of static analysis methods for the type annotation approach is recommended for
two reasons: On the one hand, semantic analysis [ALSU07], including type synthesis and
checking, is essential for valid programs. Any operation on an object with unreliable type
will lead to a result that has to be considered unreliable as well. Consequently, a result can
only be reliable if all operations and operands are reliable. Thus, semantic analysis has to
check at compile time whether the data type annotations are used consistently according
to this rule.

Additionally, certain operations are critical and require reliable execution, since the use
of incorrect results may lead to irreversible consequences like a system crash. For exam-
ple, objects with an unreliable data type must not be used in address calculations. These
constraints can be verified with semantic analysis at compile time and mistakes by the
application’s developers can be prevented before they can have any effect.

On the other hand, considering all the above mentioned constraints, it may be difficult for
the application developers to decide which data objects could be assigned an unreliable
type and which data objects must not. Here, static data flow analysis could make sug-
gestions which data objects may have an unreliable type. Of course, the creation of data
annotations cannot be automated completely, since this would require application knowl-
edge that cannot be extracted from the source code by analysis tools. However, the analysis

can provide valuable hints to application developers who finally assign annotations to a set
of data objects from the candidates proposed by the analysis.

3.1 Semantic analysis

Semantic analysis is a common phase in most compilers, especially in compilers for the
language C. In this phase, the compiler checks the semantic constraints given by the lan-
guage specification. This includes type synthesis and type checks.

During type synthesis, the data type of expressions is calculated from the types of the
subexpressions or data objects the expression is composed of. Afterwards, the compiler
checks whether the types of the expressions are consistent with the requirements given by
the language specification. Depending on the use of an expression, it may have to have a
certain type, e.g., an array index shall be of integer type.

Since we propose the introduction of an unreliability annotation for data types, the type
synthesis and the type checks performed by the semantic analysis have to be extended.
In the remainder or this section, we describe the rules that specify the use of this new
annotation.

3.1.1 Type synthesis

In general, we cannot decide whether a data object with unreliable type has its expected
correct value or whether its value has already been changed by a transient fault. Thus, we
always have to assume that a data object with unreliable type may have an incorrect value.
When this data object is used in a computation, like shown in Figure 2(a), the effect will
propagate to the result.

The propagation is illustrated in Figure 2. Here, the abstract syntax tree of the expression
on the left hand side is shown. Since the data type of u is unreliable, the result of the
addition has to be considered unreliable as well. Since the result of the addition is used for
the multiplication, the result of the multiplication may be inexact as well. This continues
until the root of the syntax tree is reached.

As a consequence, the type of an expression is unreliable, if at least one of its subexpres-
sions1 has unreliable type. Hence, whether the type of an expression is unreliable, can be
calculated on the basis of the abstract syntax tree (AST) in a bottom-up approach. Every
child node transmits an unreliable annotation to its parent in the AST. Finally, the result of
the expression has to be considered as unreliable, if the root node has unreliable type.

There is only one exception from that transmit-rule. We allow the use of explicit C-like
casts. Application developers can use casts to convert the unreliable data type of an object
to a reliable one. Hence, such a cast will block the transmission of the unreliable annotation
to the parent node in the AST. This enables the use of an unreliable data object, where a
reliable data object is required by the language specification. The value of variable u in

1We also consider the use of a data object as a simple expression.

unreliable int u, x;
reliable int y, z;
...
x = y - (z + u) * 4

(a) Assignment

=

x -

y *

+

z u

4

(b) Abstract syntax tree

Figure 2: Propagation of the unreliable attribute

unreliable int u, z, values[16];
reliable int r;
...
r = (reliable int) u;
if (r < 0) || (16 <= r)
// Value of r is outside the valid range.
// Replace its value by a default value
// and avoid expensive error correction.
r = 7;

z = values[r];

Figure 3: Code example

Figure 3, for example, that may be affected by a transient fault is used after a range check
has approved that its value is within a valid range. Despite the cast from the unreliable
variable u, r is considered as a reliable variable by the analysis and can be used as an
index whose possible values must match the array size. Since z is a variable of type
unreliable int, the application developer may decide that an inexact array index
may be tolerable here. The result of the indexing operation would even be considered as
reliable by the analysis, if values was an array of reliable int, because the resulting
type depends only on the base type of the array.

