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Abstract—The mapping of applications onto multiprocessor
system-on-chip (MPSoC) devices is an important and complex
optimization task. The goal is to efficiently distribute application
tasks to available processors while optimizing for energy or
runtime. Unfortunately, the influence of memories or memory
hierarchies is not considered in existing mapping optimizations
so far, even though it is a well-known fact that memories have a
drastic impact on runtime and energy consumption of the system.
In this paper, we address the challenge of finding an efficient
application to MPSoC mapping while explicitly considering the
underlying memory subsystem and an efficient mapping of task’s
memory objects to memories. For this purpose, we developed a
memory-aware mapping tool based on ILP optimization. Eval-
uations on various benchmarks show that our memory-aware
mapping tool outperforms state-of-the-art mapping optimizations
by reducing the runtime up to 18%, and energy consumption up
to 21%.

I. INTRODUCTION

Multiprocessor system-on-chip (MPSoC) devices integrate

several components on a chip in order to increase the available

processing capabilities and decrease the power consumption.

The mapping of applications onto these systems is a system-

level optimization, which aims to exploit the resources of

these systems efficiently. This important and complex task

was explored intensely in the past years resulting in various

optimizations with the goal to efficiently distribute application

tasks to available processors while optimizing for a particular

objective, e.g. performance or energy consumption. However,

not all available system resources are considered in mapping

optimizations. Most optimizations are not fully exploiting or

are not even considering the memory subsystem at all.

However, the memory subsystem has a drastic influence on

the system’s runtime and energy consumption due to the still

existing memory wall problem [1]. This problem describes the

huge gap between the speed of processors and the speed of

memories. Memory hierarchies were introduced in order to

cope with this significant problem by placing smaller, faster

and more energy-efficient memories (i.e. on-chip memories)

close to the processor, building a memory hierarchy with one

or more levels. The idea is to place frequently used instruction

or data memory objects in on-chip memories and thereby to

reduce runtime and energy consumption.

On-chip memory hierarchies either consist of cache or

scratchpad memories. Especially in the design of real-time

embedded systems, scratchpad memories are extensively used

[2]. The content of these memories is known in advance, they

are predictable with respect to runtime and energy consump-

tion. But unlike caches, they have to be explicitly allocated

by the application designer. Also, they consume less energy

than caches since no additional hardware is required for the

management of its content. For these reasons, we explicitly

consider scratchpad memories instead of caches.

Due to the drastic influence of the memory wall problem

on runtime and energy, it is crucial to consider the underlying

memory hierarchy in the application to architecture mapping

as well. In this paper, we address this challenge. Our memory-

aware mapping optimization is able to consider both homo-

geneous and heterogeneous systems. Furthermore, since we

consider scratchpad memories, an allocation of promising in-

struction and data memory objects is automatically performed.

Fast evaluation is achieved due to analytic estimation models

for runtime and energy consumption. The definition of an

automatic, fast and flexible memory-aware mapping optimiza-

tion framework has the aim to support MPSoC designers in

their design decision. An integer linear programming (ILP)

optimization is defined for the overall performance or energy

consumption aiming at optimal solutions. Our optimization is

validated on a cycle-accurate simulator. A reduction of runtime

by up to 18% and a reduction of energy consumption by

up to 21% is achieved compared to state-of-the-art mapping

optimizations. This shows that ignoring memory resources in

a system leads to wasted optimization potential.

The rest of the paper is organized as follows: Related work

is investigated in Section 2 and a problem specification is given

in Section 3. The memory-aware mapping optimization engine

is described in Section 4. Section 5 describes the experimental

setup and then the evaluation is illustrated in Section 6. Section

7 concludes the paper.

II. RELATED WORK

Various approaches exist for mapping tasks to processors

on different architectures (homogeneous and heterogeneous).

Different configurations for power management like dynamic

voltage scaling (DVS) [6], real-time requirements [8], dynamic

scheduling/mapping [3], as well as a combination of these

requirements [7] were considered. However, these approaches

do not consider memory mapping or the integration of the

memory hierarchy in their objectives. The general assumption
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is that the system has enough memory to cover all memory

requirements of given tasks, or the influence of memories on

the execution time or energy of tasks are abstracted.

