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Abstract

Automatic parallelization of sequential applications is the key
for efficient use and optimization of current and future embed-
ded multi-core systems. However, existing approaches often fail to
achieve efficient balancing of tasks running on heterogeneous cores
of an MPSoC. A reason for this is often insufficient knowledge of
the underlying architecture’s performance.

In this paper, we present a novel parallelization approach for
embedded MPSoCs that combines pipeline parallelization for loops
with knowledge about different execution times for tasks on cores
with different performance properties. Using Integer Linear Pro-
gramming, an optimal solution with respect to the model used is
derived implementing tasks with a well-balanced execution behav-
ior. We evaluate our pipeline parallelization approach for hetero-
geneous MPSoCs using a set of standard embedded benchmarks
and compare it with two existing state-of-the-art approaches. For
all benchmarks, our parallelization approach obtains significantly
higher speedups than either approach on heterogeneous MPSoCs.

Categories and Subject Descriptors D.3.4 [Programming Lan-

guages]: Processors—Compilers; D.1.3 [Programming Techniques]:

Concurrent Programming—Parallel Programming
General Terms  Algorithms, Design, Languages, Performance

Keywords Automatic Parallelization, Heterogeneity, MPSoC,
Embedded Software, Integer Linear Programming, Pipeline

1. Introduction

Heterogeneity is expected to be one of the leading design principles
for future embedded multi-core systems, since it offers promising
approaches to solve upcoming problems especially in the areas of
power, heat dissipation, reliability, and security. In embedded sys-
tems, however, usually there is neither support for parallel program-
ming languages nor are inherently parallel problems prevalent like
in many high-performance computing settings. Efficient use of the
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computing resources available in embedded multi-processor sys-
tems on chip (MPSoCs) thus requires approaches to extract paral-
lelism from a given sequential description.

When targeting heterogeneous MPSoCs, the complexity to be
handled by parallelization tools increases significantly. Whereas in
homogeneous systems all processing units of an MPSoC can be
considered identical regarding the execution time for a given piece
of code, execution times that differ for separate processors or pro-
cessor classes have to be taken into account in the heterogeneous
case. Therefore, it is essential to balance the execution time of all
tasks running in parallel in order to achieve the best possible utiliza-
tion of computing resources. Currently available automatic paral-
lelization methods for embedded MPSoC systems, however, either
do not consider heterogeneous execution times at all, e.g., [19], or
are only capable of extracting coarse-grained parallelism for het-
erogeneous systems [S]. In the first case, this results in a subop-
timal use of processing resources, since the incorrect assumption
of identical execution times on each processing unit leads to faster
processing cores waiting for slower cores to complete their respec-
tive workload. In the second case, the amount of parallelism ex-
tracted can be suboptimal, which may result in the generation of
only a small number of parallel tasks, e.g., using task-level paral-
lelism. This, in turn, may leave some of the available cores unused.

In this paper, we present a parallelization approach that is able
to extract more fine-grained parallelism for heterogeneous systems
from sequential C programs. It makes use of the fact that a large
number of embedded applications consist of multiple nested loops
which, e.g., iterate over vectors or matrices of data. Examples for
this class of applications are audio and video decoders and other
signal processing applications like wireless baseband processing.
Single iterations of these loops can only be executed in parallel if
it is ensured that there are no loop-carried data dependencies be-
tween the loops’ iterations. Our approach is able to consider these
dependencies when extracting a set of parallel tasks, resulting in a
program implementing pipeline parallelism. In contrast to previous
solutions implementing such an approach, our method employs a
cost model that allows incorporating differing execution times for
loop iterations due to the underlying heterogeneous platform. This
way, the balancing of parallel tasks that implement loop iterations
can be achieved. Taken together, pipeline parallelism and consid-
eration of execution time heterogeneity enable our parallelization
approach to utilize each processing unit according to its perfor-
mance characteristics in a system as well as the utilization of as
many processing units as possible at the same time.

Selecting the appropriate combinations of tasks to be executed
in parallel requires the consideration of two constraints. On the
one hand, the execution time of each parallel task should be as
similar to all other tasks’ execution times as possible, while, on the
other hand, the set of tasks to be executed in parallel is restricted



by the data dependencies inherent in the original sequential code.
We solve this problem by applying an Integer Linear Programming
(ILP)-based approach. While ILP-based approaches are known to
be NP-hard in general, we can show that for a comprehensive set
of benchmark programs we selected, the time required for analysis
and parallelization allows for the integration of our parallelization
tool in a typical embedded development tool flow.
To summarize, the main contributions of this paper are:

1. To the best of our knowledge, this is the first approach which
uses Integer Linear Programming to exploit pipeline parallelism
for embedded heterogeneous architectures.

2. In contrast to approaches from high-performance computing,
our approach focuses on applications and restrictions of em-
bedded systems.

3. Balancing tasks is essential for heterogeneous MPSoCs. To fa-
cilitate this, our approach integrates an appropriate cost model
which enables automatic control of the granularity of the ex-
tracted parallelism. This allows tasks to be mapped to process-
ing units with different performance characteristics.

The paper is structured as follows. Section 2 discusses related
work. The general idea behind our parallelization approach is mo-
tivated in Section 3, followed by a description of the central data
structure used, the Program Dependence Graph, in Section 4. Sec-
tion 5 presents details of the ILP-based parallelization methodology
used, augmenting the formal descriptions with graphical represen-
tations that visualize the different steps involved. Experimental re-
sults are discussed in Section 6, and Section 7 concludes the paper
and gives an outlook to future research ideas.

