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Abstract: For embedded systems, the use of software-based error detection
and correction approaches is an attractive means in order to reduce often
inconvenient overheads in hardware. To ensure that such a software-based
fault-tolerance approach is effective, it must be guaranteed that a certain
amount of hardware and software components in a system can be trusted to
provide correct service in the presence of errors. In analogy with the Trusted
Computing Base (TCB) in security research, we call these components the
Reliable Computing Base (RCB). Similar to the TCB, it is also desirable to
reduce the size of the RCB, so the overhead in redundant hardware resources
can be reduced. In this position paper, we describe approaches for informal
as well as formal definitions of the RCB, the related metrics and approaches
for RCB minimization.

1 Introduction

The International Technology Roadmap for Semiconductors [ITR] predicts that
the frequency of permanent as well as transient faults in future semiconductors
will increase significantly. This effect is expected to be a result of a combination of
effects — shrinking feature sizes to increase the number of transistors available on
a chip, lowered supply volatages to reduce the energy consumption, and a steadily
increasing cost pressure.

This poses significant problems especially for small, cost-sensitive embedded sys-
tems. Semiconductors used in these systems often cannot afford additional error-
correction methods like large ECC-protected memories or redundant execution on
separate hardware units. Previous publications, like our results on reliability an-
notations [ESHM11], have shown that the overhead for error correction can be
significantly reduced by avoiding the correction of errors that are classified as non-
fatal. This, in turn, requires the introduction of software-based fault-tolerance ap-
proaches, since on the hardware level, no information on the semantics of a given
data object or machine operation is available. To provide a more precise classifica-



tion of data and instructions, source-code based annotations and transformations
have already been shown to significantly reduce the error correction overhead. For
more precise analyses that take fine-grained resources (like single processor regis-
ters) into account, however, methods are required that provide more information
on the application context in order to close the semantic gap between instruction
and data bits on the machine level and application behavior [EM12].

However, one important fact is often overlooked when discussing software-based
fault-tolerance methods. Since these, like the application software on top, are also
implemented in software, the system designer has to provide methods to ensure
error-free operation of the software components implementing fault-tolarance.

One approach to provide resilience for the fault-tolerant software components is
to ensure that these components are being executed solely on reliable hardware,
e.g., by explicitly protecting only a subset of the hardware components of a system
against errors. In order to make this a feasible approach, we have to solve two
problems:

1. How can we determine the fault-tolerance software components that are re-
quired to be correctly executing?

2. How can we ensure that the hardware components used by these software
components are reliable?

In order to capture the reliability properties and requirements of a system’s hard-
ware and software components, in this paper, we introduce the concept of the
Reliable Computing Base (RCB). Inspired by similar definitions from the field of
security research, the RCB intends to encompass those components of a system
that are expected to be reliable. These RCB components, then, are capable of
reliably correcting errors in components outside of the RCB.

This position paper intends to be the first step in defining the RCB concept. A first
informal definition is coined and possible important parameters that will aid in the
determination of a more formal definition of the RCB are identified. One important
topic is the minimization of the RCB, an approach to reduce the error correction
overhead. Here, we try to build a bridge from the idea of RCB minimization to
the increasing occurrence of heterogeneity in MPSoC architectures and memory
hierarchies, which we expect to provide interesting possibilites for minimizing the

RCB.

2 Related Work: The Trusted Computing Base (TCB)

The major inspiration for our definition of the Reliable Computing Base is the
Trusted Computing Base (T'CB) concept from security research. Similar to prob-
lems in reliability, software methods to ensure the security of a system have to



handle unexpected effects that result in a deviation of a system’s expected behav-
ior.

However, there exist several important differences between security and depend-
ability problems. Security problems usually arise due to bugs in the program code.
Based on the well-known fact that the number of software bugs per lines of code is
mostly constant, the major driving force in security research is to reduce the code
size of the TCB, thus reducing the number of possible errors in the security-critical
code.

In dependability, however, the situation is different. The probability that a tran-
sient or permanent hardware fault affects a software component of a system does
not depend on bugs in the software, but rather on code properties describing the
semantics of the executed operations and related data objects. Error models, in
turn, describe the probability of an error affecting a given component.

One important common fact of software-based fault-tolerance methods and TCB-
based security approaches, though, is that both have to rely on properties of the
underlying hardware to protect them. For security, hardware features like privi-
leged CPU states and protection of memory accesses by an MMU or MPU assure
that unprivileged code cannot access security-critical information, code, and hard-
ware resources. For dependability, the critical components of the fault-tolerance
software infrastructure have to be protected, e.g., by additional hardware, in order
to guarantee their error-free execution.