Also, various optimizations for mapping instruction or data

memory objects to scratchpad memories exist for single core

SoC [10], [9] and recently also for MPSoC devices [11], [12].

But, in MPSoC devices these optimizations are decoupled

from the application to processor mapping optimization. They

are usually performed after this step. However, Steinke et al.

[10] statically assign code and data objects to scratchpad mem-

ories. Verma et al. [9] use overlay techniques for scratchpad

memories in order to dynamically copy code and data memory

objects. Both optimizations work only for single core SoC de-

vices. Che et al. [11] utilize on-chip memory for code overlay

and communication overhead caused by FIFOs. All on-chip

memories are accessible by all other processors. He et al. [12]

combine task scheduling with memory access optimization for

MPSoCs on a two-level-memory hierarchy. They consider task

graphs with multiple entry and exit points. Here, only the

scheduling of tasks is optimized and only data memory objects

are mapped to on-chip memories. None of these publications

integrate their optimizations in an application-to-architecture

mapping and they consider only fully homogeneous architec-

tures where all local memories have the same size.

However, some publications integrate memories in the map-

ping step. Szymanek et al. [13] perform system synthesis

with task assignment, scheduling and assignment of data with

constraint logic programming. This work targets a different

optimization level and can not be compared to our work.

Suhendra et al. [14] suggest ILP to find task mapping,

pipelined scheduling, and scratchpad memory partitioning for

MPSoC. Partitioning means that each processor has access

to the scratchpad memories of the other processors. If a

task requires more local memory, the scratchpad memory of

another processor will be partitioned and used. Here, only data

memory objects are allocated to the local memory.

Compared to [14], we consider the entire memory hierarchy

with different memory types and sizes. Also, our optimiza-

tion allocates both instruction and data memory objects to

memories. We consider a heterogeneous architecture model,

where partitioning of scratchpad memories is not performed

(i.e. processors do not have access to the scratchpad memories

of other processors). The combined mapping of threads to

processors with the mapping of memory objects to their

underlying memories are integral parts of our work. Our ILP

optimization is able to obtain an application-to-architecture

mapping for homogeneous and heterogeneous systems.

III. PROBLEM SPECIFICATION

This section describes the underlying architecture and appli-

cation models. Furthermore, the complexity of the integration

of memory-awareness into the application to architecture map-

ping optimization is described in more detail.

Application model. Here, we assume that an already paral-

lelized application is represented as an acyclic task graph. A

thread-based application model as depicted in Figure 1 is used.

Here, a main thread accomplishes computation, creates new

threads and hereby initiates the parallel execution. The created

threads can run in parallel and communicate via FIFOs. After

they accomplish their computation, the main thread joins

them and continues its execution. The section where newly

created threads run in parallel is called parallel section. An

application can have one or more parallel sections. An example

is illustrated in Figure 1. Here, the application has two parallel

sections with four threads in parallel section 1 and three

threads in parallel section 2. Each thread has to be mapped

onto a processor of the underlying architecture platform. This

application model can be generated from existing sequential

C-code applications by using automated tools. More details on

these tools are given in Section IV-B.
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Fig. 1. Thread-based application model

Each thread consists of memory objects, which are either

instruction code or data. They are mainly characterized by their

size and the frequency of accesses and define the computation

requirements of a thread. Depending on the memories they

are allocated to, they essentially influence the performance

and energy consumption of the system.

