978-1-4673-2297-3/12/$31.00 ©2012 IEEE

Efficient Computing in Cyber-Physical Systems

Peter Marwedel
TU Dortmund, Informatik 12
44221 Dortmund, Germany
Email: peter.marwedel @tu-dortmund.de

Abstract—Computing in cyber-physical systems has to be effi-
cient in terms of a number of objectives. In particular, computing
has to be execution-time and energy efficient. In this paper,
we will consider optimization techniques aiming at efficiency in
terms of these two objectives. In the first part, we will consider
techniques for the integration of compilers and worst-case exe-
cution time (WCET) estimation. We will demonstrate, how such
integration opens the door to WCET-reduction algorithms. For
example, an algorithm for WCET-aware compilation reduces the
WCET for an automotive application by more than 50% by
exploiting scratch pad memories (SPMs). In the second part, we
will demonstrate techniques for improving the energy efficiency
of cyber-physical systems, in particular the use of SPMs. In the
third part, we demonstrate how the optimization for multiple
objectives taken into account. This paper provides an overview
of work performed at the Chair for Embedded Systems of TU
Dortmund and the Informatik Centrum Dortmund, Germany'.

I. INTRODUCTION

One of the key trends in information technology is the
increasing integration of the related techniques into products
which are in continuous interaction with their physical envi-
ronment. The resulting integrated systems have recently been
called cyber-physical systems [1]. Embedded systems can be
defined as information processing equipment integrated into
an enclosing product [2]. Many of the basic characteristics
of embedded systems also apply to cyber-physical systems.
Hence, the distinction between cyber-physical systems and
embedded systems should be clarified. From our point of
view, the term embedded system describes the information
processing part of the overall system. The combination with
the physical environment makes up the cyber-physical system:
Cyber physical system =
physical environment + embedded system

The integration with the physical environment has a far-
reaching impact on the requirements of embedded systems.
This impact includes

« The need to consider time constraints seriously. The lack
of adequate timing models in classical computer science
was stressed by E. Lee in his well-known paper [3].

« For portable applications, there is usually a very limited
availability of electrical energy available. Limited supply
of energy has been found to be one of the most stringent

IThis paper covers work which has been supported by Deutsche
Forschungsgemeinschaft (DFG) in the context of Collaborative Research
Center SFB 876 (project B2), in the context of DFG grant MA943/10-1,
and by the Commission of the European Community under grants 216008
(PREDATOR) and 216224 (MNEMEE)

Michael Engel
TU Dortmund, Informatik 12
44221 Dortmund, Germany
Email: michael.engel @tu-dortmund.de

constraints for the design of portable (and sometimes also
for other) systems.

o The need to analyze the resulting reliability in-depth. For
safety-critical applications, even small probabilities must
be considered.

« Weight, cost, electromagnetic compatibility, environmen-
tal friendliness, security and other evaluation criteria may
also have to be considered, but will be ignored in the
remainder of this paper.

The impact of these criteria is frequently underestimated.
In this paper, we will demonstrate approaches for addressing
the first and the second issues. A global presentation of
all possible approaches is clearly impossible for a single
conference contribution. This demonstration will be based on
results obtained at the Chair for Embedded Systems at TU
Dortmund.

The paper is structured as follows: In section 2, we will
describe techniques for optimizing worst case execution times
(WCETS) in order to address the presence of real-time con-
straints. These techniques are also linked to techniques increas-
ing the reliability of cyber-physical systems. In section 3, we
will present techniques for reducing the energy consumption
of embedded systems. Sections 2 and 3 contain separate
subsections on related work and results. Section 4 provides an
example of how the optimizations for minimizing the WCET
and the energy consumption can be combined. Section 5
comprises an overall conclusion.