2. Related Work

Many semi- and fully automatic parallelization techniques have
been proposed in the last decades. All of them aim at simplify-
ing the task of parallelizing sequentially written applications for
(embedded) multi-core platforms. Early approaches optimize fine-
grained instruction-level parallelism (see, e.g., [24]) for VLIW pro-
cessors. However, recent architectures provide multiple cores on
one die and require techniques which extract more coarse-grained
thread-level parallelism. This kind of parallelism can be grouped
into at least three categories, namely fask-level-, loop-level- and
pipeline parallelism that are discussed below.

A representative approach of rask-level parallelism was pre-
sented by Hall et al. [8]. This technique automatically extracts
task-level parallelism and is integrated into the SUIF paralleliz-
ing and optimizing compiler framework [9]. Ceng et al. published
a semi-automatic parallelization assistant in [2]. Their approach
transforms the application code into a weighted statement control
data flow graph which is subsequently processed by a heuristically
clustering algorithm. The algorithm generates tasks after several it-
erations and requires a user feedback loop to control the granularity
of the parallelized program. Further approaches which extract this
kind of parallelism were presented by Sarkar [20], Ottoni [15], and
Nikolov et al. [14].

All approaches mentioned so far have in common that their ap-
plicability is limited to homogeneous architectures. Our previous
publication [5] also extracts task-level parallelism but significantly
differs from the other mentioned approaches since it considers het-
erogeneous architectures in the parallelization process. It could be
shown that it is very important to take platform information of the
heterogeneous target platform into account if applications should
be parallelized for those architectures. However, the earlier pre-
sented approach is only able to extract coarse-grained task-level
parallelism with limited potential of parallelizing loops, especially
of those with loop-carried dependencies. Therefore, the approach

presented in this paper focuses on the extraction of pipeline paral-
lelism for heterogeneous architectures.

Approaches to extract fine-grained loop-level parallelism were
developed by Chandra et al. and Franke. Chandra et al. [3] de-
scribe an approach which parallelizes loops of sequential appli-
cations for CC-NUMA (cache-coherent non-uniform memory ac-
cess) architectures. Franke [6] presents an approach which is ap-
plicable for C applications on DSP architectures with multiple ad-
dress spaces. Their approach also applies program code recovery
techniques which enable more efficient dependency analyses. An-
other popular technique to extract fine-grained data-level paral-
lelism from sequential applications is based on polytope models.
Polytopes are used to represent loops of the application with its it-
eration space and dependencies of nested loops. Approaches using
this technique have the drawback that they can only analyze affine
loops. Thus, already existing applications can, in general, not be
parallelized without manual code rewriting. Representative publi-
cations in this area were, e.g., published by Bondhugula et al. [1]
and Lengauer [12].

The last mentioned category, pipeline parallelism, is most rel-
evant for this work, since the presented approach of this paper
aims at the extraction of this kind of parallelism for heterogeneous
embedded architectures. Raman et al. [19], Tournavitis et al. [23]
and our previous publication in [4] present different approaches to
achieve this. The approaches are able to automatically split loops
into different pipeline stages and further increase the application’s
performance by splitting pipeline stages into additional sub-tasks.
Again, all these approaches have in common that they are optimiz-
ing for homogeneous platforms which makes it hard for them to
balance the extracted tasks for heterogeneous architectures. This
distinguishes them from the pipeline parallelization approach pre-
sented in this paper. Our new approach takes performance differ-
ences of heterogeneous architectures into account and is also less
restrictive in the generation of sub-tasks. An additional approach in
this area was presented by Liu et al. [13]. Their approach eliminates
loop-carried dependencies by re-timing the execution of statements
in a loop by moving executions of statements to earlier iterations of
the loop. Thus, dependencies may change which creates the oppor-
tunity to parallelize different iterations of the loops. In addition,
Gordon et al. [7] present a compiler framework which combines
the extraction of task, data, and pipeline parallelism for applica-
tions written in the programming language Streamlt [22]. The de-
signer has to extract tasks manually by defining independent actors
connected by explicit data channels. The algorithms described in
[7] search for parallelism in the given task structure. However, all
described pipeline parallelization approaches are not optimized for
heterogeneous architectures which drastically limits the achievable
speedup of the parallelized applications.

To summarize, many previously published approaches have
been presented but only the task-level parallelization approach pre-
sented in [5] takes performance differences of the available pro-
cessing units of heterogeneous architectures into account. Unfor-
tunately, many embedded applications are organized in a pipelined
program structure so that pipeline parallelism is often able to
extract more efficient parallelism than task-level parallelization
methodologies. Even though automatic pipeline parallelization ap-
proaches exist (like, e.g., [19], [23], and [4]), none of these is op-
timized for heterogeneous architectures. The approach presented
in this paper intends to fill this gap by introducing a new pipeline
parallelization approach which considers differences in execution
time between cores of heterogeneous embedded architectures.

3. Motivating Example

As already mentioned in the introduction, many embedded applica-
tions are structured in a pipelined manner. Dependencies between
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Figure 1. Pipeline parallelization example on homogeneous and heterogeneous architectures

these pipeline stages make it hard to extract efficient parallelism
by applying, e.g., task-level or simple loop-level parallelization
methodologies. Therefore, this section describes a motivating ex-
ample, shows how embedded applications profit from pipeline par-
allelism and discusses capabilities and limitations of existing ap-
proaches.

Figure 1 shows an example for the main computational loop of
the spectral benchmark from the UTDSP benchmark suite [11]. It
is a representative embedded application that calculates a power
spectrum of an input speech sample. The application code is shown
in Figure 1(a). The outer loop contains two inner loops and a call
to an fft (Fast Fourier Transform) function between both loops.
The second inner loop contains a loop-carried dependency to its
previous iteration, since it reads from mag[j] (in line 15) which
was written in its previous iteration of the outer loop. Thus, it
is not possible to execute all loop iterations in parallel. Instead,
the statements of the loop are grouped into two disjunct pipeline
stages 11 and 7%, like shown in the figure. In this example, a
data dependency exists between both pipeline stages, since 75
processes data generated by 7%. Therefore, both tasks cannot be
executed fully in parallel. The benefit of such a parallelization is
that each task can start its next iteration of the loop as soon as it has
communicated the generated data to the tasks waiting for its output.