Main
Thread 0

Thread 1 Thread 2 Thread 3
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joinjoin join
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Fig. 2. Task graph including FIFO communication

Based on the underlying characteristics of the application,

our model can also contain FIFO queues (First-in First-out)

for inter-thread communication as depicted in Figure 2. In this

case, a thread can be composed of several thread nodes. The

edges between the different thread nodes illustrate either FIFO

(i.e., communication) edges or control flow edges. This spec-

ification ensures the precise determination of runtime since a

thread node cannot be executed until all predecessor nodes

have finished their execution or communication, respectively.
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Fig. 3. Heterogeneous MPSoC architecture with memory hierarchy

Architecture model. We are considering an architecture with

n processors, which can be homogeneous or heterogeneous,

i.e. differ in type and/or clock frequency. Each processor can

have a distinct memory hierarchy with different hierarchy

levels and different sizes on each level. Figure 3 illustrates

an example architecture. In this architecture, four processors

CPU0-CPU3 are defined. Each processor has a separate local

instruction and data scratchpad memory on level 1 and a

private main memory on level 2. The processors have exclusive

access to these memories. Further, the architecture has at least

one shared memory which is accessible by all processors and

used for inter-thread communication and synchronization. The

shared memory can be accessed through an on-chip network

(or bus). The local memories can differ in the memory type

(instruction only / data only / unified). All memories can differ

in size. Each memory has different energy and runtime values

which depend on type, level and size of the memory.

Based on the information specified in the application and

architecture model, the ILP-based memory-aware mapping

optimization provides an optimal solution. In the evaluation

section, we will validate our solutions on a cycle-accurate

simulator.

Mapping. State-of-the-art application to MPSoC mapping tools

perform the mapping of threads to available processors, while

optimizing for an objective. The mapping optimization prob-

lem is known to be NP-complete. Considering the thread to

processors mapping step, the number of options is significant.

The available options and problem complexity is further

increased by including the memory hierarchy with an explicit

mapping of memory objects to memories. Now, next to the

processor also the memories are crucial for the decision,

where different combinations are possible. If several threads

are mapped to one processor, several constraints have to be

checked, i.e. memory capacity shouldn’t be exceeded or the

examination of the memory type. A combination of processor

frequencies and the capacity and speed of their underlying

memory hierarchy has to be adequate for the threads and their

individual resource requirements (i.e., memory objects). Also,

the allocation of the proper memory objects of a thread is

crucial. If a small memory has to be shared among several

threads, the decision has to be taken, which memory objects

of which thread gain the most benefit in terms of runtime

or energy and should be placed in local memories? To sum

up: Which ‘processor/memory’ pair is most suitable for which

combination of possible ‘threads/memory objects’ mapping?

We solve this complex mapping problem with integer linear

programming (ILP). Based on the system requirements, the

designer can choose between an ILP for the minimization of

the overall energy consumption and an ILP for the minimiza-

tion of runtime. Our approach will be described in detail in

Section IV-C.

IV. MEMORY-AWARE OPTIMIZATION ENGINE

This section describes our ILP-based memory-aware mapping

optimization approach which is also illustrated in Figure 4.

First, an overview over the fully automated tool-flow is given.

Nevertheless, the designer is still able to perform steps man-

ually (i.e. manual parallelization or mapping).

Application
Specification

Thread Model Extraction Tool

ILP-based Memory-Aware Mapping Optimization Tool

Parallelization

Tools Architecture

DB

Architecture
Specification

Taskgraph

Flattening

Architecture

Transformation

Fig. 4. Memory-aware Mapping Optimization: Tool-Flow Overview

All tools are implemented within the MACC-

framework [20] which provides an architecture database

and profiling and analysis tools. The input of the tool-

flow is sequential ANSI-C application code which has to be

parallelized first by a parallelization tool [21]. In the next step,

the parallelization is implemented by adding synchronization

and communication mechanisms (i.e. FIFOs, etc.), by using

the MPSoC Parallelization (MPA) tool [22]. At this point,

annotated application code is provided which defines parallel

sections with communication and synchronization. Based

on this output, the Thread Model Extraction Tool extracts a

flat task graph and annotates additional profiling information

(i.e, number of calls of threads and memory objects, etc.).

The output of this tool is passed to our ILP-based memory-

aware mapping optimization tool which processes all given

information and performs the ILP optimization. A description

of architecture and application specifications will be explained

next. All this information contributes to the ILP optimization

described in Section IV-C.

A. Architecture Specification

The architecture specification is fed with information from

an architecture database within the MACC-framework [20].