II. EFFICIENCY IN TERMS OF WORST CASE EXECUTION
TIMES

A. Related work

For computing devices not connected to the physical en-
vironment, except possibly to (patient) human users, long
response times may be inconvenient, but will not be a safety
risk. This is different for computing tightly integrated with
the physical environment. For such computations, we must
make sure that computations are finished in the time inter-
val available. Unfortunately, in general purpose computing,
the focus frequently is on the average execution time of
algorithms. Moreover, theoretical computer science typically
is based on a very abstract notion of time. In this notion,
time does not even have a unit. So, no distinction is made
between, for example, atto-seconds and Mega-years. The O-
notation is another example of a concept inappropriate for

328

cyber-physical systems. Its introduction increased the trend
away from modeling real time and one can come to the
conclusion that the O-notation is considered harmful for real-
time systems.

Recently, commercial WCET-analysis tools (for example,
aiT [4]) became available which compute safe upper bounds
on the execution times. These tools help to prove that a system
will meet given time constraints. However, such proofs are
only possible after the software is generated. As a result,
software is not optimized for efficiency in terms of WCET
as the objective function. Hence, optimization potential may
be missed.

In order to predict WCET values easily, it has also been
proposed to design computing systems which exhibit exactly
the same execution time independently of any input values.
The resulting PRET (Precision Timed) machine is described
in [5].

B. WCC: A WCET-aware compiler

Requiring all computations to execute in exactly the same
amount of time is a strong restriction of the design space. For
most applications, it is sufficient to guarantee that the WCET
does not violate real-time constraints. Hence, computations
may finish faster, and this provides additional design options
not available with the PRET machine. Consequently, the
resulting system may be more efficient than a PRET-based
machine. In order to obtain an efficient system, software
generation should also be aiming at the production of software
which is efficient in terms of WCET as an objective. This
leads us to consider WCET as an objective considered during
compiler optimizations.

This idea was implemented in the worst-case execution
time aware compiler WCC. In order to avoid the redesign
of WCET-estimation tools, WCC is based upon an integration
of a standard compiler structure with a commercial WCET-
estimation tool, in this case aiT [4]. Fig. 1 shows the structure
of the resulting WCET-aware compiler.

C Sources

Parser

Optimizations

c

k<]

| 8 Code
é g Selector CRLZ)
[sa] \V \l/

LL-IR ‘ aiT ‘

[%2]

c

il

T WCET

N t =
€ Optimized 9 ®
= o O
& Assembly o B

Fig. 1. Structure of WCC

The compiler components are displayed on the left, aiT
on the right. WCC reads the source code (standard C code),
parses it and stores it in a high-level intermediate represen-
tation HL-IR. This representation is used for the mapping
to machine instructions (in our case exemplified for the
TriCoreTMarchitecture). As a result, we obtain blocks of code
represented as machine instructions in a “low level interme-
diate representation” LL-IR. In order to enable WCET-based
optimizations, this representation is converted into the format
accepted by aiT, CRL2. This conversion is relatively easy,
since HL-IR and CRL2 are both representations of blocks of
machine instructions. Calls to aiT generate WCET information
for the converted blocks and attach this information to the
output of aiT. This output can then be converted back to
LL-IR. This enhanced LL-IR information is the basis for
optimizations aiming at a reduction of the WCET. Also, the
WCET information can be back-annotated to blocks in the HL-
IR representation. In this way, high-level optimizations like in-
lining and unfolding can take WCET information into account
as well. The most time consuming part of this cooperation is
the execution of aiT.

C. Results

The integration of a compiler with timing analysis opens
new ground for optimizations regarding the WCET. All exist-
ing compiler algorithms can be reconsidered for their potential
to reduce the WCET. From our point of view, this is urgently
needed. But it is also sufficient and there is no need to
guarantee the same execution time for all input data. We
analyzed all the common optimizations like loop unrolling,
inlining, etc. We found the largest optimization potential in an
unexpected case, for register allocation. The studied register
allocation is based on graph coloring. The graph coloring
approach was made WCET-aware. Fig. 2 displays the results.
Averaged over the various benchmarks, slightly over 30%
speedup was observed.

