
Self-Stabilizing Micro Controller for Large-Scale Sensor Networks in Spite of
Program Counter Corruptions due to Soft Errors

Christopher Boelmann∗, Torben Weis∗, Michael Engel† and Arno Wacker‡

∗Distributed Systems Group, University of Duisburg-Essen, Duisburg, Germany
Email: christopher.boelmann@uni-due.de, torben.weis@uni-due.de

†Design Automation for Embedded Systems Group, TU Dortmund University, Dortmund, Germany
Email: michael.engel@tu-dortmund.de

‡Software-engineering for Ubiquitous-Computing Applications, University of Kassel, Kassel, Germany
Email: arno.wacker@uni-kassel.de

Abstract—For large installations of networked embedded
systems it is important that each entity is self-stabilizing,
because usually there is nobody to restart nodes that have hung
up. Self-stabilization means to recover from temporary failures
(soft errors) and adapt to a change of network topology caused
by permanent failures. On the software side self-stabilizing
algorithms must assume that the hardware is executing the
software correctly. In this paper we discuss cases in which
soft errors invalidate this assumption, especially in cases where
CPU registers or the watchdog timer are affected by the fault.
Based on the observation that a guaranteed self-stabilization
is only possible as long as the watchdog-timer is working
properly after temporary failures, we propose and compare
three different approaches that meet the requirements of
sensor networks, to solve this problem with a combination of
hardware- and software-modifications:

1) A run-time verification of every watchdog access
2) A completely hardware-based approach, without any

software modifications
3) A 2X byte code alignment, to realign a corrupted

program counter
Furthermore we determine the average code-size increase and
evaluate necessary hardware-modifications that come along
with each approach.

Keywords-Self-Stabilization; Soft Errors; Embedded Sys-
tems; Static Code Analysis.

I. INTRODUCTION

Large-scale networked embedded systems consist of hun-

dreds of sensor nodes distributed over a large area or build-

ing that shall never stop operating. The larger the network,

the more likely are temporary soft errors or even permanent

node failures. Therefore, the system should be able to

recover from these failures without manual intervention.

Since soft-errors primarily occur within flip-flops, mainly

hardening flip-flops against soft errors is considered by

microprocessor designers. However, advances in technology

result in decreased device feature sizes and higher operating

frequencies of microprocessors leading to an increasing soft-

error rate (SER) in combinational-logic. Thus, the SER of

combinational-logic may soon dominate over the SER of

flip-flops and become a major vulnerability in terms of soft

errors as Mahatme et al. have shown [10].

However in large-scale networked embedded systems

hardware redundancy and expensive casing of nodes to

harden micro controllers against soft errors are prohibitive

to reduce hardware costs and energy consumption of sensor

nodes. Thus, it is more likely that environmental influences

(heat, electric fields, mechanical stress) cause random bit

errors and hence soft errors which can affect RAM and CPU

registers alike. As a consequence CPU instructions might be

carried out wrongly due to a temporary external influence.

This means the system must be able to recover from any

temporary failure which may have left the system in an

arbitrary state.

Fault tolerant systems are designed to show no failure

despite faults for a limited set of faults. In contrast, self-

stabilization [2], [8], [9], [11] does not prevent the failure,

but it ensures that the system converges to a correct state in

a fixed amount of time after the externally induced fault is

gone, i.e. RAM, registers, ALU etc. operate normally again.

An important advantage of self-stabilization is that it can

recover from a wide set of faults. In our case we can assume

that all memory bits in the system can be altered and it will

still recover in fixed time. The drawback of self-stabilization

is that there are no guarantees during stabilization time. This

is the trade-off between fault tolerance and self-stabilization.

Many self-stabilizing algorithms have been devised [2],

[11] since Dijkstra’s paper on self-stabilization [1] which can

recover from erroneous data structures or modified messages

caused by RAM or communication failures. However, these

algorithms assume that the CPU always executes the self-

stabilizing algorithm and no arbitrary code [3]. Unfortu-

nately, this assumption is not necessarily true even if the

program itself is burned in the ROM. As we show, a bit error

in the PC register can cause the system to execute bogus

code resulting in an endless loop. An often used standard

measure against such endless loops is a watchdog timer

(WDT) resetting the CPU if the WDT is not reset regularly.