In the remainder of this section, we will take a look at common definitions for the
TCB and approaches to minimize its size. The following sections, then, coin our
preliminary RCB definition and contrast it with the TCB concept.

2.1 TCB Definitions

Despite (or, rather, due to) being a research topic for several decades now, we were
unable to find a single concise definition of the TCB in literature. Thus, we will
discuss the most relevant definitions below.

The first definition of the term Trusted Computing Base was coined by John M.
Rushby [Rus81]. He describes the TCB as “a combination of a kernel and trusted
processes, which are permitted to bypass a system’s security policies”.

A more precise definition was coined by Butler Lampson et al. [LABW91]. They
define the TCB of a computer system as

«...a small amount of software and hardware that security depends
on and that we distinguish from a much larger amount that can misbe-
have without affecting security. »

This second definition includes an important extension to the previous definition
by explicitly mentioning the size of the software and hardware components.



The Trusted Computer System Evaluation Criteria (the infamous “Orange Book”) [52085]
define the TCB as follows:

«The heart of a trusted computer system is the Trusted Computing
Base (TCB) which contains all of the elements of the system respon-
sible for supporting the security policy and supporting the isolation of
objects (code and data) on which the protection is based. The bounds
of the TCB equate to the "security perimeter" referenced in some com-
puter security literature. In the interest of understandable and main-
tainable protection, a TCB should be as simple as possible consistent
with the functions it has to perform. Thus, the TCB includes hardware,
firmware, and software critical to protection and must be designed and
implemented such that system elements excluded from it need not be
trusted to maintain protection.»

This definition strengthens the fact that the TCB cannot be restricted to software
components alone. Rather, it includes firmware and hardware components as well.
Also, the definition states clearly that components excluded from the TCB need
not be trusted.

Concerning the applicability of the TCB concept to embedded systems, the report
continues:

«For general-purpose systems, the TCB will include key elements of
the operating system and may include all of the operating system. For
embedded systems, the security policy may deal with objects in a way
that is meaningful at the application level rather than at the operating
system level. »

This definition fits well with our basic assumption that the inclusion of application
semantics is a key element to reduce the error correction overhead.

However, a major difference is that the report implies that an application-specific
protection policy can take place at application level:

« Thus, the protection policy may be enforced in the application soft-
ware rather than in the underlying operating system.»

Here, we observe a significant difference between our ideas of TCB and RCB def-
initions. Software-based reliability approaches tend to apply generic as well as
application-specific error correction methods. Generic methods include common
approaches like checkpointing and recovery or triple modular redundancy (TMR),
which restore a system state to a correct previous state, using application semantics
mostly to decide if an error is to be handled at all. In contrast, application-specific
error-correction methods apply a more fine-grained application semantics. For
example, a corrupt data value in a program may not be restored to the precise
original value in case of an error, but rather replaced by a default value inside the
context-defined value range.



2.2 TCB Minimization

An important research topic in security research is the question how to minimize
the TCB. The underlying assumption is based on the fact that bugs in software
are unavoidable and the number of bugs per lines of code (LoC) is mostly constant
[Hat95]. Thus, by reducing the amount of code running in privileged mode the
system depends on is a central objective [SPHHO06].

This objective was one of the driving forces in the development of second-generation
microkernels, like Liedtke’s L4 system [Lie96] and subsequent developments such
as TU Dresden’s Fiasco and UNSW’s OKL4 [HL10] systems.

Informal Procedures to minimize TCB are described in the “Orange Book” [52085].
Formal approaches to verify the correctness of the code in the TCB, like [HTS02],
have struggled for the last decade due to the complexity of the models and proofs
involved. One successful result is the verified sel.4 kernel [KAE™10], which accounts
to about 8,700 lines of C code and 600 lines of assembler code. However, even this
effort has to rely on the correctness of several hardware and software components,
notably the correctness of the C compiler, the assembly code, the hardware, and
kernel initialization.

The protection of the code in the TCB from unprivileged accesses is accounted
for by hardware mechanisms like privileged execution modes and memory man-
agement units. Thus, reducing the work to — manually or automatically — find
security-related bugs is the major driving force in TCB minimization. Automatic
approaches, while already proven possible, are still an open research topic.