This framework provides different predefined architectures,

as well as the means to model further architectures. In

general, the architecture specification contains all information

about processors, memories and the interconnections between

them. Further, energy and runtime information about all these

components is specified (for example active/idle energy for

processors, memories, interconnections). All memories and
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their characteristics are retrieved, which are the size, type (i.e.

scratchpad, shared, private), and access type (i.e. unified, data

or instruction only) of the memory. For each memory, it is

defined which processor has access to it and the energy and

runtime values caused by these different type of accesses (i.e.

access width and read/write).

B. Application Specification

The ILP Optimization Tool reads the annotated task graph,

which was generated by the Thread Model Extraction Tool.
The important components of the application and its spec-

ification are the threads, their interconnection (i.e. control-

flow, FIFO), thread nodes and their memory objects. Next

to profiling information as runtime/energy on each processor

(without memory delay), all memory objects belonging to the

thread are defined with all important information (i.e. number

of accesses, size, access width and type (instruction, data,

shared), etc.). If a thread is not allowed to be executed on

a processor, this information is also specified properly. The

designer is allowed to manually specify mappings for memory

objects to designated memories and threads to designated

processors.

C. ILP Optimization

This section presents the integer linear programming (ILP)

equations for an application-to-architecture mapping with in-

tegrated memory-awareness. Depending on the requirements

of the embedded system, the designer chooses the proper ILP

either for the minimization of runtime or energy consumption.

1) Optimization for Runtime: Here, the ILP formulation for

the optimization of the overall runtime is presented.

The objective function minimizes the runtime of the

given application. An application has k threads (Thread1 to

Threadk). Each thread consists of j nodes, where j has a

value of 1 if no FIFO communication is performed. The goal

is to minimize the completion time of the last thread which is

the exit node of the application:

min (EndThrNodeExit) (1)

The completion time EndThrNodei,j of thread i and its

node j is given by its start time StartThrNodei,j , added to

its overall execution time ExecT imeNodei,j :

EndThrNodei,j ≥ StartThrNodei,j + ExecT imei,j (2)

The value of StartThrNodei,j is dependent on the predeces-

sors of thread node (i, j) and will be explained later.

Below, additional constraints for the ILP are defined.

a) Overall runtime of a thread: The overall runtime of

a thread is composed of the execution time of the thread on a

processor and the time required for memory accesses.

ExecT imei,j = ProcT imei,j +AccT ime memoriesi,j (3)

The execution time on a processor ProcT imei,j and the

access time AccT ime memoriesi,j to the memories depend

on the mapping decision of this optimization.

The set of threads is defined by T = 1, 2, .., k and the

number of processors with P = 1, .., p. Xi,p is a binary

decision variable and has the value 1 if thread i is mapped

to processor p, otherwise it has value 0.
The runtime of thread node (i, j) on a processor p is defined

by:

ProcT imei,j =

P∑

p=1

(Xi,p ∗ ExecT imeProci,j,p) (4)

The value ExecT imeProci,j,p represents the runtime of

thread node i, j on processor p.
It also has to be specified that a thread i and all its nodes can

be mapped only to one processor in the architecture. Therefore,

following equation is defined for each thread i:

P∑

p=1

Xi,p = 1 (5)

Next, the overall access time to memories

AccT ime memoriesi,j caused by thread node (i, j) is

defined by:

AccT ime memoriesi,j =

∑

mobj,i∈MOi,j

(
M∑

m=1

ProcV arMemp,m,mobj,i

∗ ( NrReadAccmobj,i
∗AccT imeReadp,m,mobj,i

+ NrWriteAccmobj,i
∗AccT imeWritep,m,mobj,i

)) (6)