2012 IEEE 18th International Conference on Parallel and Distributed Systems

1521-9097/12 $26.00 © 2012 IEEE

DOI 10.1109/ICPADS.2012.75

506

2012 IEEE 18th International Conference on Parallel and Distributed Systems

1521-9097/12 $26.00 © 2012 IEEE

DOI 10.1109/ICPADS.2012.75

506

2012 IEEE 18th International Conference on Parallel and Distributed Systems

1521-9097/12 $26.00 © 2012 IEEE

DOI 10.1109/ICPADS.2012.75

506

However, in the worst case the bogus code forces the CPU

in an endless loop where it continuously resets the WDT.

This would prevent the system from stabilizing without a

manual reset. Thus, to achieve a fully self-stabilizing system

we must consider hardware and software together.

In this paper we propose methods to ensure that succeed-

ing a soft error a CPU will execute the correct instructions

again after a fixed amount of time while meeting the

special requirements of sensor networks. This ensures that

the self-stabilizing software running on a sensor node can

recover from the failure as well in fixed time and thus

increases the overall reliability in an ongoing system without

manual administration while keeping energy consumption

and additional hardware-costs low. Thus, a memory failure

can arbitrarily modify the RAM and CPU registers and the

system will nevertheless recover in fixed time.

The paper is organized as follows: First we present re-

lated work regarding self-stabilization and a self-stabilizing

microprocessor in Section II and point out which unsolved

problems are sorted out by our approaches. In Section III

and IV we discuss our system model and analyse which

CPU register faults could keep the CPU from executing

the intended machine code permanently. Consequently, we

propose three solutions to prevent this permanent failure. In

Section V we estimate and compare the average code-size

increase and the implications of hardware- and software-

modifications for each approach. Finally, we discuss how our

approaches can be applied to other hardware architectures

as well.

II. RELATED WORK

The concept of a self-stabilizing microprocessor was first

introduced by Dolev et al. [3] who proposed to use a

watchdog circuit to recover a microprocessor from an infinite

loop within its micro-code1 due to soft errors. This watchdog

circuit resets the microprocessor if it did not perform a

fetch-decode-execute sequence for a determined period of

time. Furthermore, corrupted memory values are detected by

determining safe states within the program that are reached

infinitely often and validating predefined invariants within

these states. Moreover, self-stabilization preventing prob-

lems caused by arbitrary register values or corrupted PCs are

considered by validating the current program state whenever

a program statement has been executed [5]. However, in

contrast to our approaches these methods does not consider

all possible PC corruptions since they assume that only real

program code will be executed. Thus, they do not prevent

a CPU from executing infinite loops on the data fields of

machine code instructions instead of executing the opcodes

of the instruction that might bypass the watchdog circuit

since misinterpreted code is fetched, decoded and executed

1Machine-code instructions are sequences of micro-code instructions

and therefore may not guarantee self-stabilization in every

case of PC corruption.

In early 2012 Dolev et al. presented a method to enable

self-stabilization for commercial off-the-shelf microproces-

sors [4]. They propose to force a periodic reboot of the

commercial microprocessor initiated by an additional mi-

croprocessor running as a watchdog. The program contains

code to store and restore the current system state that is

called before the processor is reset by the watchdog. Thus,

the values can be validated on each reset and every register

that has not been stored will be reinitialized with default

values. Since the address of the next instruction (PC) to

execute after a reboot is stored and restored, too, a corrupted

PC will also be restored. To handle this problem Dolev et

al. propose to include sanity checks for (calculated) jump

destinations preceding every jump instruction to secure the

control flow of the program. However it is not considered

that a corrupted PC might point at data-fields of instructions

and thus can get in an unintended infinite loop, unable to

perform the proposed sanity checks for (back-)jumps. In this

worst case scenario even the watchdog reset is unable to

repair the corrupted PC which is fatal for an ongoing system.

Dolev et al. state that ”the criteria for a processor
to be self-stabilizing is a repeated execution of a fetch-
decode-execute sequence” [3]. In this paper we address

self-stabilization preventing problems that can be caused by

a corrupted PC pointing at data fields, executing arbitrary

misinterpreted instructions. Thus we expand the criteria for

a self-stabilizing processor to require the repeated execution

of a fetch-decode-execute sequence to be performed only on
intended instructions.