The timing behavior of the two pipeline stages is visualized
in Figure 1(b) assuming that each task is executed by a separate
processing unit. As can be seen, pipeline stage 7% starts its first
iteration at time to. At the end of iteration 1 it sends its output data
to stage T%. Now, the first iteration of 7% can be executed in parallel
to the second iteration of 71 and so on. Thus, the extracted tasks are
executed in a pipelined manner. In this example we assume that the
loop has 12 iterations. With the given timing behavior of 1(b), the
application would be accelerated to use 37 instead of 48 time units
to execute the loop with two extracted pipeline stages.

The solution shown in Figure 1(b) has two disadvantages. First,
pipeline stage 75 is a lot faster than 7 which results in long idle
phases for 75 and an unbalanced execution behavior. In addition,
most architectures provide more than only two cores. Thus, more
tasks should be extracted to circumvent these problems and gain
additional performance. One possibility is to divide the loop into

more pipeline stages. However, the number of such stages is often
limited due to high communication costs. Instead, sub-tasks of
pipeline stages can be extracted which execute different iterations
of the stages in parallel. Figure 1(c) shows an example, in which
pipeline stage 7 is split into three subtasks, so that iterations 1, 2
and 3 as well as 4, 5 and 6, etc. are executed in parallel. In this
example, 75 obtained a sufficient amount of data to execute its
loop iterations continuously without waiting for 7% after the first
data has arrived. As can be seen, the solution is well balanced for a
homogeneous architecture with four cores. Approaches which are
able to extract such a solution were presented in, e.g., [19] and [4].
However, many embedded devices are heterogeneous and contain
several cores with differing performance characteristics.

Figure 1(d) shows what may happen if solution (c) was mapped
to such a heterogeneous architecture with different performance
characteristics of the available processing units. Most existing par-
allelization tools do not possess any information about the targeted
architecture and are, in addition, not aware of those performance
differences. Rather, they would have to assume a homogeneous ar-
chitecture. This leads to a very unbalanced timing behavior, as can
be seen in Figure 1(d). Task T 3 has executed all mapped iterations
in 4 time units, while 7% 1 needs 12 time units since it is mapped on
a slower processing unit. Thus, the cores executing 77,2 and 713
are idle for a long time which drastically reduces the performance
of the extracted solution. In addition, task 7% also often has to wait
for data. Solution (c), executed on the homogeneous architecture,
needs 15 time units, while the execution of solution (d) took 13.5
time units. This shows that the potential of the accelerated cores
cannot be used by parallelization approaches which are not opti-
mized for heterogeneous architectures.

To circumvent this problem, the approach presented in this
paper handles different execution times for all statements of the
application (and thus, also for created tasks) depending on the
mapped processing unit. In addition, the approach performs a pre-
mapping of tasks to processor classes, representing identical pro-
cessing types of the heterogeneous architecture. Another difference
is the way how the approaches map iterations to subtasks. The pre-
viously published approaches map all iterations with a different off-
set to the same subtask. In contrast, the approach presented in this
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Figure 2. Program Dependence Graph

paper freely maps iterations to subtasks. As can be seen in Fig-
ure 1(e), 71,3 executes iterations {1, 3,6, 7,9, 12}, while task 77 2
executes {2,5,8,11}. This freedom of decision highly increases
the complexity of the solution space but enables the extraction of
well-balanced tasks. All subtasks of T} finish at the same time and
provide task 7% with input data in an optimized way which reduces
the execution time from 13.5 to 7.5 time units. Thus, compared to
the previously published approaches, our new approach is the first
one which takes advantage of heterogeneous architectures for the
extraction of pipeline parallelism. It should be mentioned here, that
the extraction of pipeline stages and the mapping of iterations to
subtasks is done at the same time, so that the algorithm will not
remain in a local optimum. We demonstrate this in the result sec-
tion by comparing our results to the homogeneous state-of-the-art
pipeline parallelization approach presented in [4]. The results show
that our new approach is able to significantly outperform the exist-
ing one on heterogeneous architectures.

4. Program Dependence Graph

The pipeline parallelization approach for embedded heterogeneous
architectures presented in this paper employs an augmented pro-
gram dependence graph (PDG) as intermediate representation.
Each loop of the application is transformed into a PDG which com-
bines both control- and data-dependencies. An example of a PDG
for a small code snippet is depicted in Figure 2. The graph contains
one node for each statement of the considered loop, one entry and
one exit node. Control flow dependencies are visualized by solid
directed edges while data dependencies are represented by dashed
ones. Even for this small example many dependencies exist which
demonstrates that it is nontrivial to detect pipeline parallelism.
The presented approach of this paper is based on Integer Linear
Programming (ILP) and uses a clearly defined mathematical model
to evaluate the possible improvement achieved by a solution candi-
date. Therefore, necessary information like, e.g., estimated execu-
tion costs and iteration counts of the statements, are required and
annotated to the nodes of the graph (cf. Node Info in Figure 2).
Since processing units may differ in their performance character-
istics in heterogeneous systems, execution costs are extracted and
annotated for each processor class PC; (representing identical pro-
cessing units), separately. Thus, the approach is able to evaluate the
benefit of a parallel solution depending on the mapping of tasks to
processor classes which is also extracted by the presented approach.
At the edges of the graph, the edge type, communication costs,
the communicated data, the iteration count and the interleaving
level — describing the minimal amount of loop iterations which can
be executed before the data is consumed by the target node — are
also annotated (cf. Edge Info in Figure 2). The annotated data is au-