2.3 Application-specific TCB

If the set of applications on a system is known in advance, which is usually the
case in embedded systems, methods to minimize the TCB can benefit from this
fact. An application-specific TCB is determined by analyzing the set of services
an application requires from the underlying system software. If this set of compo-
nents that an application needs to trust in order to operate securely is known, the
remaining unused TCB components can be removed. For example, an application
that does not require file system access will not require the related security func-
tionality inside the TCB. This approach facilitates the minimization of the TCB
especially for well-structured, componentized systems, like operating systems based
on a microkernel.



3 The Reliable Computing Base
3.1 Informal Approach

In this section, we intend to give a first, informal definition of the Reliable Comput-
ing Base, mainly derived from the TCB definition by Lampson et al. [LABW91].

Our first definition of the Reliable Computing Base is:

“The Reliable Computing Base (RCB) is a subset of software and
hardware components that ensures the operation of software-based fault-
tolerance methods and that we distinguish from a much larger amount of
components that can be affected by faults without affecting the program’s
desired results.”

Here, it is important to describe the deviations from the original TCB definition
in detail.

The RCB definition uses the term “subset of ... components”. In contrast, the
TCB definition uses the “small amount”. Reducing the amount of code, measured
in LoC, is the important goal for TCB minimization, based on the assumption of a
constant number of bugs per LoC [Hat95]. For the RCB, the vulnerability of code
is much more important than code size itself and we expect it to adhere to more
complex metrics than LoC.

The “software and hardware components” are relevant for the TCB as well as
the RCB. For the TCB, often hardware protection ensures the security of critical
software components. For RCB, the relevant hardware components should be be

especially protected from errors in order to guarantee reliable execution of the code
inside the RCB.

The RCB definition uses the wording “emsures the operation”, whereas the TCB
definition uses “that security depends on”. The RCB definition reflects our assump-
tion that software-based reliability can effectively be staged. Obviously, some core
software components have to execute reliably in any case. However, these com-
ponents might also implement only a small core that uses further software-based
methods to ensure the dependability of the remaining fault-tolerance methods.
We give an example of this approach we termed “dependability bootstrapping” in
sect. 5.4. Here, analyzing the tradeoffs in execution time, code size, and energy for
different bootstrapping strategies is an interesting open topic.

In addition, the RCB definition describes “software-based fault-tolerance methods”™.
This first approach to a RCB definition is coined for software-based fault-tolerance
approaches. An open question is whether the RCB definition is also sufficiently
general to apply it to hardware-based dependability approaches.

The “much larger amount that can tolerate errors” in the RCB definition refers
to the fact that it is actually possible to correct errors affecting a large part of
the code and data corrected by software-based methods. Otherwise, the overhead



for software-based approaches would be inacceptable if these could only cover a
relatively small amount of code and data.

The term “desired results” leaves room for interpretation. Depending on the appli-
cation, anything from 100% perfect results to only avoiding system and application
crashes is included here. This expresses the basic assumption that not all errors
show identical criticality. The system designer should thus be enabled to differen-
tiate handling for different classes of error impacts. Here, the TCB definition uses
“without affecting security”. This definition seems similarly open-ended, since it is
not further described what is included in “security”.

While this first, informal definition gives a rough idea of our RCB concept, a more
formal definition of the RCB will help in building automated analysis tools to
determine and, possibly, minimize the RCB. In the following section, we present
existing approaches for dependability metrics from the literature which seem useful
for a future formal RCB definition.

4 RCB-related Metrics

In order to assess the vulnerability of hardware and software components to errors,
previous research has already produced a number of metrics that seem useful in
defining the RCB in a more formal way. This more formal definition, then, can
lead the way to providing automatic code analysis and optimization approaches
that minimize the RCB.

The concepts we will describe include Mukherjee’s ACE (Architecturally Correct
Execution) Analysis MWET03] and the related Architectural Vulnerability Factor
(AVF). Based on these metrics, we will describe Sridharan’s Program Vulnerability
Factor (PVF) [SKO0S].

4.1 ACE Analysis

ACE analysis is a technique that provides an early reliability estimate for mi-
croprocessors [MWET03]. It is based on the concept of “Architecturally Correct
Execution”. An Architecturally Correct Execution (ACE) instruction is an instruc-
tion whose results may potentially affect the output of the program. By coupling
data from abstract performance models with low level design details, ACE analy-
sis identifies and rules out transient faults that will not cause incorrect execution.
However, there are some restrictions to ACE analysis. One important restriction
is that, while many transient faults are analyzable, some cannot be covered. As
a result, ACE analysis is conservative and provides a worst-case lower bound for
the reliability of a processor design in order to ensure that a given design will meet
reliability goals.