Since the approach by Dolev et al. requires an additional

watchdog processor to ensure self-stabilization for a micro-

processor the extra costs to protect a large-scale sensor net-

work are not negligible. Furthermore the energy consump-

tion of sensor nodes increases with a second microprocessor

attached while the periodic reset slows down its execution

speed. Therefore their approach is not optimal suited for

highly resource constrained and cheap devices used in large-

scale sensor networks that we consider. In this paper we

propose three approaches to ensure the self-stabilization

property of a microprocessor to solve the problems resulting

from a PC corruption while meeting the requirements for

sensor networks where self-stabilization is crucial.

Yee at al. proposed a 32 byte code alignment to control

and realign the program flow of untrusted x86 native code

[12]. Their intention is to provide a sandbox with high

computational performance for browser-based applications

without compromising security. Besides other measures they

restrict jumps to only point at addresses with valid instruc-

tions to maintain the control flow integrity. The validation

of jump destinations is realized in software by using a new

jump instruction that computes the target and checks if it is

0 mod 32.

507507507

Even though our alignment approach (see Section IV-C)

uses a similar alignment approach to restrict the possible

program flow it does not have the purpose to consider

security issues in terms of attackers but to guarantee the

eventual realignment of a corrupted PC. Furthermore our

approach realizes the validation of jump destinations in

hardware thus preventing further problems in cases where

a corrupted PC might bypass a validation that is realized in

software.

III. SYSTEM MODEL

Our investigation focuses on the MSP 430 micro con-

troller that is often used in embedded systems [6] and re-

quires a small amount of hardware modifications, depending

on the chosen approach. Without these hardware modifica-

tions we cannot guarantee the self-stabilization property, as

shown in Section IV.

The embedded systems we consider are equipped with

sensors, radio and sometimes actuators. A basic application

consists of a main loop which waits for the next event,

processes it and subsequently starts over again:

void main(){
while(true){

ev = wait_for_event();
process_event(ev);
send_output();
reset_watchdog();

}}

The Texas Instruments MSP 430 micro controller has a

16 bit reduced instruction set with 27 instructions and 24

emulated instructions [7]. The program code is stored in

ROM. The MSP 430 provides a WDT, that is realized by

an integer register which is incremented automatically by

a hardware timer. If the WDT is not reset in time and the

integer value exceeds a threshold value the CPU will be

reset.

In line with the general assumptions for self-stabilization,

we can assume, that there will be no persistent errors.

Therefore the timer will eventually return to incrementing

the register normally again, even if an error occurred.

Alterations of the integer value within the register will

stabilize automatically, since the value will either be below

the threshold and eventually exceed it or it will be above

the threshold and lead to an overflow exception resetting

the CPU when exceeding the maximum register size.

IV. WATCHDOG-BASED SELF-STABILIZATION

APPROACHES

The standard measure to recover from event processing

problems is to start a WDT. If the event processing does

not complete fast enough, the WDT will interrupt and reset

the system. This solves the problem that a CPU can get

Figure 1: Loop containing a misinterpreted WDT reset

within data fields

stuck in an erroneous endless loop2. Since the WDT reset is

called in the tail of the main loop, it can only be triggered

under normal running conditions and not out of an unwanted

endless loop. Therefore, as long as only program code will

be executed we can guarantee, that a CPU will eventually

be reset after it got stuck, and thus operate normally again.

However, if the PC register gets corrupted and points

at a data field of a CPU instruction, another problem can

occur since the CPU cannot distinguish opcodes from data

fields3. In the best case the data field represents an illegal

opcode that cannot be executed by the CPU, which triggers

an interrupt and reset. If it can be executed, the PC will

move forward and might eventually hit an illegal opcode or

a real opcode field and execute normal program code again.

In the worst case the CPU might get stuck in an endless

loop on data fields that are interpreted as opcodes. The WDT

will take care of this problem as well, as long as there is no

misinterpreted machine code in the data fields that resets the

WDT. Even though this scenario is rare its occurrence has a

fatal influence on the reliability of an ongoing embedded

system, since it would cause the CPU to be trapped in

an endless loop with no chance for self-stabilization. An

example4 for this undesirable case is shown in Figure 1.

Two conditions must hold to create an inescapable loop:

The CPU must execute a loop and the loop must reset the
WDT before it resets the machine. To prevent the PC from

getting stuck in such an inescapable loop it is sufficient to

meet one of the following two conditions:

• Prevent unintended loops and ensure that the PC will

eventually point to correct CPU instructions again

• Prevent that a corrupted PC-register can lead to a

watchdog reset

Each proposed approach focuses on meeting either one

of these conditions. Since in every case a running WDT

is necessary to escape endless loops on real instructions

2The only desired endless loop is the main loop
3Flagging opcodes and data fields by setting the first bit to 0 or 1 is

prohibited, because this would enforce a completely new instruction set
since there is one bit less to encode operations and also 2 bits less to
encode data.