1: function DOPARALLELIZATION(IR ¢r, Platform pf)
2: loops <— COLLECTPARALLELIZABLELOOPS(ir)
3: sol + 0

4: for | € loops do

5: sol <— sol U PARALLELIZE(L, pf)

6: end for

7: COMBINEBESTRESULTS (loops, sol, pf)

8: end function

9:

10: function PARALLELIZE(Loop [, Platform pf)
11: loopP DG + CONSTRUCTPDG(I)

12: result <~ SIMPLEPARALLELIZER(loopP DG, pf)
13: if result = () then

14: result <— ILPPARALLELIZER(loopP DG, pf)
15: end if

16: solutions < {result, sequential Solution}

17: return solutions

18: end function

Figure 3. Parallelization algorithm

tomatically extracted by target platform simulation. By combining
the graphical representation with additional cost information, all
necessary information is available to extract well-balanced pipeline
parallelism for heterogeneous MPSoCs.

5. Parallelization Methodology

This section gives a global overview of the parallelization algo-
rithm in Section 5.1 followed by a formal definition of the Inte-
ger Linear Programming-based pipeline parallelization approach in
Section 5.2. Finally, a simple loop parallelization methodology is
presented in Section 5.3 which is combined with the ILP-based ap-
proach to extract parallelism from loops without loop-carried de-
pendencies in a less computational intensive way.

5.1 Parallelization Algorithm

The overall structure of the presented pipeline parallelization ap-
proach for embedded heterogeneous architectures is shown in Fig-
ure 3. The algorithm starts with the function DOPARALLELIZATION
in line 1. An intermediate representation (IR) [17] of the applica-
tion’s source code as well as a description of the target platform are
processed as input. The target platform description [18] contains
information about, e.g., the number and performance characteris-
tics of the available processing units and interconnects and also of
the memory subsystems.

First of all, a call to the function COLLECTPARALLELIZABLE
Loops traverses the IR of the application in line 2 and returns a list
of loops which may profit from pipeline parallelism. Afterwards,
the function PARALLELIZE is called (line 5) for each loop in isola-
tion to extract pipeline parallelism. The solutions are collected and
the best combination of parallelized loops is determined and imple-
mented by the function COMBINEBESTRESULTS. The approach
may of course implement parallelism for more than only one loop.

The function PARALLELIZE, starting in line 10, is called for
each loop in isolation. First, a PDG is created in line 11 which
contains only those nodes which are part of the loop(-nest) to be
processed. Since the complexity of the ILP-based pipeline paral-
lelization approach is very high, a call to SIMPLEPARALLELIZER
(described in Section 5.3) tries to parallelize the loop in a less com-
plex way which can only be applied if the loop does not contain any
loop-carried dependencies. If a solution can be found, it is com-
bined with the sequential version of the loop and returned as its
solution candidates. Otherwise, the more complex ILP-based par-
allelization approach presented in Section 5.2 is started and its re-
sult is returned together with the sequential version of the loop. The
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Figure 4. Graphical representation of the ILP-based pipeline parallelization approach (part 1)

sequential version of each loop is always added, so that the call to
COMBINEBESTRESULTS at the end of the algorithm always has
the option to use the sequential version, if another loop increases
the overall performance in a more efficient way.

5.2 ILP-based pipeline parallelization approach

Integer Linear Programming (ILP) is a well-known technique that
is often used for partitioning problems. Even though ILP is NP-
hard, solutions can be determined very efficiently by commercial as
well as by open source solvers for many real-world problems. This
section defines the ILP-based pipeline parallelization approach for
embedded heterogeneous architectures which is called in line 14 of
Figure 3. The approach covers five main targets:

I) Extract different pipeline stages by mapping statements of the
loop’s body into disjunctive stages (see Figure 1(a,b)).

1) Divide pipeline stages into subtasks which execute different
iterations of the stages in parallel (see Figure 1(c,d)).

III) Keep track of dependencies which may change if statements are
moved from one pipeline stage to another one or if iterations of
pipeline stages are mapped to different subtasks.

IV) Create a mapping of tasks to processor classes of the targeted
embedded heterogeneous architecture (see Figure 1(e)).

V) Minimize execution costs by taking into account task creation,
communication, and task execution costs which depend on the
processor class a task is mapped to.

In the following paragraphs, decision variables are written in
lower case letters, sets start with a capital letter and constants
contain exclusively capital letters. Indices n and o are used for
nodes of the PDG, ¢ and j are used for iterations of the loop to be
parallelized, ¢ and u represent indices for pipeline stages, while ¢
represents a processor class and s is used for concurrently executed
subtasks of a pipeline stage. A graphical representation of most
equations is also given in Figures 4-6. The sub-figures have the
same name as the corresponding subsections which describe the
equations.

5.2.1 Pipeline Stage Mapping

Target (I) of the ILP-based pipeline parallelization approach is a
mapping of PDG nodes to pipeline stages. To perform this, decision
variable zf, is defined in Equation 1.

ey

L= 1, if node n is mapped to pipeline stage ¢
"7 )0, otherwise

The constraint defined in Equation 2 ensures that every child
node (representing statements of the loop to be parallelized) is
mapped to exactly one pipeline stage.

Vn € Nodes : Z b =1 (2)

teStages

5.2.2 TIterations of Pipeline Stages to Subtask Mapping

Target (II) of the ILP-based pipeline parallelization approach is a
mapping of loop iterations of the created pipeline stages to con-
currently executed subtasks. This is expressed by decision variable
subtaskfys which is defined in Equation 3.