Let MOi be the set of memory objects for thread i and

M the set of memories. The set MOi,j is a subset of

MOi and contains all memory objects that are accessed by

thread node (i, j). This equation iterates over all memory

objects mobj,i of thread i which are elements of the set

MOi,j and sums up the time that is required for the access

to each memory object. The access time depends on the

memory to which mobj,i is mapped. The binary decision

variable ProcV arMemp,m,mobj,i
has value 1 when memory

object mobj,i is mapped to memory m which is accessible

by processor p. Otherwise its value is 0. The overall access

time spent on a memory m is composed of read and write

accesses of memory object mobj,i. The number of read ac-

cesses NrReadAccmobj,i
is multiplied with the access time

AccT imeReadp,m,mobj,i
required for one read access. The

same is defined for the write accesses NrWriteAccmobj,i
to

the memory object mobj,i. As mentioned before, read and write

accesses can cause different access times which also depend on

size and access width of the memory object. Our optimization

generates the proper read and write access values for the

variables AccT imeWrite and AccT imeRead dependent on

the access width and size of the memory objects. Also, only

valid combinations of ProcV arMemp,m,mobj,i
are generated

with memories m which are accessible by processor p and

which are capable of holding the appropriate memory objects

(i.e. a data memory object can not be mapped to an instruction

memory). Please note that this access time also includes the

time for the access to the underlying buses.
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b) Memory constraints: The next constraint ensures that

the size of memories are not exceeded by the memory objects

mapped to the memories. Following equation is defined for

each memory:

sizem ≥
T∑

i=1

MO∑

mobj,i=1

(ProcV arMemp,m,mobj,i
∗ sizemobj,i

)

(7)

The capacity of a memory m is given by sizem. The size of a

memory object mobj,i is given by sizemobj,i
. The right hand

side of this equation iterates over all threads i and all their

memory objects mobj,i and sums up the size of all memory

objects mapped to memory m.
In a memory hierarchy, processors have exclusive access to

specific memories (i.e. on-chip and private main memories).

Therefore, constraints have to ensure that when a thread i is

mapped to a processor p, then the memory objects mobj,i of

this thread i can only be mapped to a memory m that can be

accessed by processor p. This is defined in the next equation:

Xi,p =

M∑

m=1

ProcV arMemp,m,mobj,i
(8)

This equation also ensures that a memory object mobj,i can

be mapped to only one memory m in the system.
c) Dependencies in the task graph: A thread node can

start its execution when all predecessors have finished their

execution. This is defined by following equation:

∀predi,j :
if(i = h) :

StartThrNodei,j ≥ EndThrNodeh,l + 1

if(i �= h) :

StartThrNodei,j ≥ EndThrNodeh,l + 1 + FIFOi,h (9)

For all predecessors predi,j of thread node j following is

defined: the start time StartThrNodei,j is greater than the

finishing time of EndThrNodeh,l of its predecessor node l of

thread h added to the time required for communication over

FIFOs between both tasks. Here, the predecessor node can

belong to the same thread as the successor node and represents

a control flow edge, i.e. for the case if i = h. Or, if FIFO

communication is performed, the predecessor belongs to a

different thread node, i.e. for the case i �= h. Depending on the

application and its parallelization, the FIFO communication is

optional. Here, the number 1 represents on time unit.
d) Time for FIFO Communication: If FIFO communica-

tion is defined, the thread consists of more than one node. One

of these nodes has an incoming FIFO edge (FIFO read). The

source node of the incoming FIFO edge must first complete

its execution before the target node can proceed with its

execution.
The following equation defines the time required for FIFO

communication FIFOi,h between nodes i and h:

FIFOi,h =

NrElements ∗ SizeElement ∗NrAccesses

BusSpeed
(10)

The term FIFOi,h is defined by the data elements that are

communicated via FIFO. Here, the number of data elements

NrElements is multiplied by the size SizeElement and the

number of accesses NrAccesses to the elements and divided

by the speed of the underlying bus.

e) Processor assignment: The following equations en-

sure that a processor is executing only one thread at a time.

First, it has to be determined if two threads are mapped onto

the same processor. This equation is taken from [14] and was

adapted to our thread model.

Let Lh,i be a decision variable which has value 1 when

thread h and thread i are mapped onto different processors,

and else value 0, if they are mapped onto the same processor

j. Here, only different threads are considered, i.e. h �= i.