4Indirect WDT resets are also possible when e.g. a valid reset setting
is stored in a register and afterwards written to the WDT register at the
address 120h

508508508

Figure 2: Loop caused by an absolute jump (RETURN
emulated by MOV @SP+,PC)

we need a customized micro controller with the following

hardware modifications for all approaches.

First we require that the memory is divided in two

segments, RAM and ROM. The ROM contains only the

executable program code and RAM contains static and

dynamic data segments5. Execution of program code in

RAM is not possible. This can be realized by forcing the

upper PC bits to a static value. If the PC was able to point

to RAM, we could not state anything about the arbitrary

RAM content, rendering static program analysis useless.

Our second required hardware modification is that (1) the

WDT cannot be turned off, (2) that the WDT does not allow

non-maskable interrupts to be triggered instead of resets and

(3) that its usage as timer is prevented (i.e. it is always

in reset-mode). This is required to deal with bit alterations

within WDT registers, because otherwise we could not be

sure that the WDT will never be turned off by an altered

instruction. Thus, we can only reset the WDT and change
the reset interval.

We assume that the main loop is the only endless loop and

that the CPU will only execute instructions in ROM. Thus,

the only possible sources of endless loops outside the main

loop are data fields interpreted as instructions. An intuitive

approach is to analyse the program code for possible WDT

resetting loops and break them. However, even if we could

propose an algorithm to break every endless loop occurring

because of relative jumps within data fields there would still

be the possibility of loops based on RETURN instructions.

Since the destination of RETURN instructions is determined

by the stack content that can contain unknown arbitrary

values at runtime, we are not able to find and prevent

inescapable endless loops as shown in Figure 2, rendering

this approach non-viable. Therefore, other approaches have

to be considered. Three possible approaches are described

in the next sections.

A. Approach 1: Register/ROM Compare

The first approach prevents any unintended WDT access

caused by a corrupted PC pointing on data fields and thus

meets the second condition from Section IV.

In an MSP 430 micro controller the WDT register is

located at address 120h. With static code analysis (SCA)

5The compiler can convert static data stored in program code (e.g. static
tables of constants) into a set of instructions writing the static data into
RAM for further access

we are able to find any potential direct WDT access (e.g.

MOV @PC+,120h), since it is always structured in the same

48 bit pattern and thus can be located within the machine

code. However, because of indirect addressing, SCA cannot

determine all writes to 120h statically.

Since we cannot find and prevent every unintended WDT

access we restrict the access to the WDT register. We ob-

served, that a typical program can be restricted to accessing

the WDT in the main loop only. Thus, there is exactly one

instruction at a certain address in the program code that is

allowed to reset the WDT. To achieve this, for every WDT

access the PC is compared with the stored valid address. If

the address is valid, the WDT access is granted, otherwise

the CPU is reset.

The only remaining problem is an unfortunate setting of

the WDT interval. If the interval is too short to execute the

complete main loop, because the setting was read wrong

(e.g. in case of a bit-flip), the WDT will trigger and the

main loop is entered again, causing an endless loop. This

can be fixed by moving the WDT reset (which is also setting

the interval) to the beginning of the main-loop. A corrupted

WDT interval setting would thus be repaired after the CPU

is reset and thus heal itself.

The valid address is stored at a predefined position in

ROM and thus cannot be corrupted. This can be realized

in the code-emit step of compiling by writing the WDT

access address e.g. in the last bytes of the ROM. Validation

of WDT access is done with an additional comparison

register that stores the valid address. To ensure that the

comparison register content is correct it is read from ROM

preceding every comparison. Afterwards the access address

and the comparison register content are compared with an

AND operation in hardware. Since this comparison is only

done when the WDT is accessed the execution slowdown is

irrelevant, because either the WDT access was intended and

the main-loop is currently restarting or the WDT access was

unintended and the CPU is reset.

An advantage is that the WDT will take care of all loops

and PC corruptions since only intended WDT accesses are

possible. Either the WDT is reset in time or the CPU will

be reset after the WDT expires, regardless of PC corrup-

tions and register faults. Furthermore only minor compiler-

modifications are necessary to store the valid WDT address

in ROM. There is also no code-size increase since there is

no need for code modifications.