1, ifiteration ¢ of pipeline stage ¢
is mapped to subtask s 3)
0, otherwise

subtaslcf,s =

To be compliant with the original program semantics, the ILP
has to take care that each loop iteration (/NI = number of loop
iterations) is executed exactly once for each pipeline stage, which
is ensured by Equation 4.

vVt € Stages : Vi € {0,.., NI-1} :
> subtasky , =1 4)
s€SubTasks?t
5.2.3 Definition of Predecessor Relationships

The main objective of the pipeline parallelization approach is the
reduction of the execution time by moving statements of the loop’s
body into disjunctive pipeline stages. The loop iterations of each
stage can also be executed concurrently in different subtasks. In or-
der to minimize the execution time, the critical or most expensive
path from the entry to the exit node of the loop’s PDG (cf. Figure 2)
has to be extracted. Therefore, the algorithm has to define predeces-
sor/successor relationships between different pipeline stages which
depend on data and control flow dependencies of the child nodes
as well as on the mapping of loop iterations to subtasks (cf. Tar-
get (II)). Equation 5 defines decision variable predﬁ:;‘, which is
created for all pipeline stages ¢ and w in iterations ¢ and j.

1, if pipeline stage ¢ in iteration ¢ is pre-
tyau . . P . .
pred;; = decessor of pipeline stage w in iteration 5 (5)

0, otherwise

Data and Control Flow Dependencies Up to now, decision vari-
ables predﬁ:;-‘ are defined to express the predecessor/successor re-
lationship between different pipeline stages. Now, constraints have
to be added which take care that the decision variables evaluate
to 1, iff pipeline stage ¢ in iteration ¢ is a predecessor of pipeline
stage w in iteration j. One situation which leads to such a predeces-
sor relationship relies on data and control flow dependencies of the
mapped child nodes. Thus, if a data or control flow edge from node
n to node m exists and both nodes are mapped to different pipeline
stages, the latter one has to wait until the first one has completed its
execution. This is ensured by Equation 6.

Vt,u € Stages : Yn,m € Nodes :
Vie{0,..,NI-1} :Vj e {i,... NI-1} :n# m: (6)
EDGEpnmj—i =1:pred® > (zf, A zl)

] —
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Figure 5. Graphical representation of the ILP-based pipeline parallelization approach (part 2)

The predecessor variable predﬁ:;‘ is created for all possible
pipeline stage and loop iteration combinations. This way, for all
combinations of nodes, it is checked if node n is part of pipeline
stage t while node m has to be part of pipeline stage w. If this is
true and a directed edge from n to m exists with an interleaving
level of j — 4, denoted by EDGE,, m j—; = 1, pipeline stage
u depends on t for iterations ¢ and j. If there exists an edge
from, e.g., node n to m in iteration 1 and 3, the interleaving level
is 2. From a technical perspective, it should be mentioned that
the constant EDGE), , j—; is known when the ILP is created.
Therefore, constraints are only generated if an edge between n and
m with the matching interleaving level exists.

The A operator used in Equation 6 can be modeled by the
following constraints.

z=(zAy) € {0,1}

z>z+y—1, z<z, z<y 7
Subtask Dependencies In addition to data and control flow de-
pendencies, dependencies between different iterations of the same
pipeline stage have to be considered as well. They depend on the
loop iterations to subtask mapping. If, e.g., iterations 1 and 3 of
pipeline stage ¢ are mapped to the same subtask, both iterations
are executed sequentially since a subtask cannot evaluate different
iterations in parallel. Thus, iteration 1 of pipeline stage ¢ is a pre-
decessor of iteration 3 of pipeline stage ¢. Those dependencies are
created for all iteration combinations of the different pipeline stages
like defined in Equation 8.

Vt € Stages : Vi € {0,..,NI-1}:Vj € {i+1,..,NI-1}:
pred;’;. > ,smbtask:;S A subtask;v,s (8)

5.2.4 Extraction of Execution Costs of Pipeline Stages

To calculate path costs, execution costs of the different pipeline
stages have to be determined. In the homogeneous case, it would
be sufficient to sum up the execution costs of the nodes which
are added to the pipeline stage. Since it is important to consider
different performance characteristics of the different processing
units if an application should be parallelized for heterogeneous
architectures, execution costs should depend on the processor class
executing the given pipeline stage. This is done in Equation 9 which
creates one cost variable cost?, for all pipeline stages ¢, executed on
a processor class c.

Ve € ProcClasses : Vt € Stages :
costt > Yzl % (COST, /NI) 9)
neNodes
This variable contains costs COST, . of all nodes n mapped to
the corresponding pipeline stage ¢ for the execution of one iteration
on processor class c. The overall execution costs of each node
are distributed in equal parts over the iterations NI of the loop.
This saves several decision variables, since the ILP does not have

to distinguish between different execution costs of pipeline stages
in different iterations. The execution costs of node n on processor
class c are annotated at the nodes of the PDG and are automatically
extracted by the framework as described in [4].

5.2.5 Mapping of Subtasks to Processor Classes

Variable cost! contains the execution costs of one iteration of
pipeline stage t if it is executed on processor class c. But, up to now,
pipeline stages and their subtasks are not mapped to any processor
classes. This is not necessary for homogeneous architectures, but
has a huge impact on the execution time for heterogeneous ones.
Therefore, the presented approach of this paper combines the ex-
traction of parallelism with a mapping of subtasks to processor
classes to create well-balanced solutions like demanded by Target
(IV). This mapping is implemented by decision variable ma;zo’;,C
defined in Equation 10.

1, if subtask s of pipeline stage ¢

map;C = is mapped to processor class ¢ (10)

0, otherwise

Each subtask s of pipeline stage ¢ has to be mapped to exactly
one processor class c so that it is executed exactly once which is
ensured by Equation 11.