Results for an “almost” industrial example were obtained
in the PREDATOR project [6]. In this project, project partner
Bosch provided the DEMOCAR software. This software is
a prototype of software used in real automobiles, modeled
after the real software (which was not available due to intel-
lectual property issues). The DEMOCAR software includes a
component controlling the ignition sequence of a combustion
engine (IgnitionSWCSync). This runnable was (T:&)mpiled with
WCC for the TriCore processor. The TriCore processor is
frequently used in the automotive domain. It features a scratch
pad memory (SPM). This SPM is exploited by WCC, but not
by the gcc compilers. As a result, the WCET of this runnable
could be reduced by about 50% compared to gcc.

III. EFFICIENCY IN TERMS OF ENERGY CONSUMPTION
A. Related work

The amount of energy which is available for portable
systems is considered as a very stringent constraint for the
design of such systems. Many approaches for the reduction
of the energy consumption have been published in recent

329

—
S
s
-
@
- | |
w
3] | | |
g i i i
E i i i
£ i i HH
& o L & 0 & g o ¢ sl Nk & P os D X o e & & @ <
SRF ST F F XTI S SO yo*’/&* 1520 S TP SIS S0 S 8 6 8 S
@j (b“"oé‘ & ,bﬁ ¢ & 8 < & °?o§ "“V.o@? N @?@4‘\& (\C/’ ¥ o\‘;\&‘)\ ¢ & b'b"‘\/ N & "04'5'1'/ ?40
S s & AR G &€ & & S &
Ko & I A R &$ ¢ SIS

Fig. 2. Results for WCET-aware register allocation

years. Energy minimization techniques can be found at all
levels of abstraction, from chip fabrication processes up to the
application level. It is not possible to provide a representative
overview in this paper. In our work, we found that a large
potential exists in the exploitation of the memory hierarchy.
As a rule of thumb, the smaller the memory, the less energy
is consumed per access. Smaller memories are frequently
also faster. This very naturally leads to the attempt to store
frequently accessed objects in small but fast memories. In
addition, techniques for speeding up the execution of algo-
rithms are also reducing the energy consumption, unless they
require an increase in the power consumption. Of course, the
underlying reason is the fact that energy is computed as the
integral of the power consumption over time.

Scratchpad memories (SPMs) are small and fast memories
which are mapped into the address space of the system.
Accesses to SPMs are inferred by the use of appropriate
addresses, rather than by comparing tags (as for caches). Our
own work led to a detailed identification of the benefits of
SPMs [7]. However, SPMs require software techniques for
mapping objects to these memories. Barua [8] and Kandemir
[9] have performed extensive work on the exploitation of
SPMs. In general, we distinguish between non-overlaying
(frequently called “static”’) and overlaying (frequently called
“dynamic”) approaches to SPM allocation. For non-overlaying
approaches, memory objects are allocated to space in the SPM
before applications are executed and stay there during the life-
time of the application. For overlaying approaches, memory
objects are copied back and forth between the layers in the
hierarchy while the application is running.

B. Exploitation of the memory hierarchy

Early algorithms for the exploitation of SPMs typically
use non-overlaying allocation, frequently also called static
allocation. Simple versions of this allocation problem can be
mapped to a knapsack problem. For more complex versions
of the allocation problem, it is more appropriate to model the
allocation problem as an integer linear programming (ILP)
problem [10], [2].

For overlaying approaches, algorithms are typically based
on an analysis of control-flow graphs (CFGs). For each of the
edges of CFGs, the cost and the benefit of spilling variables to

slower layers in the memory hierarchy is considered. Based on
this information, heuristics or optimal approaches for spilling
decisions can be taken. Our own work [11] is based on a
global ILP model, which is optimal for the considered cost
function. We consider the migration of data and code in order
to maximize the optimization potential. For code, we consider
the migration of entire functions and of basic blocks. Functions
can be migrated easily by adding the corresponding pragmas in
a pre-compiler phase. Popular compilers accept such pragmas
and use them for the allocation of address space to functions.
Basic blocks can be allocated to SPM address space by a
pre-compiler run as well, if procedure-exlining (turning basic
blocks into functions) is used.