However, since there can only be one valid WDT access in

a program it may be unsuitable in some cases. A workaround

in form of a WDT reset function to make the WDT acces-

sible from more than one address is prohibited, because the

function may be called from an unintended loop and thus

create an inescapable WDT resetting loop with no chance

for self-stabilization.

509509509

Figure 3: An inescapable WDT resetting endless loop within

data fields of one instruction

Figure 4: Possible outcomes of a corrupted PC hitting an

unintended WDTRST in data fields of one instruction

B. Approach 2: Remove WDT register from address space

As stated in Section IV-A preventing a corrupted PC from

accessing the WDT register with SCA is almost impossi-

ble because of indirect addressing. Our second approach

moves the physical location of the WDT register out of

the accessible address space to restrict the WDT access and

can be realized completely in hardware. Thus, the original

WDT access instructions are no longer able to access the

WDT. Furthermore we extend the instruction set with a new

WDT reset instruction WDTRST to access the moved WDT

register. WDTRST uses a predefined WDT setting specified

in hardware as well. Therefore the WDT cannot be set to

unintended settings or intervals anymore. Adding WDTRST
can easily be done since we do not need any addressing

information and thus may use any instruction code that can

never be used by any other instruction.

In case of the MSP 430 we chose 00000000
00000001 for WDTRST, since it enables us to easily prove

the self-stabilization property6. Furthermore WDTRST must

have a data field, in our case also containing 00000000
00000001, to stretch the instruction length to 32 bit. It

has to be at least 32 bit long since with a 16 bit instruction

we are not able to ensure that a corrupted PC will either

reset the CPU or be realigned (see Fig. 3).

Even though a WDTRST could be completely located

within two sequential data fields we can state that the PC

will either be realigned to real instructions if it accidentally

executed a WDTRST within data fields or the CPU will be

reset because of an invalid instruction (see Fig. 4). Thus

a corrupted PC could reset the WDT only once and will

be realigned to valid instructions afterwards preserving the

self-stabilization property.

To restrict the WDT register access it has to be moved out

of the accessible address space. Furthermore, the WDTRST
instruction with the default WDT settings has to be realized

6We did not choose 00000000 00000000 because in this case the
empty memory space at the end of the program would be interpreted as
WDTRST as well

Figure 5: Example for 0 mod 8 aligned (left) and unaligned

(right) program code

in hardware to access the relocated WDT register. The

settings should contain the maximum possible WDT interval

to ensure that the CPU is eventually reset without influencing

normal program execution.

In summary, our second approach ensures that no unin-

tended loops (inside instruction data fields) can continuously

reset the WDT, because of the WDTRST opcode structure.

It follows that such unintended loops will eventually be

left because of a WDT reset. An advantage over the initial

approach is that WDT resets are possible in multiple loca-

tions in the program. However, the programmer must meet

our requirement that his code (when executed normally)

contains no endless loops with WDT resets. Our approach

only guarantees that bit-errors in memory and registers do

not cause infinite loops. Hence, our first approach is more

strict and less dependent on the specifics of the MSP 430

instruction set.

C. Approach 3: 2X Byte Alignment

In contrast to the previously described approaches this

approach prevents unintended loops and thus fulfils the first

condition mentioned in Section IV by restricting the possible

program flow and ensuring that the PC will eventually point

at valid instructions again.

This is done by aligning the machine code so that no

instruction overlaps a 2X byte boundary. This 2X byte

alignment ensures that at an address dividable by 2X (0

mod 2X) there is either a valid instruction or the value null

(see Fig. 5). A similar 32 byte alignment was used in Google

Chrome’s Native Client [12]. The modified micro controller

must ensure that all possible jumps are only performed if

their destination is a 0 mod 2X address, i.e. ensure that

the last X bits of the destination address are zero. In other

cases the CPU will be reset. Thus any jump will only be

performed if it is aiming for a 0 mod 2X address and thus

a valid instruction or the value null (empty code space).

For the specified system we can make the following

statements to point out that the CPU will eventually execute

valid instructions again and thus prove the self-stabilization

property.

1) If everything works correctly the main-loop will

periodically reset the WDT.

2) If the PC gets stuck in an endless loop on valid

instructions (e.g. a faulty register value corrupts a loop

510510510

break condition) the WDT will not be reset in time and

in turn resets the CPU.

