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Abstract—Heterogeneous MPSoCs are used in a large fraction
of current embedded systems. In order to efficiently exploit the
available processing power, advanced parallelization techniques
are required. In addition to consider performance variances
between heterogeneous cores, these methods have to be multi-
objective aware to be useful for resource restricted embedded
systems. This multi-objective optimization requirement results in
an explosion of the design space size. As a consequence, efficient
approaches are required to find promising solution candidates.
In this paper, we present the first portable genetic algorithm-
based approach to speed up ANSI-C applications by combining
extraction techniques for task-level and pipeline parallelism for
heterogeneous multicores while considering additional objectives.
Using our approach enables embedded system designers to select
a parallelization of an application from a set of Pareto-optimal
solutions according to the performance and energy consumption
requirements of a given system. The evaluation of a large set of
typical embedded benchmarks shows that our approach is able to
generate solutions with low energy consumption, high speedup,
low communication overhead or useful trade-offs between these

three objectives.

I. INTRODUCTION

The proliferation of heterogeneous multiprocessor systems
on chip (MPSoC) poses a new challenge for embedded sys-
tem designers. Heterogeneity allows to obtain speedups while
saving energy by executing tasks on slower cores. However,
it is crucial to balance parallel tasks on these differing cores.
Otherwise, a system would waste computation time and energy
due to cores that idle while waiting for data from other tasks.
A typical use case in embedded systems is to extract as much
speedup as required while staying within a given energy limit.

Previous research has shown that the extraction of effi-
cient parallelism from existing source code for heterogeneous
systems is a complex task, since optimizations have to take
the difference in processing speed between differing cores
into account. When considering additional objectives such
as energy consumption, the number of possible solutions
explodes, which renders traditional sophisticated optimization
approaches infeasible due to the excessive growth in required
computing time to find feasible solutions.

In this paper, we present a portable approach based on
genetic algorithms that enables embedded system designers to
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obtain solutions for this optimization problem quickly. Com-
pared to existing parallelization methods, our approach is able
to extract both coarse-grained task-level parallelism as well
as fine-grained pipeline parallelism found in typical embedded
applications. By evaluating cost models, both parallelization
granularities can be combined to achieve significant speedups.

The central data structure used for optimization is a hi-
erarchical task graph (HTG), which reflects the structure of
a program starting with simple statements at its leaves up
to the complete program at its root. The use of an HTG
enables solutions that mix coarse- and fine-grained partial
solutions in order to match the execution time characteristics
of the different cores. When assessing the possible speedup
obtainable by parallelization, it is important to also consider
the overhead introduced by task creation and communication
requirements of the extracted tasks. Spending too much time on
communication, e.g., by creating too many fine-grained tasks,
might render all improvements obtained by using more pro-
cessor cores void. For this reason, our optimization approach
considers task creation and communication costs, based on
high-level cost models, in addition to differences in execution
speed. All parameters are configurable to enable an easy
adaption of our new approach to various architectures.

For multi-objective optimization, the nodes of the HTG
are augmented with information on execution time as well as
energy consumption of a given piece of code extracted by
target platform simulation. This information forms the basis
for finding efficient, Pareto-optimal multi-objective solutions
using a genetic algorithm approach.

The evaluation of a set of typical embedded benchmarks
shows that using our optimization, speedups close to the
theoretical maximum speedup as well as energy-optimized
solutions providing reasonable speedups with low communi-
cation overhead are obtainable. The generation of a set of
Pareto-optimal solution candidates then allows the embedded
system designer to select a parallelization solution tailored to
the specific requirements of the given system.

To summarize, the main contributions of this paper are:

1) To the best of our knowledge, this paper presents the
first approach to extract parallelism for heterogeneous
MPSoCs that considers multiple optimization objectives
at the same time.

2) Our approach combines the extraction of task-level as
well as pipeline parallelism in order to be efficient for
embedded systems.978-1-4799-1010-6/13/$31.00 © 2013 IEEE



3) Our approach is enriched with adequate cost models to
evaluate execution time, energy consumption and commu-
nication overhead. This enables automatic control of the
granularity of the extracted parallelism. Furthermore, the
created tasks can be automatically balanced for processing
units with different performance characteristics.

The rest of this paper is structured as follows. We give
an overview of related work in Section II. A description of
our approach and the framework behind it is given in Section
III. Section IV details our multi-objective aware parallelization
approach, followed by an evaluation in Section V. Finally,
Section VI concludes the paper and gives an outlook to future
research ideas.

II. RELATED WORK

A lot of effort has been invested in the last decades in
research projects developing approaches and tool support to
automatically parallelize sequentially written applications for
multi-processor systems. The kind of parallelism extracted
by those tools can be grouped in different categories. Here,
we will discuss two of them, namely task-level and pipeline
parallelism since the approach described in this paper extracts
these two kinds of parallelism.