Approaches mentioned so far are constrained to single
threads. Extending the scope of optimizations for SPMs,
we can take multiple threads into account. Thread context
information comprises the information stored in SPMs. As
a rule, this information must be saved and restored during
context switches. As an exception, we can allocate dedicated
space in the SPM for the different threads and avoid such
copy operations. Verma et al. explore this idea and study the
tradeoffs between different sizes of dedicated areas [12].

Verma'’s approach is still based on a fixed number of threads
known at design time. These days, embedded applications
are also becoming more and more dynamic, especially for
smart phones. Hence, it makes sense to consider threads which
are added during the life-time of systems. Research in our
group also led to algorithms for such situations [13]. However,
these algorithms require a level of indirection in order to
access information which may be in the SPM. This indirection
creates some overhead and also has a negative impact on
timing predictability. Fortunately, smart phones can hardly be
considered as cyber-physical systems and timing predictability
is less important in this case.

The additional level of indirection can be avoided, if mem-
ory management units (MMU) can be used to map memory
references dynamically either to SPM or some slower memory
[14]. Unfortunately, page sizes supported by MMUs tend to
become too large to be used with SPMs.

Achievable energy savings depend very much on the amount
of memory accesses to the slow and large main memory. A

330

variant of Amdahls law [15] can be used to compute the
relative saving of energy:

1
P
(1-P)+%

where P is the fraction of memory references replaced by
more efficient ones and § is the improvement of the energy
efficiency due to the smaller memory. For example, if 90% of
the references can be replaced by more efficient ones and the
smaller memory needs just ﬁ times the energy of the larger
memory, then

M

saving =

1 1

I 2
0.1+ 9% = 0.109 @

saving =

The new energy consumption would be 10.9% of the
original energy consumption. In currently (2012) available
technologies, S may indeed be in the order of 100. In equation
1, the first term is the remaining energy consumption of the
unoptimized part and the second is the energy consumption of
the optimized part. The reciprocal value denotes the improve-
ment over the initial version.

The correspondence to Amdahl’s law highlights an im-
portant issue: just like for the original law, (1 — P) limits
achievable improvements. Hence, it is important to enable the
optimization of all memory references, including references
to code, heap and stack data. Barua’s approach includes
techniques for handling heap and stack data. Nevertheless, the
fraction (1— P) of remaining references will frequently be the
limiting term. Reductions of (1 — P) may be more important
than increases of S.

C. Energy efficiency of GPU computing

In a project on resource-constrained machine learning,
we have been analyzing images generated by a sensor for
detecting (biological) viruses. Sophisticated image analysis
techniques are required in order to achieve sufficient detection
quality, since a high noise level is present in the sensor output.
Due to the high computational load, these algorithms have
been mapped to a graphics processing unit (GPU) [16]. We
expected such a mapping to reduce the execution time of the
algorithms, if compared to a general purpose CPU.

D. Results

For their mapping to SPMs, Steinke et al. [10] found energy
reductions between 12% and 43% compared to caches. The
reductions depended on the benchmark and were smallest for
quicksort and largest for me_ivlin. The average reduction was
23%. The average performance gain was 16%.

For our approach considering multiple threads [12], energy
reductions between 9% and 20% have been reported. In this
case, the base line is an approach allocating the SPM space
to the thread which leads to the maximum reduction in the
energy consumption of the application.

Despite the overhead resulting from indirect addressing, our
strategy for a varying set of threads [13] outperforms caches

for most of the benchmarks. Typically, the SPM-based system
was about 30% more energy efficient.

For air pollution simulation running on GPUs, we found
a speed up of up to 132x and a reduction of the energy
consumption to just 1.5%, compared to a CPU [16] (the
corresponding values for image analysis still need to be
computed).

Regarding the overall life cycle of PCs, we found that
the energy consumed during the fabrication of PCs usually
exceeded the energy consumed during the use of the PC
[17]. We conclude that efforts for reducing the impact of chip
fabrication on the environment need to continue.