3) If a corrupted PC points at a data field and there is no

jump instruction within the following misinterpreted

machine code, the PC will eventually reach the end

of the program code and reset the CPU if it does not

encounter an invalid instruction first.

4) If the corrupted PC hits a misinterpreted jump instruc-

tion there are two possible outcomes:

a) The jump points at a valid 0 mod 2X address

and the PC returns to executing valid instructions

again leading to 1) or 2).

b) The jump does not point at a 0 mod 2X address

and the CPU is reset.

To demonstrate the realization of this technique we use an

8 byte alignment7. The customized micro controller has to

verify the PC register value upon each programmatic mod-

ification. Instructions that might modify the PC register in

case of the MSP 430 are jump instructions, CALL, RETURN
and instructions that immediately access the PC register (e.g.

MOV ...,PC). Thus every writing PC register access has to

be checked in hardware to verify that the written address is 0

mod 8. The compiler ensures that no instruction overlaps an

8 byte boundary by putting 16 bit no-operation instructions

(NOPs) in front of an overlapping instruction (see Fig. 5).

Furthermore we increase the range of jump instructions by

using their relative 10 bit address as the amount of blocks we

want to jump. Thus it is possible to jump 512 blocks forward

or 511 blocks backward, increasing the range by a factor of

4. This is necessary because the alignment with injected NOP
instructions might cause relative jumps to exceed their range.

The range extension can be realized by appending 000 to

each jump destination address. However, since the address

of the jump instruction itself is not necessarily 0 mod 8

aligned, the relative address might as well be unaligned (i.e.

pointing into a block instead of its beginning) and cause a

CPU reset. Therefore the actual PC is 0 mod 8 aligned by

setting the last 3 bits to 000 to ensure that the PC points

at an address dividable by 8 before calculating the jump

destination address. Additionally CALLs have to be aligned

to the last bytes of a block so that the RETURN address will

be a 0 mod 8 address.

This approach is independent from micro controller op-

codes and does only need the described hardware modifica-

tions. It is not needed to consider unintended WDT resets

since we prevent unintended loops and thus unintended

WDT resets can only happen a finite amount of times. The

downside of this approach is the possible code-size increase

caused by the alignment (see Section V).

7In Section V we provide a formula to ease selecting an appropriate
alignment depending on the actual program

Figure 6: Max. overhead for 8 byte alignment (MSP 430):

6 NOP bytes for 10 aligned instruction bytes ⇒W = 60%

V. ANALYSIS

The probability for a randomly chosen program to contain

a WDT reset loop on data fields of machine instructions is

very low. However, if a program has such a WDT reset loop,

then there is a significant probability that the system enters a

state from which it cannot self-stabilize. This is because our

applications consist of a few thousand instructions only. The

probability that a random PC error hits an unintended WDT

reset loop is therefore in the order of #vulnerable-addresses
program-size .

Thus, the overall probability for this error occurrence is

low, while the dependent probability in programs that are

vulnerable for this error is not negligible.

In this section we compare and evaluate the different

approaches in terms of average code-size increase and

implications on hardware- and software-modifications.

The first approach does not increase the code-size. The

only change in code-size results from code adaptations prior

to compiling, e.g. storing the WDT access address and code

refactoring to reduce WDT reset occurrences to the main

loop.

The second approach does not increase code-size either,

because the normal 48 bit WDT reset occurrences can be

directly replaced in the machine code with the new 32

bit WDTRST followed by a 16 bit NOP without shifting or

influencing other instructions.

The third approach increases the code-size, because it has

to insert NOPs to realize the alignment. To estimate the

amount of additional NOPs instructions we have to consider

the following three cases:

1) Instruction alignment at block boundaries

2) Jump-target alignment

3) CALL instruction alignment.

The average amount of added NOP instructions NOP# is

composed of the average amount of NOPs added for instruc-

tion alignment NOP#ins, jump-target alignment NOP#jmp
and CALL instruction alignment NOP#call.

NOP# = NOP#ins + NOP#jmp + NOP#call (1)

To align an instruction that crosses a block boundary, NOP
instructions with 2 bytes each have to be added preceding the

511511511

aligned instruction (see Fig. 5). The worst case for NOP#ins
in bytes consists of the program size in bytes PS divided by

the chosen alignment A, times the maximum waste of bytes

of an alignment block in percent by added NOPs W . The

overhead W depends on A and the maximum and minimum

instruction sizes INSmax and INSmin.