Vt € Stages : Vs € SubTasks® :
> map?c =1 (11)

c€ProcClasses

5.2.6 Used pipeline stages

The algorithm has the capability to extract as many pipeline stages
as processing units are available. Nevertheless, task creation and
communication costs as well as different performance characteris-
tics of the available processing units may result in the ILP extract-
ing fewer tasks if such a solution leads to a higher reduction of the
overall execution time. Thus, some of the pipeline stages may not
be used which can be evaluated by decision variable stageused’
defined in Equation 12.

1, if pipeline stage ¢ is used

stageused' = { (12)

0, otherwise

Pipeline stage ¢ is used if at least one node n is mapped to it,
like defined in Equation 13.
Vn € Nodes : Vt € Stages :
stageused’ > xf, (13)

5.2.7 Used subtasks

Like already mentioned, the approach offers the possibility to ex-
tract as many subtasks s for a pipeline stage ¢ as processing units
are available. The extraction of subtasks directly influences the
overall execution costs since task creation costs are added for each
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Figure 6. Graphical representation of the ILP-based pipeline parallelization approach (part 3)

created subtask. To determine the amount of created subtasks, a
decision variable subtaskused’ is created for each subtask s of
pipeline stage ¢ like shown in Equation 14.

subtaskused' — {1, if subta.sk s of pipeline stage ¢ is used
0, otherwise
(14)
Subtask s of pipeline stage ¢ is used if at least one iteration ¢
is mapped to it and pipeline stage ¢ itself is used like ensured by
Equation 15.
Vt € Stages : Vs € SubTasks' : Vi € {0,.., NI-1} :

subtaskused! > subtaskf-ys + stageused’ — 1 (15)

5.2.8 Mapping of Subtask Iterations on Processor Classes

Up to now, only a relation between subtasks and their mapped pro-
cessor classes exists, like defined in Equation 10. For the calcula-
tion of the overall execution costs the relation between iteration ¢
of pipeline stage ¢ and its mapped processor class is also necessary.
Therefore, Equation 16 defines decision variable iterOnPCf’c.

1, ifiteration ¢ of pipeline stage ¢
is mapped to processor class ¢~ (16)
0, otherwise

iterOnPCf,C =

Iteration ¢ of pipeline stage ¢ is mapped to processor class c if it
is part of subtask s and s is mapped to processor class c if subtask
s is really used. Equation 17 evaluates to one if this is true.

Vt € Stages : Ve € ProcClasses :
Vs € SubTasks' : Vi € {0,.., NI-1} : (17)

iterOnPC’fyc > subt‘aslﬁyS + mapi.yC + subtaskused’, — 2

5.2.9 Path Cost Constraint

Based on the knowledge of the execution costs of each pipeline
stage depending on the mapped processor class and the mapping of
loop iterations to processor classes, it is now possible to describe
the accumulated costs of the possible paths to determine the overall
execution time. Equation 18 defines accumcost?’- and ensures that
it contains the execution costs of all executed predecessors as well
as the execution costs of the pipeline stage’s iteration itself.

Vt, u € Stages : Ve € ProcClasses : Vi € {0,.., NI-1} :
vy e {i,..,NI-1} : predﬁ}-t =1AiterOnPCj . =1=
accumcost§ > costl + accumcostt + commecost, (18)

Equation 18 ensures that the path costs accumcost§ for pipeline
stage ¢ in iteration j are at least as large as the costs cost’ for the

execution of one iteration of pipeline stage ¢ itself executed on pro-
cessor class ¢ and the path costs of its most expensive predecessor
accumcosty, including all communication costs commcost,, of
pipeline stage u. Preconditions like predi“”,t = 1 can be modeled in
ILPs like, e.g., shown in [5]. The accumulated costs are included in
the objective function, so that it is automatically minimized by the
ILP solver.

5.2.10 Limit number of allocated tasks per processor unit

A platform is equipped with a limited number of processing units.
By taking advantage of platform information in the parallelization
step, it is possible to avoid additional scheduling overhead. There-
fore, each processing unit should execute only one subtask of a
pipeline stage in our model at a time. Thus, the constant number of
available processing units NUM PROC'S. of a processor class ¢
must be at least as high as the number of mapped subtasks map’;,C
if they are used subtaskused’. This is ensured by Equation 19.

Ve € ProcClasses: Y >

teStages sc SubTaskst

mapg’c A subtaskusedi, < NUMPROCS., (19)

5.2.11 Objective Function

With all decision variables and constraints defined, it is now pos-
sible to describe the objective function. As mentioned before, the
most expensive execution path from the entry to the exit node of the
loop’s PDG should be minimized like defined by Target (V). Thus,
additional constraints are added which statically set the entry node
to be a predecessor of all pipeline stages. The exit node will be a
successor of all pipeline stages, respectively. With the help of all
defined constraints, it is easy to create the objective function, like
shown in Equation 20.

numtasks * TASKOVERHEAD +

accumcostexit (20)

minimize

The variable numtasks contains the number of extracted sub-
tasks used. Since the creation of such tasks increases the execution
time, a constant task creation overhead, multiplied with the number
of created subtasks, is added to the objective value.

numtasks = Y > subtaskusedt  (21)
teStages s€c SubTaskst

The task creation overhead can be defined in the platform de-
scription together with a communication cost factor. By defining
these platform dependent parameters, it is easy to adapt the cost
model of the ILP to different architectures. The value of the objec-
tive function is equivalent to the execution time of the parallelized
loop on the targeted heterogeneous architecture. It is hence returned
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Figure 7. Results for platform configuration (A): 100/250/500/500 MHz

together with the node-to-pipeline-stage mapping, the mapping of
the stages’ loop iterations to subtasks and the mapping of subtasks
to the processor classes of the targeted heterogeneous platform as
result of the parallelization step.