IV. EFFICIENCY IN TERMS OF MULTIPLE OBJECTIVES AND
REQUIREMENTS

The discussion in sections 2 and 3 lead to the question: can
techniques for achieving energy efficiency be combined with
techniques for achieving WCET-efficiency? The latter should
tend to reduce execution times. If such a reduction does not
come with an increased power consumption, it should also
tend to reduce the energy consumption.

In a similar way, we can also try to look at another com-
bination of requirements: reliability and real-time constraints.
Many error correction techniques are based on the assumption
that once an error is detected, some amount of time is available
to correct it. This assumption may be wrong for cyber-physical
systems and unconditional attempts to correct errors might
violate time constraints. However, correction may also not
be necessary in cases where only a (possibly not noticeable)
deterioration of result quality is effected. Therefore, error
correction should not be attempted in such cases. In our
work, we could demonstrate that we are indeed able to tag
computations for which errors will only result in a deteriorated
image quality [18].

In an effort to consider tradeoffs between multiple objec-
tives, Lokuciejewski et al. analyzed dependencies between ob-
jectives during the selection of good combinations of compiler
optimizations [19], [20]. Machine learning was used to find
such good combinations. For the first time, an instance of
strong correlation between average and worst case execution
times could be demonstrated.

Multiple objectives have also been considered in recent
work on the automatic parallelization of sequential software
[21] for cyber-physical systems. Parallelization techniques are
rapidly gaining importance since the high computing demands
of future cyber-physical systems can only be satisfied using
multiple processor cores. In contrast to conventional paral-
lelization approaches, in cyber-physical systems it is often suf-
ficient to achieve a given amount of speedup for an application,
e.g., in order to adhere to given timing constraints. However,
in many cases additional constraints, like energy consumption
or code size, have to be considered. The work aims at load bal-
anced exploitation of multi-processor platforms with a smaller
number (typically < 10) of processors. It could be shown
that speed-ups close to the number of processors could be
obtained. Using this multi-objective parallelization approach,

331

the designer of a cyber-physical system is enabled to consider
the tradeoff between gains in speedup and increased energy
consumption. An extension of this work considers different
parallelization approaches, pipeline (loop-level) parallelization
and task-level parallelization in common in order to enable
finding improved solutions for the multi-objective optimization
problems.

V. SUMMARY AND FUTURE WORK

In this paper, we demonstrated the fact that computations
in cyber-physical systems have to be performed while taking
the requirements imposed by the physical environment into
account has far-reaching consequences for the implementation
of these computations. In particular, time must be considered
a first-class citizen. As a result, traditional approaches, for ex-
ample for compiling, have to be questioned. We demonstrated
that an integration of compilers with timing analysis is possible
and that it can be achieved while leveraging recent results
on timing analysis. Furthermore, energy efficiency remains a
primary concern for portable systems and (considering green
computing) beyond. We have also shown that energy efficiency
and WCETSs can be considered in combination.

Future work will include more optimizations considering
multiple objectives. In addition to the objectives listed above,
we will also take the quality of the algorithm results into ac-
count. For example, the quality of videos may be compromised
due to the lack of time for error correction and the quality of
pattern recognition techniques may be compromised due to
the lack of available energy.

ACKNOWLEDGMENT

The authors would like to thank current and past PhD
students of the Chair for Embedded Systems at TU Dortmund
(Informatik 12) and Informatik Centrum Dortmund (ICD)
upon whose work this paper is based.

REFERENCES

[17 E. A. Lee, “Computing foundations and practice for cyber-physical
systems: A preliminary report,” EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2007-72, May 2007.
[Online]. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/
EECS-2007-72.html
P. Marwedel, Embedded System Design — Embedded Systems Founda-
tions of Cyber-Physical Systems. Springer, 2011.
[3] E. A. Lee, “Absolutely positively on time,” IEEE Computer, Jul. 2005.
4] Absint, “aiT worst-case execution time analyzers,” http://www.absint.
de/ait, 2010.
[5]1 S. A. Edwards and E. A. Lee, “The case for the precision
timed (PRET) machine,” in Proceedings of the 44th annual
conference on Design automation. SESSION: Wild and crazy
ideas (WACI), June 2007, pp. 264 — 265. [Online]. Available:
http://chess.eecs.berkeley.edu/pubs/517.html
Predator project team, “Predator — design for
and efficiency (home page).” [Online]. Available:
predator-project.eu
[7]1 R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel,
“Scratchpad memory: a design alternative for cache on-chip memory in
embedded systems,” /0th Intern. Symp. on Hardware/software Codesign
(CODES), pp. 73-78, 2002.
S. Udayakumaran, A. Dominguez, and R. Barua, “Dynamic allocation
for scratch-pad memory using compile-time decisions,” ACM Transac-
tions in Embedded Computing Systems, vol. V, pp. 472-511, 2006.