W =
INSmax − INSmin

A− (INSmax − INSmin)
for A ≥ 2 ∗ INSmax (2)

In case of the MSP 430, W is 60% for 8 byte alignment

(see Fig. 6), 33% for 16 byte and 14% for 32 byte. To

get the average amount of additional NOP instructions the

calculated worst case in bytes has to be divided by four8.

Thus NOP#ins can be estimated as:

NOP#ins =
PS

A
∗W ∗ 1

4
(3)

Jump targets must be shifted to the beginning of an

alignment block. One jump target can be aligned with at

most A − INSmin additional bytes where INSmin is the

minimal instruction size in bytes. The average amount of

additional NOP instructions NOP#jmp is determined by the

maximum amount of bytes needed to align one target and

the number of jump targets in the program J , again divided

by 4 to get the average amount.

NOP#jmp = (A− INSmin) ∗ J ∗
1

4
(4)

CALL instructions have to be the last instruction in a block

to align their RETURN address. The amount of additional

NOPs depends on how many instructions are already within

the block. At most we have to add A− sizeof (CALL) bytes

to align the call if the CALL is the first instruction in a block.

Thus, the average depending on the number of CALLs C in

the program can be estimated with:

NOP#call = (A− sizeof (CALL)) ∗ C ∗ 1

4
(5)

The complete amount of NOPs to add NOP# can thus be

estimated with the sum of the formulas:

NOP# =
(PS∗W

A +(A−INSmin)∗J+(A−size(CALL))∗C)

4

Since the chosen alignment A is a factor as well as a

divisor in the formula, the NOPs count depends on the other

constants: The program size PS, the overhead constant W ,

the amount of jump targets J and CALLs C. For short

programs with many jumps a small alignment is better

while for long programs with fewer jumps the alignment

should be higher. Thus the best suited alignment can only

be determined for known program code.

8Divide by 2 since one NOP is 2 bytes and we look for the amount of
NOPs added. Furthermore we divide by 2 since we assume that in average
we neither have the worst case amount, nor the best case amount (0) of
additional bytes, and thus take the arithmetic mean.

VI. GENERALIZATION

So far, we described our approaches only for the MSP

430 micro controller. In this section we identify the general

requirements for applying them to other hardware architec-

tures as well.

The first approach is independent from the hardware used.

It only requires an additional check of the WDT access

origin. This can be realized in micro controllers with an

additional register and the AND instruction. This validation

has to be performed in hardware whenever the WDT register

is accessed. Furthermore the valid WDT access address must

be stored in ROM by the compiler.

The hardware modifications for the second approach are

limited to moving the WDT register out of the addressable

space and make it accessible with a new WDTRST instruc-

tion. The structure of WDTRST depends on the instruction

set of the micro controller. The WDTRST instruction must

be unique within the machine code and thus has to be

chosen in a way that it can never collide with other valid

instructions. Since all instruction sets use prefixes followed

by the opcode to determine the structure of an instruction it

is always possible to create a WDTRST with a code that is

lower than the lowest opcode prefix (e.g. in case of the MSP

430 the lowest opcode prefix is 000100 [7]). Furthermore

the chosen WDTRST instruction opcode has to be at least as

long as the maximum size of data fields to guarantee the

realignment of a corrupted PC as stated in Section IV-B.

To transfer the third approach to other micro controllers

it has to be checked if there exist more instructions that

are able to modify the PC register because additional PC

modifications must be verified for the chosen alignment in

hardware, too. The flow control can be realized in other

micro controllers as well by checking in hardware if the

last X bits of the value written to the PC register are zero

in case of an 0 mod 2X alignment. Furthermore the code

alignment is realized by the compiler and does not depend

on any special property of the MSP 430. Any program

code can be aligned to 0 mod 2X addresses as long as

all possible instructions for the micro controller are shorter

than 2X bytes and there is enough free memory for the

aligned machine code. It is also important that there exists

an instruction that does not need a data field and also

does not influence the program execution for injecting and

aligning the code (in our case the NOP). However, if such

an instruction does not already exist within the instruction

set it shall be possible to create it (e.g. with MOV R3,R3).