5.3 Simple Loop Parallelization Approach

The ILP-based pipeline parallelization approach described in the
previous section automatically balances extracted tasks from loops
of embedded applications and also combines it with a mapping of
those tasks to processor classes of an embedded heterogeneous ar-
chitecture. Due to the complexity of the problem’s solution space,
the algorithm may need a long time to find a good solution. There-
fore, a fast but simplified algorithm is executed by the paralleliza-
tion approach first (cf. Section 5.1) which just divides the different
iterations of the loop into concurrently executed tasks. The gener-
ated results are a special kind of pipeline parallelism (and could
also be extracted by the ILP-based approach) and contain only one
pipeline stage divided into several subtasks. This approach can only
be applied if the loop does not contain loop-carried dependencies
since dependencies between different iterations would sequential-
ize the execution in such a case.

An example for a loop with 80 iterations, parallelized for a
platform with four different cores is given in Table 1. In a first
step, the approach calculates how long each processing unit takes
to execute one iteration of the loop (cf. column Exec time). This
time includes the time to execute one loop iteration on the specific
processor as well as task creation and communication costs for the
task created. Based on those execution times, a factor is calculated
(cf. Factor) which denotes the number of iterations executed on
processing unit ¢ while one iteration is executed on the slowest
processing unit:

Factor, = max  {EzecTimey,}/ExecTime. (22)

pEProcessors
In a third step, the percentage of executed loop iterations is
calculated by dividing each factor by the sum of all factors (cf.
Percentage):

Percentage. = (Factor./ Z Factory) * 100 (23)

pEProcessors

Finally, the iterations of the loop are distributed to the different
CPUs, depending on the calculated percentages (cf. Iterations). If
the sum of assigned iterations is less than the number of loop itera-
tions, the remaining iterations are assigned to the fastest processing
units (numbers in brackets). Thus, the number of loop iterations as-
signed to a processing unit is automatically balanced according to
the processing unit’s performance characteristics.

[ CPU [ Exectime [ Factor [ Percentage [ Iterations |
CPU 1 1,153,280 5.13 38.61 30 (+1)
CPU 2 1,281,280 4.62 34.76 27 (+1)
CPU 3 2,332,160 2.54 19.11 15
CPU 4 5,920,320 1.00 7,52 6

[Sum_ ] “ [ 1329 | 1000 [ 78 (80) |

Table 1. Simple Loop Parallelization Approach Example

By combining this simple but fast loop parallelization approach
with the rich but complex ILP-based one the framework presented
in this paper is able to extract efficient pipeline parallelism for em-
bedded heterogeneous architectures as shown in the next section.

6. Experimental Results

To highlight the efficiency of the solutions generated by our new
automatic pipeline parallelization approach for embedded hetero-
geneous architectures, we present results from the UTDSP bench-
mark suite [11] containing representative real-world embedded ap-
plications. In addition, we also evaluated other meaningful embed-
ded applications like, e.g., a JPEG encoder which is often applied
in embedded systems. To emphasize the quality of our new ap-
proach, we compare the extracted results with two existing state-
of-the-art pipeline parallelization tools. The first one is a pipeline
parallelization approach [4] which is optimized for homogeneous
architectures. The second one extracts a different kind of paral-
lelism (task-level parallelism) but is optimized for heterogeneous
architectures [5].

The heterogeneous embedded target platform was simulated
with the cycle-accurate COMET simulator [21]. Even though our
parallelization approach would also perform well for different in-
struction sets and specialized processing units since it uses differ-
ent execution costs for each statement, we have chosen same-ISA
multi-core platforms [10] for evaluation purposes. They are used
in emerging products, like, e.g., ARM’s big. LITTLE platform [16]
or NVIDIA’s Tegra 3. To emphasize the adaptability of our ap-
proach to various architectures, we present results for at least two
platform configurations. Platform configuration (A) contains four
ARM cores running at 100 MHz (1x), 250 MHz (1x), and 500
MHz (2x). This configuration shows that our approach works well
for architectures with large performance variances. All cores are
connected to a level-two cache on a high performance bus to enable
fast memory accesses for shared data. Platform configuration (B)
contains two 200 MHz and two 500 MHz cores to simulate a per-
formance discrepancy of approximately 2.5 x. This is also the av-
erage performance difference of ARM’s big. LITTLE platform [16]
with two Cortex-A7 and two Cortex-A15 cores.
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Figure 8. Results for platform configuration (B): 200/200/500/500 MHz

6.1 Evaluation of Speedup

‘We evaluated the presented platforms for two application scenarios:
(I) The main processor of the platform is the slowest one (e.g. 100
MHz) and the additional cores are added as accelerators. (II) The
main processor of the platform is the fastest one (e.g. 500 MHz)
and the other (slower) processors are added to the platform due to,
e.g., power or thermal issues. The measurement baseline in both
scenarios is the sequential execution on the main processor for all
evaluated approaches. Figure 7 depicts results for both evaluation
scenarios for platform configuration (A) (100/250/500/500MHz)
and compares our new heterogeneous parallelization approach to
the ones presented in [4] and [5]. The dashed line shows the theo-
retical maximum speedup of the considered target platforms.
Results for platform configuration (A) and the accelerator sce-
nario (I) are shown in Figure 7(a) on the previous page. As can be
seen, all three approaches increase the performance of all evalu-
ated applications well. The homogeneous approach [4] uniformly
balances the workload for all available processors. Thus, a speedup
between 3 X up to 4x is achieved for most applications which is
very good for a homogeneous architecture with four processing
units. However, results generated by [5] and our new heteroge-
neous pipeline parallelization approach are much more impressive.
They automatically balance the extracted tasks by respecting dif-
ferent performance characteristics of the available processing units.
Thus, the two processors with 500 MHz are automatically allocated
with heavier workloads than the slower ones. This results in perfor-
mance increases of up to 11-12 x for some of the benchmarks (e.g.,
boundary value, compress and mult) which significantly outper-
forms the homogeneous pipeline parallelization tool [4] and is very
close to the theoretical maximum speedup of 13.5x '. However,
even if the approach presented in [5] extracts comparable speedups
to our newly presented pipeline parallelization approach of this pa-
per for most applications, it is outperformed for three of the consid-
ered benchmarks (filterbank, jpeg, spectral). The highest difference
was observed for the JPEG encoder. Here, even the homogeneous
pipeline parallelization tool extracted a more efficient parallel so-
lution (2.6x) than the heterogeneous task-level approach (only
1.1x). This shows that for some embedded applications pipeline
parallelism is most efficient. Thus, the technique presented in this
paper is able to extract a speedup of nearly 10x which significantly
outperforms both existing ones. On average, the homogeneous tool
increased the applications’ performance by 3.8 x while the hetero-
geneous task-level one reached speedups of on average 8 x. In con-
trast, our new approach reached an average speedup of nearly 9x.