∀p : 1...P, Lh,i ≤ 2−Xh,p −Xi,p (11)

∀p : 1...P, ∀q : 1...P, p �= q, Lh,i ≥ Xh,p +Xi,q − 1 (12)

The decision variable Lh,i is set to 0 or 1 by the definition

of the decision variables Xh,p and Xi,q . Also, Lh,i is required

for all combinations of threads in the parallel section. There

must be one variable Lh,i for the sequence that thread h is

executed before i and one variable Li,h for the sequence where

thread i is executed before h.

While the latter equations work on thread level basis, the

next equation adds a constraint at the level of thread nodes. It

adds the constraint that two thread nodes are not executed at

the same time on one processor. Again, only different threads

are considered, i.e. h �= i which belong to the same parallel

section. Thread node (h, l) belongs to thread h and thread

node (i, j) belongs to thread i. Here, variable Bh,i is set to 1
if thread node (h, l) and thread node (i, j) are mapped onto

the same processor and thread h is executed after thread i,
else it is set to 0.

Bh,i +Bi,h − Lh,i = 1 (13)

StartThrNodeh,l ≥ EndThrNodei,j −∞ ∗Bh,i + 1 (14)

StartThrNodei,j ≥ EndThrNodeh,l −∞ ∗Bi,h + 1 (15)

Please note, that thread nodes which belong to the same

thread are not considered here, since their sequence order is

already set in the dependencies constraint in Equation 9.

f) Restrictions of ILP model: Here, the restrictions of

this ILP model is described. First, the accesses to memories

can not always be modeled as precisely as in real memories.

For example, due to the abstraction level of this model, fast

accesses which are performed in blocks are not covered. Also,

due to the processor pipeline, access time to memories can be

decreased. A precise model covering processor pipelines is not

included here.

2) Optimization for Energy: In this section, the ILP formu-

lation for the optimization of the overall energy consumption is

presented. All equations that are required for the minimization

of runtime are also maintained in the minimization of the

energy consumption, except for the objective function. They

are required for the proper calculation of the processor energy

where the exact idle and run cycles have to be provided.
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For the minimization of the overall energy consumption of

the system, the objective function is defined in equation 16:

min (CPUEnergy +MemEnergy) (16)

The goal is to minimize the total energy consumption which

consists of the energy consumed by all processors and all

memory accesses. The memory accesses also include the

energy spent for the underlying buses.

a) Energy consumption of processors: In this model, a

processor can be in two different modes. When the processor

performs computation, it is in the active mode. Otherwise, it

is in the idle mode.

The energy consumption for all processors is defined in

equation 17:

CPUEnergy =

(

P∑

p=1

IdleEnergyProcp ∗ EndThreadExit)

+ (
T∑

i=1

P∑

p=1

CPUEnergyi,p ∗Xi,p) (17)

In the first term, the equation sums up the idle energy

IdleEnergyProcp for each processor p for the overall runtime

of the application which is defined by EndThrNodeExit. The

second term represents the additional energy CPUEnergyi,p
that is consumed for each thread i that is mapped to processor

p.

Here, CPUEnergyi,p defines the difference between the

energy for the active mode and idle mode:

CPUEnergyi,p = Cyclesi ∗
(
ActiveProcp − IdleProcp

)

(18)

Only the execution cycles that are required for the computation

of thread i are multiplied with the difference between active

energy ActiveProcp and idle energy IdleProcp .

b) Energy consumption for memory accesses: Here, the

energy consumption for all memory accesses are defined:

MemEnergy =
T∑

i=1

M∑

m=1

∑

mobj,i∈MOi,j

ProcV arMemp,mobj,i,m

∗ NrReadAcci,mobj,i
∗AccEnergyReadp,mobj,i,m

+ NrWriteAcci,mobj,i
∗AccEnergyWritep,mobj,i,m

(19)

This equation iterates over all threads i, over all memories

m and over all memory objects mobj,i in the system. If

a memory object mobj,i is mapped to a memory m (i.e.