A typical approach which is able to extract coarse-grained
task-level parallelism fully automatically was presented by Hall
et al. [1]. Their technique extracts this kind of parallelism
based on an interprocedural analysis. It was later integrated in
the SUIF Parallelizing Compiler framework [2]. The approach
presented by Hall et al. also applies various code optimizations,
like, e.g., privatizations and reduction recognition for arrays
and scalar variables, to extract even more efficient parallelism.

A different approach was published by Ceng et al. [3].
Their parallelization assistant works in a semi-automatic man-
ner so that the user has to decide how fine-grained the appli-
cation should be partitioned. The approach was integrated into
the MAPS framework and operates on a weighted statement
control data flow graph which is subsequently processed by a
heuristically clustering algorithm.

Sarkar [4] also presented an automatic coarse-grained
parallelization approach extracting task-level parallelism from
sequentially written applications. His approach was integrated
into IBM’s PTRAN compiler. The parallelism extraction tech-
nique employed a so called forward control dependence graph
(FCDG) as intermediate representation and evaluated the ex-
tracted parallelism by high-level models. However, only simple
heuristics were used to merge nodes of the graph to coarser-
grained tasks.

Other parallelization approaches extracting task-level par-
allelism were, e.g., presented by Ottoni [5]. Their approach
employs a program dependence graph and extensions of it to
detect parallelism in sequentially written applications. Poly-
chronopoulos et al. demonstrated the usefulness of hierarchical
task graphs for an automatic scheduling algorithm in [6]. The
HELIX system [7], presented by Campanoni et al., is able
to parallelize loops automatically from sequentially written
application code. A heuristical speedup model extending Am-
dahl’s Law [8] is used to determine loops to be parallelized.
Profiling data is used to extract the execution time required by
the model.

Up to now, all discussed approaches are optimized to
extract coarse-grained task-level parallelism. However, task-
level parallelism is of limited use for extracting efficient
parallelism from loops, especially from those with loop-carried
dependencies. This was also observed by Raman et. al. [9] and
Tournavitis et al. [10] who presented techniques which are
able to extract pipeline parallelism from loops of sequentially
written applications. Both approaches split loops into different
pipeline stages which can further be divided into concurrently
executed sub-tasks if the stages are stateless. Unfortunately,
both approaches lack cost models which are necessary to
balance the extracted tasks.

Polytope models are also often used to extract parallelism
from sequentially written loops. The iteration space of the
loops is transformed into polytopes including all dependencies
of nested loops by linear inequalities. Those approaches have
the drawback that they can only analyze affine loops so that
already existing applications can, in general, not be parallelized
without manually adapting the source code. A representative
work in this area was published by Lengauer [11].

All approaches mentioned so far have the drawback that
they are not optimized for resource restricted embedded
MPSoCs. First, they extract either coarse-grained task-level
parallelism or finer-grained pipeline parallelism. Second, they
only consider the reduction of execution time as their only
optimization objective on cost of other resources like, e.g.,
energy consumption. Finally, all of them were developed for
homogeneous architectures so that they are not able to handle
different performance characteristics of the cores available in
a heterogeneous MPSoC. In contrast, the approach presented
in this paper combines the extraction of coarse-grained task-
level parallelism with finer-grained pipeline parallelism while
considering different objectives in a multi-objective aware
optimization. In addition, our approach also considers differ-
ent execution times for statements executed on the available
processing units which is indispensable if applications should
be parallelized for heterogeneous architectures.

However, our previously published approaches [12]
and [13] consider multiple objectives at the same time while
extracting task-level and pipeline parallelism. Comparable to
the approach presented in this paper, [12] and [13] employ
genetic algorithms and high-level cost models to automati-
cally balance the extracted tasks. It could be shown that the
approaches work well for homogeneous architectures. But in
contrast to the work presented in this paper, heterogeneous
architectures with different performance characteristics of the
available processing units are not supported. Thus, large en-
ergy savings or massive speedups cannot be achieved by the
previously published tools since all processing unit are treated
to be identical.

To conclude, to the best to our knowledge, so far no
parallelization approach exists which extracts task-level and
pipeline parallelism in a multi-objective aware manner, com-
bined in one approach which is also optimizing for heteroge-
neous architectures.

III. FRAMEWORK & APPROACH

Our previous publications in [12], [13] have shown that
the presented parallelization approaches, based on genetic
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algorithms, are able to extract efficient parallelism from se-
quentially written ANSI-C code for homogeneous embedded
devices. Thus, we decided to use this framework as a starting
point for our new multi-objective aware parallelization ap-
proaches optimized for heterogeneous MPSoCs. However, the
existing approaches of [12], [13] are not aware of variances in
the objective values for statements to be parallelized depending
on the executing processing unit. This is not necessary for
homogeneous architectures since all cores behave identically
but it is crucial to efficiently parallelize applications for
heterogeneous systems. For example, processing units with a
slower frequency are, in general, much more energy efficient
than a processing unit with a higher frequency at the cost
of slower execution times. Therefore, our new parallelization
approach takes advantage of platform specific information to
automatically balance extracted tasks for processing units with
differing execution behavior. Multiple objectives are consid-
ered at the same time and a front of Pareto-optimal solutions
is returned to the application designer so that the solution
which fits best to a specific application scenario can be chosen
as final implementation. In addition, our tool also combines
parallelism extraction with a pre-mapping of tasks to proces-
sor classes which represent identical processing types of the
heterogeneous architecture. This enables the optimization of
tasks for specific processing units directly in the parallelization
process. The extracted pre-mapping information is later passed
to a mapping tool to ensure that the extracted tasks are mapped
to the type of processing units for which they are optimized.