VII. CONCLUSION

In this paper, we presented three approaches that en-

sure that a micro controller will eventually self-stabilize

and return to executing valid instructions without manual

intervention despite soft errors. Our approaches solve the

problem that a corrupted PC might point at data fields of

machine instructions and might furthermore reset the WDT

512512512

infinitely often causing the CPU to be stuck in an endless

loop. The approaches differ in their trade-offs in terms of

code-size and hardware-modifications.

The first approach requires a hardware check of each

WDT register access and thus needs a non-trivial hardware

change to the WDT access logic. However there is no change

to the opcodes and only little compiler changes are required.

The second approach introduces a new opcode with special

constraints on its byte layout and prohibits direct addressing

of the WDT register. Depending on the target hardware

architecture this can be more or less difficult to achieve.

In addition, the compiler back-end must be adapted to use

the modified instruction set, i.e. the WDTRST instruction.

The third approach requires only a small hardware change

(checking the lower bits of the PC), but the compiler needs

substantial work to implement the required code alignment.

However the native client compiler has already proven that

this is possible [12].

We have shown, that all proposed approaches are gener-

ally applicable for other micro controllers as well, as long

as the requirements mentioned in Section VI are met by the

controller and its instruction set.

Furthermore all of our approaches are suitable for large

scale sensor networks since they can guarantee that perma-

nent errors due to soft errors will not occur while they keep

the energy-consumption and additional hardware-costs low.

Thus, micro controllers implementing our approaches are a

desirable foundation for self-stabilizing algorithms in sensor

networks.

REFERENCES

[1] E. W. Dijkstra. Self-stabilizing systems in spite of distributed
control. Commun. ACM, 17:643–644, November 1974.

[2] S. Dolev. Self-Stabilization. MIT Press, Cambridge, MA,
USA, 2000.

[3] S. Dolev and Y. Haviv. Self-Stabilizing Microprocessor: An-
alyzing and Overcoming Soft Errors. IEEE Transactions on
Computers, 55, pages 385–399, IEEE Computer Society, Los
Alamitos, CA, USA, February 2006.

[4] S. Dolev and Y. Haviv. Stabilization Enabling Technology.
IEEE Trans. Dependable Secur. Comput., 9, 2, pages 275–
288, IEEE Computer Society Press, Los Alamitos, CA, USA,
March 2012.

[5] S. Dolev, Y. Haviv and M. Sagiv. Self-stabilization preserving
compiler. ACM Trans. Program. Lang. Syst., 31, pages 22:1–
22:42, August 2009.

[6] A. Dunkels. Operating Systems for Wireless Embedded De-
vices. In Wiley Encyclopedia of Computer Science and Engi-
neering, John Wiley & Sons, Inc., 2007

[7] Texas Instruments. MSP430x1xx family user’s guide (rev. f).
http://www-s.ti.com/sc/psheets/slau049f/slau049f.pdf.

[8] M. A. Jaeger, G. Mühl, M. Werner and H. Parzyjegla.
Reconfiguring Self-Stabilizing Publish/Subscribe Systems. In
R. State, S. van der Meer, D. O’Sullivan and T. Pfeifer,
editors, Proceedings of the 17th IFIP/IEEE Intl. Workshop on
Distributed Systems: Operations Management (DSOM 2006),
volume 4269 of Lecture Notes in Computer Science, pages
233–238, Berlin/Heidelberg, Germany, Oct. 2006. Springer.

[9] M. A. Jaeger, G. Mühl, M. Werner, H. Parzyjegla and H.-
U. Heiss. Algorithms for Reconfiguring Self-Stabilizing Pub-
lish/Subscribe Systems. Mahr and Sheng, Autonomous Sys-
tems - Self-Organisation, Management and Control. Springer,
2008.

[10] N. N. Mahatme, I. Chatterjee, B. L. Bhuva, J. Ahlbin, L.
W. Massengill and R. Shuler. Analysis of Soft Error Rates
in Combinational Logic and Sequential Logic and Implica-
tions of Hardening for Advanced Technologies. Reliability
Physics Symposium, pages 1031–1035 , IEEE International,
Amaheim, CA, USA, June 2010.

[11] T. Weis, H. Parzyjegla, M. A. Jaeger and G. Mühl. Self-
organizing and Self-stabilizing Role Assignment in Sen-
sor/Actuator Networks. In OTM Conferences (2), pages 1807–
1824, 2006.

[12] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula and N. Fullagar. Native Client: A
Sandbox for Portable, Untrusted x86 Native Code. Commun.
ACM, 53, pages 91–99, New York, NY, USA, January 2010.

513513513