ProcV arMemp,mobj,i,m is true), the energy for all read and

write accesses is added to the overall memory energy con-

sumption MemEnergy. In detail, the number of read accesses

NrReadAcci,mobj,i
for the memory object mobj,i of thread i

is multiplied by the energy AccEnergyReadp,mobj,i,m that

is required for one read access. The energy consumption for

the write accesses to mobj,i is defined in the same way. The

optimization generates the proper read and write energy values

for AccEnergyRead and AccEnergyWrite based on the

access width and size of the underlying memory objects.

V. EXPERIMENTAL SETUP AND EVALUATION

A. Experimental Setup

The benchmarks used in this evaluation are taken from the

UTDSP suite [28] and real-life benchmarks (MPEG4). The

code size of benchmarks ranges from 6.5 kB up to 3 MB with

an average code size of 50 kB per benchmark.

In a first step, parallelization tools [22], [21] are applied in

order to obtain a parallelized and synchronized application

code. Different numbers of threads are extracted for each

benchmark, which are shown in Table I.

The Spectral and Mpeg4 are the most complex benchmarks

in this setup. The Spectral benchmark has 6 parallel sections

and 21 threads. The Mpeg4 benchmark is complex due to

the large code size (3 MB) and large number of memory

objects that can be potentially mapped to on-chip memories.

We believe that these benchmarks represent a good average

over mapping complexity and computational workload.

The commercial ILP solver CPLEX [24] is used for the

minimization of the objective functions in our ILP formulation.

Energy values are computed according to the model defined

by Steinke et. al. [10] while the memory models are provided

by CACTI [25]. For the validation of our solutions generated

by the ILP-optimization, the cycle-accurate instruction set

simulator CoMET [29] is used.

The core characteristics of the architecture considered in

this evaluation is comparable to the single-ISA heterogeneous
multi-core architecture suggested in [27], [26]. Here, the

authors propose a heterogeneous system with cores from

the same architectural family that execute the same instruc-

tion set, but differ in power and performance values, raw

execution bandwidth, or other characteristics. In [27], the

authors compared their architecture against a homogeneous

architecture, and the single-ISA heterogeneous architecture

outperformed the homogeneous architecture by 63%. Based

on this conclusion, our architecture contains processors from

the same architectural family, but with different clock fre-

quencies and thus different runtime and energy values that

depend on the frequency of the processor. A similar strategy

is used in the big.Little system from ARM where a high-

performance Cortex-A15 processor is paired with an energy

efficient Cortex-A7 processor [30]. Architectures like these

seem to become more common.

Based on these assumptions, the architecture illustrated in

Figure 5 was implemented for the CoMET simulator. The

proposed architecture consists of four ARM11 processors

with clock frequencies of 400 or 500 MHz. The memory

subsystem is fully heterogeneous with different memory sizes

on each level and different memory types on level one for the

scratchpad memories. The system also contains one DRAM

shared memory with 512 MB for shared data and instructions.
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Benchmark Boundary Compress Edge Detect FIR IIR LAT Mpeg4 Spectral
Nr. Threads 5 5 9 5 5 3 4 21
Nr. Parallel Sections 1 1 1 1 1 1 1 6

TABLE I
PARALLELIZATION OF BENCHMARKS.

AMBA BUS

CPU0 500 MHz

L1 Instruction 
L1 Data 

L1 Instruction 
L1 Data 

Private
Memory 16 MB

Private
Memory 8 MB

Private
Memory 8 MB

Private
Memory 16 MB Shared

Memory
512 MB

CPU1

L1 Instruction 
L1 Data 

L1 Instruction

CPU3CPU2

16 KB
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Fig. 5. Heterogeneous MPSoC Architecture for Evaluation

B. Evaluation

In this section, the memory-aware mapping optimization is

compared to a state-of-the-art mapping optimization. An ILP

optimization was established, which represents a common

state-of-the-art mapping optimization with the same underly-

ing architecture and application model. The ILP optimization

neither includes memory-awareness nor mapping of memory

objects to on-chip memories. Furthermore, two different state-

of-the-art ILP optimizations were established, one with the

objective to minimize runtime and one with the objective to

minimize the overall energy consumption. In this way, we

create a comparable reference to the common state-of-the-art

mapping optimizations.
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Fig. 6. Reduction in runtime and energy achieved by Runtime-ILP