2

—

[6

predictability
http://www.

[8

[hart

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

332

G. Chen, O. Ozturk, M. Kandemir, and M. Karakoy, “Dynamic scratch-
pad memory management for irregular array access patterns,” Design,
Automation and Test in Europe (DATE), pp. 931-936, 2006.

S. Steinke, L.Wehmeyer, B.-S. Lee, and P. Marwedel, “Assigning
program and data objects to scratchpad for energy reduction,” Design,
Automation and Test in Europe (DATE), pp. 409-417, 2002.

M. Verma and P. Marwedel, “Overlay techniques for scratchpad mem-
ories in low power embedded processors,” IEEE Trans. on Very Large
Scale Integration, vol. 14, no. 8, pp. 802-815, 2006.

M. Verma, K. Petzold, L. Wehmeyer, H. Falk, and P. Marwedel,
“Scratchpad sharing strategies for multiprocess embedded systems: A
first approach,” in IEEE 3rd Workshop on Embedded System for Real-
Time Multimedia (ESTIMedia), Sep. 2005, pp. 115-120.

R. Pyka, C. Fabach, M. Verma, H. Falk, and P. Marwedel, “Operating
system integrated energy aware scratchpad allocation strategies for
multi-process applications,” Int. Workshop on Software & Compilers for
Embedded Systems (SCOPES), pp. 41-50, 2007.

B. Egger, J. Lee, and H. Shin, “Scratchpad memory management for
portable systems with a memory management unit,” 9rd ACM Intern.
Conf. on Compilers, Architectures and Synthesis for Embedded Systems
(CASES), pp. 321-330, 2006.

G. M. Amdahl, “Validity of the single processor approach to achiev-
ing large scale computing capabilities,” AFIPS spring joint computer
conference, 1967.

C. Timm, A. Gelenberg, F. Weichert, and P. Marwedel, “Reducing
the energy consumption of embedded systems by integrating general
purpose GPUs,” TU Dortmund, Faculty of Computer Science 12, Tech.
Rep. 829, 2010.

P. Marwedel and M. Engel, “Plea for a holistic analysis of the relation-
ship between information technology and caron-dioxide emissions,” in
Workshop on Energy-aware Systems and Methods (GI-ITG), Hanover,
Germany, Feb. 2010.

M. Engel, F. Schmoll, A. Heinig, and P. Marwedel, “Unreliable yet
useful — reliability annotations for data in cyber-physical systems,” in
Proceedings of the 2011 Workshop on Software Language Engineering
for Cyber-physical Systems (WS4C), Berlin, Germany, Oct. 2011.

P. Lokuciejewski and P. Marwedel, WCET-aware Source Code and As-
sembly Level Optimization Techniques for Real-Time Systems. Springer,
2010.

P. Lokuciejewski, S. Plazar, H. Falk, P. Marwedel, and L. Thiele,
“Multi-objective exploration of compiler optimizations for real-time
systems,” in Proceedings of the 13th International Symposium on
Object/Component/Service-oriented Real-time Distributed Computing
(ISORC), Carmona, Spain, May 2010, pp. 115-122.

D. Cordes and P. Marwedel, “Multi-objective aware extraction of task-
level parallelism using genetic algorithms,” in Proceedings of Design,
Automation and Test in Europe (DATE 2012), Dresden, Germany, Mar.
2012.

