
PAXES – Parallelism Extraction for Embedded Systems

Three Approaches – One Tool

Daniel Cordes, Peter Marwedel
TU Dortmund University
Dortmund, Germany

firstname.lastname@tu-dortmund.de

Abstract

Nowadays, complexity and performance requirements of embedded
software are continuously increasing, making Multiprocessor System-
on-Chip (MPSoC) architectures more and more important in the do-
main of embedded systems. Using multiple cores in one system reduces
problems concerning energy consumption and heat dissipation. In ad-
dition, performance can also be dramatically increased. Nevertheless,
these benefits do not come for free. Porting existing, mostly sequen-
tially written, applications to MPSoCs requires extracting efficient
parallelism to utilize all available cores. Therefore, we developed the
PAXES (Parallelization Extraction for Embedded Systems) tool which
is tailored towards the special requirements of resource restricted em-
bedded systems. Up to now, three approaches are combined in this
tool. The first one extracts coarse-grained task-level parallelism by de-
ploying an integer linear programming (ILP) based approach. The sec-
ond approach also employs ILPs to extract more fine-grained pipeline
parallelism from loops of the applications. Both approaches can also
be combined to extract both kinds of parallelism. However, in many
cases it is not sufficient to only optimize the execution time of the
application. Therefore, our third approach deploys a multi-objective
aware extraction of task-level parallelism. By using this approach, the
designer can choose an optimal combination between execution time
reduction, energy consumption and communication load.



PAXES – Parallelism Extraction for Embedded Systems
Three Approaches – One Tool

D a n i e l  C o r d e s  |  P e t e r  M a r w e d e l  |  W e b :  l s 1 2 - w w w . c s . t u - d o r t m u n d . d e / ~ c o r d e s  |  e - M a i l :  f i r s t n a m e . l a s t n a m e @ t u - d o r t m u n d . d e

T U  D o r t m u n d  U n i v e r s i t y  |  D e p a r t m e n t  o f  C o m p u t e r  S c i e n c e  X I I  |  O t t o - H a h n - S t r .  1 6  |  4 4 2 2 1  D o r t m u n d  |  G e r m a n y

ILP-based Extraction of Coarse-Grained Task-Level Parallelism

[1] Daniel Cordes, Peter Marwedel, and Arindam Mallik. Automatic Parallelization of Embedded Software Using Hierarchical Task Graphs and Integer Linear Programming. In Proc. of 
CODES+ISSS 2010.

1,0

1,5

2,0

2,5

3,0

3,5

4,0

Sp
ee

d
u

p

co
m

pre
ss

edge
 d

ete
ct

H.2
63

sp
ect

ra
l

adpcm
 enco

der

w
im

ax

boundary
 va

lu
e

ave
ra

ge

In

Out

In

Out

...

...

In

Out

...

...

...

...

...

...

In

Out

...

...

...

In

Out

...

    int main() {
      for (i = 0; i < NUMAV; ++i) {
          int index =  i * DELTA;
          for (int j = 0; j < SLICE; ++j) {
            sample_real[j] = 
                input_signal[index + j] * hamming[j];
            sample_imag[j] = zero;
          }
      }
    }

1.

3.

5.

7.

9.

Extract hierarchical 
graph

1.

Parallelize nodes
bottom-up

2.
Transform to ILP3.

Solve ILP
for different 
task limitations

4.

Transform solutions 
to HTG

5.

Attach results and  
continue with other nodes

6.

ANSI
 C

-

So
urc

e co
de

Node 1

In

Out

Node 6

In

Out

Node 4

Node 2

In

Out

T1

Node 5

Node 3

In

Out

T2

Node 1

Node 3

In

Out

Node 2

Node 4

Node 6

Node 5

§  Approach extracts very coarse-grained task-level parallelism 

        (e.g., two parallel function calls) from sequential ANSI-C applications

§  Extraction algorithm is based on integer linear programming (ILP)

§  Clear mathematical problem description

§  No approximation in extraction step

§  Hierarchical Task Graph used as 

 intermediate representation

§  ILPs can be solved very efficiently 

        (< 1 second in most cases)

§  Speedup of up to 1.9x, 2.9x and 3.7x

        (on 2, 3, and 4 core architectures)  

ILP-based Extraction of Pipeline-Parallelism

[2] Daniel Cordes, Andreas Heinig, Peter Marwedel, and Arindam Mallik. Automatic Extraction of Pipeline Parallelism for Embedded Software Using Linear Programming. In Proc. of 
ICPADS 2011.

    int main() {
      for (i = 0; i < NUMAV; ++i) {
          int index =  i * DELTA;
          for (int j = 0; j < SLICE; ++j) {
            sample_real[j] = 
                input_signal[index + j] * hamming[j];
            sample_imag[j] = zero;
          }
      }
    }

1.