For the evaluation, all obtained solutions of both ILP-based

mapping optimization tools (for energy and runtime) were

simulated on the cycle-accurate CoMET simulator. The results

for the ILP-based optimization with the goal to minimize

runtime are shown in Figure 6. The x-axis describes the

different benchmarks, while the y-axis describes the reduction

achieved by the memory-aware mapping optimization tool

compared to the state-of-the-art mapping optimization tool

which minimizes runtime. Although the goal of the ILP is to

minimize the runtime, the resulting system’s energy consump-

tion is also illustrated in this figure. For the memory-aware

ILP-based mapping optimization, the benchmarks MPEG4 and

IIR showed the most reduction of runtime with 37% and 30%,

respectively. In the MPEG4 benchmark, about 300 kB of code

and data memory objects are allowed to be mapped onto

the on-chip memories in the system. The memory-aware ILP

optimization maps the threads to suitable processors where

the most efficient memory objects are allocated to the on-chip

memories and thus it gains the largest benefit. The allocatable

memory objects for the IIR benchmark are all allocated on the

on-chip memories. Also, the time spent for the execution of

the instructions is large in this benchmark. However, Compress
and Boundary reached a reduction of 1.3% and 9.5%. In the

Compress benchmark, the most time is spent on accessing

shared memory objects, which have to be mapped to shared

memory and therefore no speed-up can be reached here. The

average reduction for runtime is about 18%. Concerning the

resulting overall energy consumption of the system, over all

benchmarks the energy was also reduced by a remarkable

amount of 27%.
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Fig. 7. Reduction in energy and runtime achieved by Energy-ILP

The evaluation results for the energy based ILP memory-

aware mapping optimization are shown in Figure 7. Please

note, that the base line here is not the same as in Figure 6.

The underlying baseline of Figure 6 is a state-of-the-art ILP-

based runtime optimization. In Figure 7, the baseline is a

state-of-the-art ILP-based energy optimization. This means,

the resulting values for energy consumption and runtime

differ for both baselines. However, for the energy-based ILP

optimization, the resulting runtime of the benchmarks is also

illustrated in this figure. Here, again the benchmarks MPEG4
and IIR reached the most reduction of energy by 37% and

32% respectively. However, Compress and Spectral reached a

reduction of about 3.6% and 6%. The average energy reduction

is about 21%. Compared to the overall runtime of the state-

of-the-art mapping, a reduction of about 28% in average is

reached.

Comparing the resulting overall runtime of the energy based

against the runtime based memory-aware ILP optimization, the

overall runtime is increased by 31% by the energy based ILP
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optimization. On the other side, comparing the overall energy

consumption of both optimizations, the energy is increased

by 35% by the runtime based ILP optimization. This shows,

that there is a trade-off between energy and runtime when

optimizing for one of both optimization goals.
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Fig. 8. Runtime of ILP-optimization

Figure 8 illustrates the time that was required for the exe-

cution of the memory-aware ILP-based mapping optimization.

The runtime is illustrated in seconds for an AMD Opteron 2.46

GHz. The optimization of the Mpeg4 benchmark consumes the

most time and takes about 37 seconds. This can be explained

by the huge amount of allocatable memory objects which

expands the solution space. Over all benchmarks, an average

runtime of 11 seconds was achieved.

VI. CONCLUSIONS

This paper presents a novel ILP-based memory-aware mapping

optimization for homogeneous and heterogeneous MPSOC

devices with memory hierarchies. Next to the mapping of ap-

plication threads to processors, our optimization also allocates

frequently used instruction and data memory objects to the

different memories in the hierarchy. In this way, the underlying

architecture capabilities are exploited and efficiently matched

to the application’s requirements.

We evaluated our memory-aware mapping optimization by

comparing our approach to a state-of-the-art mapping op-

timization which neither includes the consideration of the

memory hierarchy nor the mapping of instruction and data

memory objects to memories. For a heterogeneous platform

the overall performance is optimized by 18% and energy

consumption was optimized by 21% over various benchmarks.
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