4.2 Architectural Vulnerability Factor

Based on the definition of Architecturally Correct Execution, Mukherjee defines
the Architectural Vulnerability Factor (AVF) metrics as follows [MWET03]: “The
AVF is the fraction of time an ACE instruction is present in a logic device”. For a
given hardware component H, an execution cycle n, and the number of ACE bits
in H (Bg), the AVF over a period of N cycles is defined as (see also [SK10]):

ZS:O(ACE bits in H at cycle n) 1)
BH x N

AVFy =

Using the AVF metric, we can determine the vulnerability of different hardware
components of a CPU. Simple examples from [MWET03] include:

e Commited error in program counter: AVF = 100%

e Error in branch predictor: AVF ~ 0%

These results are unsurprising. If a program counter value changes unexpectedly,
in almost any cases the control flow of the currently executing program changes to
a completely different context, so in almost any case the program is affected. In
contrast, the branch predictor only optimizes prefetching. If a prediction fails, the

only result is a possibly increased execution time!.

More complex examples are given for a specific implementation of an ITA64-like
architecture in [MWET03]:

e AVF for the instruction queue: 28%

e AVF for execution units: 9%

4.3 Program Vulnerability Factor

Based on the definition of the AVF, Sridharan et al. defined the Program Vulner-
ability Factor (PVF) [SKO08], which describes the influence of a hardware compo-
nent’s AVF on the execution of a given piece of code using that component.

The PVF of an architectural bit is defined as the fraction of time (in the number
of instructions) that the bit is architecturally correctly executed. Accordingly, the
PVF of an entire software resource is the fraction of bit-instructions in the resource
that are ACE. For a particular software resource R with size Bg, the PVF over I
instructions can be expressed as:

>~/ (ACE architecture-bits in R) )
BR x I

THowever, in timing-critical systems, such effects will have to considered in worst-case execu-
tion time (WCET) analyses.

PVFp =




4.4 Confining the RCB

Given the source and machine code of a software-based fault-tolerance system, we
expect to be able to employ the AVF and PVF metrics to determine the overall
metric for the vulnerability of the RCB. Ideally, the PVF for all RCB components
should be zero. Accordingly, it has to be known which hardware components the
fault-tolerance software components are mapped to, so we can calculate the related
AVF. Thus, confining the RCB includes mapping of code to hardware and software
components as an important step.

Static and dynamic mapping approaches to ensure that dependability-critical code
only executes on appropriate hardware components is an important future step in
RCB-related research. Here, we expect to benefit from our previous experience with
mapping applications to MPSoCs [BPST10] and scratchpad mapping approaches.

5 RCB Minimization
5.1 What should be minimized?

As mentioned above, in security research, TCB minimization tries to reduce the
amount of code. Consequentially, for minimizing the RCB, the PVF of the fault-
tolerance software components should be minimized. It is an as yet open question
what ideally should be reduced to achieve RCB minimization. Possible relevant
parameters include the code size, the number of data accesses, the number of
executed instructions, and the complexity of the underlying execution platform.

5.2 Embracing Heterogeneity

In the following paragraphs, we would like to propose two interesting design points
for minimization, both of which are based on the heterogeneity of the underlying
hardware platform.

One basic idea for RCB minimization is to embrace the heterogeneity present in
MPSoC cores and memory hierarchies. A possible approach would be to con-
strain the execution of fault-tolerance methods to simple cores, which we expect
to offer a significantly lower AVF. However, heterogeneity makes a designer’s life
harder, so the question is how much heterogeneity we are willing to afford. One
useful approach are single-ISA heterogeneous multi-core architectures [KTR104],
which implement one instruction set architecture on a set of microarchitectures
with different performance, energy, and reliability characteristics. This reduces the
development overhead significantly, since only one compiler toolchain has to be
supported and only one set of ISA-visible resources needs to be evaluated for an



analysis of the RCB.

Single-ISA heterogeneous architectures have left the research labs and have recently
become commercially available. Examples include the ARM big. LITTLE architec-
ture featuring Cortex A15 and Cortex A7 cores [ARM11] and NVidia’s Tegra 3
MPSoC.