3.1.2 Type checking

The intention of semantic rules is not to restrict the possibilities of an application devel-
oper or to complicate the use of the programming language. Instead, they should exclude
senseless constructs and reduce the risks of bugs.

According to this aim, we restrict the use of unreliable data objects to avoid the uninten-
tional propagation of faults in an application by corruption of reliable data objects. Hence,
the value of an unreliable data object shall not be assigned to a data object with reliable
type. As shown in Figure 4, the assignment in line 4 can have fatal consequences. If u

unreliable int u, pos, tmp;
reliable int r, a[10];
u = 10;
r = u; // invalid assignment
pos = 0;
while (pos < r) // invalid condition
{
tmp = r / u; // invalid division
a[pos++] = tmp; // invalid memory access

}

Figure 4: Negative example

is affected by a fault, its value may be higher than 10. Hence, the while-loop will iterate
more than ten times and the content of a data object following array a in memory will be
overwritten. Finally, the data objects corrupted by the out-of-control memory accesses can
cause the application to crash, since, e.g., the value of a pointer has been changed and an
invalid memory address is accessed.

Nevertheless, application developers can express their conscious will to treat a possible
corrupted data object as reliable by using the cast operator as shown in Figure 3. The other
way round, it is always possible to assign the value of a reliable data object to an unreliable
data object without using a cast.

Also, the new semantic rules should inhibit the impact of uncorrected transient faults on
critical parts of an application. As critical parts we consider expressions like address
calculations, control-flow controlling conditions, and divisions.

Address calculations are critical, since an incorrect memory address will result in an ar-
bitrary change of the program state. Such a fault can only be corrected by returning to a
previously stored correct program state. Since the complete state has to be restored in this
case, a lot of effort is required. This is contrary to our resource-conservation objectives for
fault tolerant cyber-physical systems.

Transient faults may also affect the control flow of an application. Conditions that may
alter the control flow, like loop conditions, carry the risk of incurring significant changes
to the control flow. As a consequence, the program state may be corrupted, data may be
processed incorrectly or loops may repeat endlessly.

Also, certain arithmetic calculations may be affected. For example, in divisions, the divi-
sor must not equal zero. By not marking the divisor as unreliable, the risk of raising an
arithmetic exception can be reduced. Thus, the code shown in Figure 4 will be rejected by
the semantic analysis because of the invalid use of an unreliable data type in four spots.

3.2 Annotation hints

Annotating data types can be a considerable amount of work for large applications. Adding
an annotation to the type at a single declaration may require annotations of data types at
other declarations or may lead to a violation of the rules mentioned above. For an applica-
tion developer, such sequences may be unpredictable. As a consequence, the application’s
developer may repeatedly add and remove annotations in a trial-and-error manner until he
finds a valid annotation or he might even give up. Thus, it is desirable to use automated
tools to support application developers by providing annotation hints.

First of all, an automated tool could create annotations for all the data objects that have to
be reliable according to the rules described in section 3.1. Therefore, the tool would iterate
over all expressions in the source code. Whenever an expression is used in a context that
requires a data object with reliable type, such expression is marked as must reliable. As
an example, all expressions used for address calculations will be marked this way.

Following, in a second step all data objects that are used in computations for such ex-
pressions are marked as must reliable as well, since the result of an expression can only
be considered as reliable if all operations and operands are reliable. This step is repeated
until a fixed point is reached, i.e., no additional expression or data object has been marked
as must reliable in an interation.

Finally, the tool can generate explicit reliable annotations for those data objects that have
been marked as must reliable. It is obvious that the application developers can focus on
the annotation for the remaining data objects after this step.

Still, there may be data objects that have to be reliable even if the tool has not created an
annotation for them, since their meaning for the application cannot be inferred from the
source code alone. Certain data objects may have a major importance for the accuracy of
the results, like the luminance level for a video image. If this factor is affected by a tran-
sient fault, all images may appear entirely as black or white. The application developers
can refine the annotation by adding reliable annotations for data objects, where deviations
from exact values cannot be tolerated.