3.

5.

7.

9.

Extract
PDG

1.
Create 
Sub-PDG for 
Loop(-nest)

2.

Transform to ILP3.

Collect best solution
candidates

5.

Attach results 
and  continue 
with other loops

6.

ANSI
 C

-

So
urc

e co
de

i < NUMAV

index =  i * DELTA;

fft(sample_real, 
sample_imag);

++i

i = 0

Entry

Exit

j = 0 j < SLICE

sample_imag[j] = 
zero;

sample_real[j] = input_signal[index + j] * 
hamming[j];

++j

j = 0 j < SLICE

mag[j] = mag[j] + (((sample_real[j] * 
sample_real[j]) + (sample_imag[j] * 

sample_imag[j])) / SLICE_2);
++j

t0

t2

t4

t6

t8

t10

  for (i = 0; i < NUMAV; ++i) {
      float sample_real[SLICE];
      float sample_imag[SLICE];

      int index =  i * DELTA;
      for (int j = 0; j < SLICE; ++j) {
        sample_real[j] = 
            input_signal[index + j] * hamming[j];
        sample_imag[j] = zero;
      }

      fft(sample_real, sample_imag);

      for (int j = 0; j < SLICE; ++j) {
        mag[j] = mag[j] + (((sample_real[j] *   
               sample_real[j]) + (sample_imag[j] *  
               sample_imag[j])) / SLICE_2);
      }  
    }

1.

3.

5.

7.

9.

11.

13.

15.

17.

19.

T2

T1,1 T1,2 T1,3

T1,1 T1,2 T1,3 T2

...

4 5 6

1

2

3

1 2 3

7 8 9

4

5

6

time

7

8
10 11 12

t0

t2

t4

t6

t8

t10

  for (i = 0; i < NUMAV; ++i) {
      float sample_real[SLICE];
      float sample_imag[SLICE];

      int index =  i * DELTA;
      for (int j = 0; j < SLICE; ++j) {
        sample_real[j] = 
            input_signal[index + j] * hamming[j];
        sample_imag[j] = zero;
      }

      fft(sample_real, sample_imag);

      for (int j = 0; j < SLICE; ++j) {
        mag[j] = mag[j] + (((sample_real[j] *   
               sample_real[j]) + (sample_imag[j] *  
               sample_imag[j])) / SLICE_2);
      }  
    }

1.

3.

5.

7.

9.

11.

13.

15.

17.

19.

T2

T1,1 T1,2 T1,3

T1,1 T1,2 T1,3 T2

...

4 5 6

1

2

3

1 2 3

7 8 9

4

5

6

time

7

8
10 11 12

t0

t2

t4

t6

t8

t10

  for (i = 0; i < NUMAV; ++i) {
      float sample_real[SLICE];
      float sample_imag[SLICE];

      int index =  i * DELTA;
      for (int j = 0; j < SLICE; ++j) {
        sample_real[j] = 
            input_signal[index + j] * hamming[j];
        sample_imag[j] = zero;
      }

      fft(sample_real, sample_imag);

      for (int j = 0; j < SLICE; ++j) {
        mag[j] = mag[j] + (((sample_real[j] *   
               sample_real[j]) + (sample_imag[j] *  
               sample_imag[j])) / SLICE_2);
      }  
    }

1.

3.

5.

7.

9.

11.

13.

15.

17.

19.

T2

T1,1 T1,2 T1,3

T1,1 T1,2 T1,3 T2

...