'(1 %100 + 1 % 250 + 2 * 500MHz) /100MHz = 13.5%

Figure 7(b) shows results for scenario (II). Here, the speedup
produced by the homogeneous approach is slower than one which
means that the parallelized application performs slower than its se-
quential version. The reason is that the homogeneous approach uni-
formly distributes the work to the available processing units. Thus,
the fast main processor has to wait until the slower processing units
have finished their tasks. Instead, the heterogeneous parallelization
approaches were able to speed up the applications by generating
tasks that perfectly utilize the slower processing units so that all
cores finish nearly at the same time. Again, the speedup of the
applications filterbank, jpeg, and spectral could be increased by
our new approach which outperforms both existing ones. It should
also be mentioned, that our new approach has extracted a higher
speedup for all evaluated benchmarks in both application scenarios
compared to the existing pipeline parallelization approach. In addi-
tion, it performed better for more than one quarter of all evaluated
benchmarks compared to the efficient heterogeneous task-level par-
allelization tool and otherwise never generated slower solutions.

These observations could also be confirmed for platform con-
figuration (B) with two 200 MHz and two 500 MHz cores (cf. Fig-
ure 8). The performance difference between all three approaches is
less than the performance difference for platform configuration (A)
since the theoretical speedup limit is lower for platform configura-
tion (B). Nevertheless, the relation between increased speedups and
the theoretical speedup limit is comparable between both platform
configurations. Here, the three already mentioned applications fil-
terbank, jpeg, and spectral profit most from our new heterogeneous
pipeline parallelization approach. The average speedup for scenario
(I)is 2.8x, 4.2x and 4.6 x for the evaluated approaches with a the-
oretical speedup limit of 7x of the platform. The speedup of Sce-
nario (II) with the slower additional cores is at 1.3, 1.8 and 2 X
with a theoretical limit of 2.8 X, respectively.

To summarize, the following results could be achieved:

1. Our newly presented heterogeneous pipeline parallelization ap-
proach is able to utilize heterogeneous platforms in an excellent
way (speedups of up to 11-12x were measured).

2. The integration of mapping decisions and platform information
in a heterogeneous parallelization approach is highly beneficial.

3. Our new approach outperformed two existing state-of-the-art
parallelization approaches. For the JPEG encoder, a speedup of
nearly 10x could be measured compared to 2.6x and 1.1x.

6.2 Execution Time

Of course, those results do not come for free. The newly presented
ILP-based pipeline parallelization approach for heterogeneous ar-
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chitectures has the longest execution time compared to the other
approaches. The time to parallelize the evaluated benchmarks with
the three opposed approaches is visualized in Figure 9°. The tim-
ings shown are those which were necessary to extract the parallel
solution for platform configuration (A) with evaluation scenario (I).

As can be seen, the homogeneous pipeline parallelization ap-
proach performs faster for most benchmarks than both other ap-
proaches while the heterogeneous task-level approach performs
faster for most of them than our newly presented heterogeneous
pipeline parallelization approach. This is due to the fact that the
complexity of the solution space is increasing between all three ap-
proaches from left to right. Nevertheless, the quality of the solution
also increases with the complexity of the respective approach. On
average, the homogeneous pipeline parallelization approach took
around 3 minutes to parallelize the considered applications. But
most of them could be processed in less than a minute. In contrast,
the heterogeneous task-level parallelization approach took 10 min-
utes on average to parallelize the applications. The newly presented
heterogeneous pipeline parallelization approach processed the con-
sidered applications in 28 minutes on average while most appli-
cations were parallelized in around 10 minutes. One possibility to
counteract the higher execution times is to parallelize the paral-
lelization approach itself. Since all loops are processed in isolation
first (cf. Figure 3), the approach is highly parallelizable which can
significantly reduce the overall execution time. Nevertheless, the
high speedups outweigh higher execution times in most cases and
are acceptable since parallelization has to be done only once in the
compilation process.

7. Conclusions and Future Work

To the best of our knowledge, this paper presents the first approach
which combines automatic extraction of pipeline parallelism with
mapping decisions to efficiently balance created tasks for embed-
ded heterogeneous MPSoCs. The efficiency of the tool was demon-
strated using several real-world benchmarks from typical embed-
ded application domains. The measurements, performed on a cycle-
accurate MPSoC simulator, have shown that our new approach out-
performs two existing state-of-the-art parallelization approaches.
Speedups of up to 11-12x could be measured for some of the con-
sidered benchmarks on a heterogeneous embedded platform with a
theoretical speedup limit of 13.5x.

In the future we would like to extend our approach to take
other objectives into account as well, like, e.g., energy consumption
or code sizes, to be able to create even more efficient code for
embedded MPSoCs.

2 Measured on an AMD Opteron core running at 2.4 GHz
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