If the application developers were confident that they had not forgotten to annotate a data
object as reliable that must be corrected in case of a transient fault, unreliable data types
could be used for all remaining data objects. However, the developers might proceed in a
step-wise manner. First, they will annotate those data types with unreliable for which it is
obvious that lower reliability requirements are sufficient. Applying data flow analysis, a
tool can determine all expressions that are affected directly and indirectly by these changes.
Then, the application developers can inspect which expressions can become unreliable and
accept or discard the according changes.

The tool can also output suggestions to which objects the application developers might
add the unreliable annotation next. Candidates are data objects that are used for the com-
putation of the value of data objects with data having unreliable type. Of course, the tool
will not suggest data objects already annotated as reliable.

We believe that such a work flow will reduce the work load of application developers and
improve the utilization of our proposed annotations. Consequently, the efficiency of the
approach is increased and the effort that has to be spent for error correction can be reduced.

4 Prototypical Implementation and Evaluation

In order to assess the viability of our approach, we implemented a first prototype of
reliability-aware data types using a C preprocessor-based approach. We annotated some of
the variables used for calculations in an inverse discrete cosine transformation (IDCT) (see
Figure 5) as unreliable. All the other, unannotated variables were treated as reliable. Us-
ing preprocessor macros for reliable and unreliable annotations, we added a GCC-specific
storage segment attribute to all variables marked as unreliable.2 A modified linker script
was then used to map the section containing unreliable data to a separate memory range.

#define unreliable(type, #args) type, args \
__attribute__ ((section ("unreliabledata")));

unreliable(int x0, x1, x2, x3, x4, x5, x6, x7);

void njRowIDCT(int* blk) {
...
x0 = (blk[0] << 11) + 128;
x8 = W7 * (x4 + x5);
x4 = x8 + (W1 - W7) * x4;
x5 = x8 - (W1 + W7) * x5;
x8 = W3 * (x6 + x7);
x6 = x8 - (W3 - W5) * x6;
x7 = x8 - (W3 + W5) * x7;
x8 = x0 + x1;
x0 -= x1;
...

}

Figure 5: Excerpt from the JPEG decoder

In order to simulate faults, we reused the fault injection approach employed for our H.264
decoder study [HESM10a]. A thread running in parallel to the JPEG decoder determined
the memory start and end address of the unreliabledata section resp. the complete sections
of initialized (data) as well as uninitialized data (bss) and randomly3 inserted single-bit
faults into that memory range. Injecting faults only in unreliable data simulates ECC-
protection of all other memory regions.

2Due to the compiler modifications required, the attribute only works for global data.
3The injection target address and the bit affected by XOR were chosen using the Unix rand() function with

a random seed. The target address offset was restricted to the respective memory range using a modulo operation.

Fault injection
interval (µs) 10 20 40 60 80 100 200 400 600

Preliminary termination (number in 10,000 runs)
unreliable 0 0 0 0 0 0 0 0 0
data+bss 1994 2334 2291 1819 1316 495 15 1 0

Incorrect results (number in 10,000 runs)
unreliable 1154 1139 1013 719 537 395 365 242 205
data+bss 7928 7602 7625 7918 8050 8080 3811 2271 1308

Figure 6: Effects of simulated fault injection into unreliable data and data+bss

In order to evaluate the effectiveness of our approach, we compared the results to execu-
tions with errors injected all over the data+bss segment of the JPEG decoder. Since we
intend to catch the most critical errors, we counted the number of program crashes that oc-
cured. The injection experiments were performed on a single core of an eight-core Xeon
2.53 GHz Linux system.

These first simulation-based results, shown in Figure 6, already look very encouraging.
We ran each test 10,000 times on the same source JPEG image with fault injection in
data+bss or in data marked as unreliable only. In order to easily observe errors, we varied
the injection rate from one fault per ten microseconds up to one fault per millisecond.
Since the complete runtime of the JPEG decoder is only about 12 milliseconds on our
system, the results vary as expected.