4 5 6

1

2

3

1 2 3

7 8 9

4

5

6

time

7

8
10 11 12

Entry

Exit

j = 0 j < SLICE

sample_imag[j] = 
zero;

sample_real[j] = input_signal[index + j] * 
hamming[j];

++j

Implement 
parallelism

9.Annotate 
Source Code

8.Combine solution candidates 
of loops to optimal result

7.

Solve ILP
for different 
task limitations

4.

1,0

1,5

2,0

2,5

3,0

3,5

4,0

Sp
e

e
d

u
p

co
m

pre
ss

jp
eg e

nco
der

edge
 d

ete
ct

la
tn

rm
_32_64

sp
ect

ra
l

adpcm
 enco

der

fil
te

rb
ank

fir
_256_64

w
im

ax

boundary
 va

lu
e

iir
_4_64

m
ult_

10_10

ave
ra

ge

1,0

1,5

2,0

2,5

3,0

3,5

4,0

 

co
m

pre
ss

jp
eg e

nco
der

edge
 d

ete
ct

la
tn

rm
_32_64

sp
ect

ra
l

adpcm
 enco

der

fil
te

rb
ank

fir
_256_64

w
im

ax

boundary
 va

lu
e

iir
_4_64

m
ult_

10_10

ave
ra

ge

2 Cores 3 Cores 4 Cores

§  Approach extracts more fine-grained pipeline-parallelism from 

        loops and loop nests from sequential ANSI-C applications

§  Many embedded applications have a streaming-oriented structure

§  Loops can be divided into concurrently executed tasks

§  Horizontal splits: Move statements to tasks

§  Vertical splits: Split iterations of tasks

§  Program Dependence Graph as IR

§  Both splits extracted by ILP in one step

§  Local optima are avoided

§  Speedup of up to 1.9x, 2.9x, and 3.9x

        (on 2, 3, and 4 core architectures)

1

Multi-Objective Aware Extraction of Task-Level Parallelism Using Genetic Algorithms

[3] Daniel Cordes and Peter Marwedel. Multi-Objective Aware Extraction of Task-Level Parallelism Using Genetic Algorithms. In Proc. of DATE 2012.

 T1

 T3
 T2

 T4

N3

N6

N2

N7

N1

N4

N5

Gene 
Representation

Task Graph

Hierarchical
Parallel Solutions 
(Pareto-frontiers)

T1

T1

T2

T3

T3

T4

T4

N2

N3

N4

N5

N6

N7

N1

N
o

d
e-

to
-T

as
k 

M
ap

p
in

g
H

ie
ra

rc
h

ic
al

 
P

ar
al

le
l S

o
lu

ti
o

n
s

S1,4

S2,3

S3,2

S4,8

S5,9

S6,3

S7,4

N2

N3

N4

N5

N6

N7

N1 N1

N2

N5

N3

N6

N4

N7

Node 1 (Selected Point S4):
Execution costs:  162 cycles

Energy consumption: 0.16 nJ
Communicated data:   200

Number hierarchical tasks: 3

Selected Parallel 
Solution for Node N1

S1,1

S1,6

S2,1

S2,7

S5,1

S5,9

S6,1

S6,7

S7,1

S7,7

S4,1

S4,9

S3,1

S3,5

§  Embedded systems must be optimized for multiple objectives

§  Same kind of parallelism extraction as first approach

§  But, this approach observes three objectives while parallelizing an application:

§  Execution time

§  Energy consumption

§  Communication overhead

§  Reduce amount of extracted parallelism to 

        e.g., save energy

§  Also based on hierarchical task graph

§  User gets a Pareto-front of optimal solutions

§  Choose the best implementation for specific scenario

Future Work

Motivation
§  Resource-Restricted embedded systems have many limitations,    

 compared to high-performance / desktop computing

§  Consider these restrictions in the parallelization process

§  Balance created tasks to extract really efficient parallelism

§  Make use of high-level cost models to know where parallel 

 execution really increases the performance

§  Take care that benefit of parallelization is not eliminated by task-creation and 

 communication overhead

§  Current approaches are optimizing for homogenous systems 

 →  make them applicable for heterogeneous systems

§  Adapt pipeline-parallelism to be multi-objective aware

§  Test and apply different communication optimizations


	abstract
	dina4
	dina4.vsd
	Zeichenblatt-1