5.3 Heterogeneous CPU Cores

Multiple heterogeneous architectures have been proposed, especially for embed-
ded systems. One prominent example is Texas Instruments’ OMAP3 architecture,
which integrates an ARM Cortex A8 RISC core and a C64x VLIW DSP core.
However, such an architecture is comparatively complex to program for; a similar
situation arises with the integration of RISC CPU and GPGPU cores. The already
discussed single-ISA heterogeneous multicores implement the same instruction set
(or a subset thereof), but differ significantly in their microarchitectural complexity
and, thus, their performance, energy consumption, and architectural vulnearbility.

Accordingly, ARM Inc’s big. LITTLE architecture [ARM11] uses two ARM proces-
sor cores that differ significantly in complexity. The simpler Cortex M4 core, shown
on the left hand side of Fig. 1, has a short, non-superscalar pipeline, whereas the
more complex Cortex A15 core, depicted on the right hand side of Fig. 1, features
a rather long, complex, superscalar pipeline?.
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Figure 1: ARM big.LITTLE Cores: Cortex A7 (left) and A15 (right)

It is reasonable to expect that the vulnerability of the smaller Cortex M4 core
in this architecture will be far lower than the vulnerability of the Cortex A15
core. However, both cores also differ significantly in their performance and energy
consumption, as shown in Fig. 2. Both cores support the 16-bit THUMB instruction
set. The Cortex A15, in addition, also supports 32-bit ARM instructions.

Thus, an open research question is how to map and schedule fault tolerance meth-
ods to the available cores. Parameters supporting these decisions will have to be
determined using AVF analyses for the different processors and the related PVF
analysis for the fault-tolerance methods.

2All figures in this paragraph are taken from ARM’s whitepaper [ARM11]
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Figure 2: ARM big.LITTLE Cores: Energy vs. Performance

5.4 Heterogeneous Memory Hierarchy

Another approach that embraces architectural heterogeneity is concerned with the
memory hierarchy of a system. Here, the idea is to ensure that fault-tolerance
software methods are exclusively executed in small memories that are protected
from errors by hardware methods like ECC. Such memories could, e.g., be espe-
cially locked instruction or data cache lines or small, fast scratchpad memories.
The rest of a system’s memory, i.e., the vast amount of dynamic RAM, can stay
unprotected if the software fault-tolerance methods can ensure the correctness of
the data outside the protected memory.

One approach to ensure the validity of code and data is to constrain the exe-
cution of code and the currently accessed data to reliable scratchpad memories
only. Accordingly, overlay techniques have to ensure that code and data copies
into these memories are protected by software (algorithmic protection by check-
summing, etc.).

In turn, this approach could also be used to further minimize the RCB. If the
minimal code base to correct errors affecting fault-tolerance methods residing in
unprotected memory could be determined and, in turn, this minimal code base
would always remain in protected memory, this could form a sort of reliability
bootstrap, requiring only a very small amount of code to permanently reside in
protected memory. In turn, more space remains free for the actual program’s
execution. Here, we expect to be able to analyze and optimize the tradeoffs between
performance and RCB size.

Scratchpad optimizations are a well-explored area of research for objectives like
energy [PFVT07] or WCET [FK09] minimization. Based on overlay methods pre-
viously developed by TU Dortmund’s DAES group [VMO06], we expect to be able to
provide approaches to minimize the RCB by ensuring execution of code in protected
memories only and correcting upcoming errors in other memories using correction
methods statically mapped to the reliable scratchpad memory.



6 Conclusions and Future Work

This paper attempts to define the concept of the Reliable Computing Base, which
we consider an important paradigm for the design and implementation of software-
based fault-tolerance approaches. We outlined the similarities with and differences
from the TCB concept used in security research and proposed metrics and examples
for minimizing the RCB.

Our next steps intend to make the RCB a useful, well-defined paradigm. This
includes a solid formal definition of the RCB based on the presented metrics and an
evaluation of different optimization methods, including the discussed exploitation
of heterogeneous hardware structures.

Based on a formal definition, we would like to develop automatic methods to de-
termine the RCB of a given system and devise automatic approaches to analyze
parameters useful to minimize the RCB.

These future analyses require the provision of a detailed hardware and software
component model in order to calculate reliable values for the AVF and PVF metrics.
Depending on the granularity of the models, the definition of the RCB can also
take place at different granularity levels. We expect the RCB to be a useful concept
that spans the range from simple, single-core microprocessor systems to networks
many-core machines.
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