We considered two parameters, the number of terminated decoding processes and the num-
ber of incorrectly decoded images after successful runs of the JPEG decoder. In all ex-
periments, restricting the fault injection only to unreliable data avoided all preliminary
terminations of the JPEG decoder. In contrast, injecting faults all over data+bss resulted
in termination rates of 5%–20%. Comparing the results, restricting the fault injection to
unreliable data reduced the number of incorrectly decoded images for the same injection
rate by up to a factor of 15.

5 Related Work

Semantic type qualifiers were first proposed by Chin et al. [CMM05]. In this paper, the
authors describe the use of user-defined type refinements to augment existing types in or-
der to statically ensure additional invariants. Some examples for these type refinements
include nonnull, nonzero, untainted, and unique refinements. In addition, the authors de-
veloped an extensible typechecker and a soundness checker to ensure the respective invari-
ants. The tainted annotation discussed in the paper is similar to our reliability annotation
– declaring a variable as untainted implies that a data flow resulting in values for that
variable may never encompass any values marked as tainted. Essentially, the taintedness
could also mark variables in unprotected memory, so this approach would also be useful
for implementing fault tolerance.

Classification of data to optimize systems according to given objectives is a relatively
new research topic. A recent publication by Sampson et al. [SDF+11] describes the use
of approximate data types in applications that are able to tolerate certain inaccuracies in
order to conserve energy. Similar to our approach, they propose the use of type qualifiers
to identify the precision requirements of a data element. However, the authors concentrate
on Java as implementation language, which restricts using the approach in small-scale
cyber-physical systems. While the authors achieved impressive results, potential savings
of 10%–50%, they do not consider implementing static analysis methods to verify the
correctness of the annotations. In addition, only probabilistic approaches (like we intend
to handle in a future project, see section 6) are considered; transient faults seem to be
outside the focus of the authors’ work.

Perry et al. [PMR+07] propose the use of typed assembly language to handle transient
faults. Their approach explicitly marks reliability-critical data in an assembly language
program and adds proactive replication when code handles that data. While this interesting
approach provides an effective method to handle extremely critical transient faults, the use
of assembly language seems exotic for most of today’s cyber-physical systems. However, a
low-level approach using typed assembly language might well complement our approach if
a suitable compiler backend that considers the reliability annotations would be developed.

Chalin describes the use of nonnull annotations in Java 5 [Cha06]. Intended as a tool for
improving software reliability, nonnull annotations are used in concert with static analysis
methods to ensure that null values are not used. In addition, that paper proposes an exten-
sion of the Java Modeling Language to support a default non-null semantics. Like several
earlier approaches, however, these annotations are used to ensure semantic program cor-
rectness but are not prepared to handle asynchronous unexpected errors.

6 Conclusions and Future Work

Our experiments show that using reliability annotations can reduce the error correction
overhead in a system while reducing the amount of redundancy that has to be introduced.
In this paper, we evaluated the effectiveness of our approach and were able to avoid all
crashes when restricting fault injection to variables manually identified as non reliability-
critical and annotated accordingly. However, we are aware that our concept is only the first
step in providing a flexible error handling approach based on reliability annotations.

The encouraging results of our first prototype will now have to be validated by imple-
menting the annotations in the context of a real compiler front end; in addition, the static
analysis methods described in section 3 have to be implemented in order to automatically
provide annotation hints. We will use the ICD-C framework [ICD] to perform code trans-
formations and static analyses. Further steps required are the extension of our mapping
approach to separate memories to local variables residing on the stack, which requires
extensive back end modifications. Future work will also include the application of reli-
ability annotations to multicore mapping, redundant code execution and possibly further
redundancy approaches.

We also intend to evaluate the applicability of our annotation approach to other areas
of reliability. One very promising technology is probabilistic computing. Here, specific
parts of system components, like the low-order bits of an adder [LLCB10] or a multiplier
[GMM+11], are supplied with reduced supply voltages in order to conserve energy. This
results in the generation of incorrect results from these components, since signal propaga-
tion speed is reduced. In the case of an adder, certain long carry chains are not propagated
in time, leading to a loss of precision.

