A JVM-based Compiler Strategy for the R Language

Helena Kotthaus™, Sascha Plazar, Peter Marwedel

Computer Science 12, TU Dortmund University
*Contact author: helena.kotthaus @tu-dortmund.de

Keywords: R Language Optimization, Java, Compiler

The R programming language has become invaluable for analysis and evaluation of statistical methods. R
is a multi-paradigm language with functional characteristics, a dynamic type system and different object
systems. These characteristics support the development of statistical algorithms and analyses at a high-level
of abstraction. Like for many dynamic languages, R programs are processed by an interpreter. Especially
in the domain of statistical learning algorithms and bioinformatics, e.g. when analyzing high-dimensional
genomic data, this interpretation often leads to an unacceptably slow execution of computation-intensive R
programs. Our goal is to optimize the execution runtime of such R programs. Therefore, we plan to develop
a JVM-based compiler strategy including an R-interpreter written in Java and an extensible just-in-time
(JiT) compiler.

With the use of an R-interpreter written in Java [1], the execution of R programs could be optimized: By
targeting the JVM, JiT compilation is enabled within the interpreter code. However, transferring the R
interpretation process to the JVM does not automatically lead to high optimization potential, because R
programs still need to be interpreted. Additional source level optimizations should be applied to the inter-
mediate representation (IR) produced by the R-parser. Although JiT compilation could already speed up the
interpretation process, the native JiT-compiler is not aware of the R language and its specific optimization
needs. In order to push more aggressive optimizations, the JiT-compiler should be extended by knowledge
about R characteristics to enable language specific low-level optimizations and generate highly optimized
machine code. For this purpose, the Graal JiT-compiler [2], which is especally designed for extensibility,
should be employed.

On our poster we present our optimization ideas and development plans for the JVM-based compiler strategy
for the R Language.

References

[1] Bertram, A. (2012). JVM-based Interpreter for the R Language for Statistical Computing. http:
//code.google.com/p/renjin.

[2] Wiirthinger, T. (2011). Extending the graal compiler to optimize libraries. In Proceedings of the ACM
international conference companion on Object oriented programming systems languages and applica-
tions companion, pp. 41-42.


mailto:helena.kotthaus@tu-dortmund.de
http://code.google.com/p/renjin
http://code.google.com/p/renjin