Here, we intend to apply our classification and data annotation in a cooperation with
Nanyang Technological University, Singapore, which develops such probabilistic CMOS
(PCMOS) devices and error models. In contrast with the transient faults discussed in this
paper, it is well known which operations of a system will be affected by this probabilistic
behavior. As with transient faults, however, it is not generally predictable at which point
in time (i.e., which point in the execution of an application) an error might show up. The
implications for our reliability annotations will be interesting to explore.

References

[ALSU07] Alfred V. Aho, Monika S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Prin-
ciples, Techniques and Tools. Addison-Wesley, 2nd edition, 2007.

[Cha06] Patrice Chalin. Towards Support for Non-null Types and Non-null-by-default in Java.
In Proceedings of the 8th Workshop on Formal Techniques for Java-like Programs
(FTfJP’06), 2006.

[CMM05] Brian Chin, Shane Markstrum, and Todd Millstein. Semantic type qualifiers. In Pro-
ceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’05, pages 85–95, New York, NY, USA, 2005. ACM.

[GMM+11] Arjun Gupta, Vincent J. Mooney, Satyam Mandavalli, Keck-Voon Ling, Arindam
Basu, Henry Johan, and Budianto Tandianus. Low Power Probabilistic Floating Point
Multiplier Design. In Proceedings of ISVLSI 2011, Chennai, India, 2011.

[HESM10a] Andreas Heinig, Michael Engel, Florian Schmoll, and Peter Marwedel. Improving
Transient Memory Fault Resilience of an H.264 Decoder. In Proceedings of the Work-
shop on Embedded Systems for Real-time Multimedia (ESTIMedia 2010), Scottsdale,
AZ, USA, October 2010. IEEE Computer Society Press.

[HESM10b] Andreas Heinig, Michael Engel, Florian Schmoll, and Peter Marwedel. Using Ap-
plication Knowledge to Improve Embedded Systems Dependability. In Proceedings
of the Workshop on Hot Topics in System Dependability (HotDep 2010), Vancouver,
Canada, October 2010. USENIX Association.

[ICD] ICD e.V. The ICD-C Compiler Framework, http://www.icd.de/es/.

[ITR] ITRS. Intl. Technology Roadmap for Semiconductors, http://www.itrs.net/
Links/2009ITRS/2009Chapters_2009Tables/2009_ExecSum.pdf.

[LLCB10] Mark S. K. Lau, Keck-Voon Ling, Yun-Chung Chu, and Arun Bhanu. A General
Mathematical Model of Probabilistic Ripple-carry Adders. In Proceedings of the Con-
ference on Design, Automation and Test in Europe, DATE ’10, pages 1100–1105, 3001
Leuven, Belgium, Belgium, 2010. European Design and Automation Association.

[PMR+07] Frances Perry, Lester Mackey, George A. Reis, Jay Ligatti, David I. August, and David
Walker. Fault-tolerant Typed Assembly Language. SIGPLAN Notices, 42:42–53, June
2007.

[RCV+05] George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and David I. Au-
gust. SWIFT: Software Implemented Fault Tolerance. In Proceedings of the Interna-
tional Symposium on Code generation and Optimization, CGO ’05, pages 243–254,
Washington, DC, USA, 2005. IEEE Computer Society.

[SDF+11] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, and Luis
Ceze Dan Grossma. EnerJ: Approximate Data Types for Safe and General Low-Power
Computation. In Proceedings of the Conference on Programming Language Design
and Implementation (PLDI), San Jose, California, USA, 2011. ACM.

[WCS09] Philip M. Wells, Koushik Chakraborty, and Gurindar S. Sohi. Mixed-mode multi-
core reliability. In Proceedings of the 14th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’09, pages
169–180, New York, NY, USA, 2009. ACM.

[YPPJ06] Yves Younan, Davide Pozza, Frank Piessens, and Wouter Joosen. Extended Protection
against Stack Smashing Attacks without Performance Loss. In Proceedings of the 22nd
Annual Computer Security Applications Conference, pages 429–438, Washington, DC,
USA, 2006. IEEE Computer Society.