The rest of this section presents a brief description of the
hierarchical task graph in Section III-A which is employed
as intermediate representation followed by an overview of the
global parallelization algorithm in Section III-B.

A. Augmented Hierarchical Task Graph

An intermediate representation is indispensable to extract
well-balanced parallelism from sequentially written applica-
tions. In this paper, we employ an Augmented Hierarchi-
cal Task Graph which is automatically extracted from the
application’s source code as intermediate representation (an
example is depicted in Figure 1). The hierarchical structure

Algorithm 1 Pseudo code of global parallelization algorithm

1: function MAIN(IR ir, Platform pf )
2: htg ← EXTRACTGRAPH(ir, pf)
3: pfront← PARALLELIZE(htg.getRootNode(), pf)
4: solution← CHOOSESOLUTION(pfront)
5: IMPLEMENTSOLUTION(solution)
6: end function
7: function PARALLELIZE(Node n, Platform pf )
8: res← {SequentialSolutions(n)}
9: if ISNOTHIERARCHICALNODE(n) then

10: return res
11: end if
12: /* Parallelize bottom-up in hierarchy, first. */
13: for all c ∈ ChildNodes(n) do
14: PARALLELIZE(c, pf)
15: end for
16: /* Parallelize this node (all children processed). */
17: if ISLOOPSTMT(n.getStmt()) then
18: pfront← GAPIPELINEPARALLELIZER(n, pf)
19: else
20: pfront← GATASKLEVELPARALLELIZER(n, pf)
21: end if
22: res← res ∪ {pfront}
23: return res
24: end function

of the graph is equivalent to the hierarchical structure of
the application’s source code. Thus, statements which contain
other statements deeper in their hierarchy, like, e.g., a loop,
are represented by Hierarchical Nodes. In contrast, Simple
Nodes represent statements which do not contain any further
hierarchical structures, such as, e.g., an assignment statement
(a = a+ 1).

All hierarchical nodes contain a Communication In- and
a Communication Out-Node to encapsulate all communication
edges coming from outside of the hierarchical node to any
child nodes and vice versa. Thus, each hierarchical node
can be processed in isolation in the parallelization process
which drastically reduces the complexity of the parallelization
problem. The application’s control flow is implicitly modeled
by the hierarchical levels of the graph so that explicit control
flow edges only have to be added in special cases like, e.g.,
break- or return-statements. Data-Flow edges are also modeled
by the hierarchical task graph and denote communication if
source and target node are executed in different tasks. By
construction, all leaves of the graph are simple nodes and are
annotated with iteration counts and cost information of the
considered objectives (like, e.g., execution time and energy
consumption) depending on the mapped processing class (PC)
(see Node Info in Figure 1). This information is automatically
extracted by our framework by target platform simulation. All
edges of the graph are also annotated with information like
the amount of communicated data, the edge type, the iteration
count, etc. (see Edge Info in Figure 1). Techniques which can
be used to extract a Hierarchical Task Graph from sequentially
written ANSI C-code can be found in [12].

B. Parallelization Algorithm

The overall structure of our new multi-objective aware
parallelization approach for heterogeneous MPSoCs is shown



in Algorithm 1. The main function expects an intermediate
representation [14] of the application’s source code as well as
a description of the target platform as input parameters. The
target platform description [15] contains information about,
e.g., the number and performance characteristics of the avail-
able processing units, interconnects, and also of the memory
subsystems. After the Augmented Hierarchical Task Graph
is extracted in line 2, the parallelization approach starts to
extract parallelism in a bottom-up search strategy by calling
the function PARALLELIZE for the root node of the hierarchical
graph in line 3.

The pseudo-code of the function PARALLELIZE starts in
line 7. The function returns the sequential version of the
assigned statements as its only solution (line 10) if the node
does not contain any further hierarchical nodes (Simple Nodes),
since no meaningful parallelism can be extracted from a
separate statement. The sequential version of the application is
returned once per processor class so that it could be mapped to
each of the available processing units. If the node contains fur-
ther hierarchical structures, the function is recursively executed
for all child nodes in line 14, first. This ensures that all child
nodes have already been processed before new parallelism is
extracted on the current hierarchical level.

This paper presents and combines two multi-objective
aware parallelization approaches. The first one extracts coarse-
grained task-level parallelism (presented in Section IV-A)
which may for example execute two function calls concur-
rently. Task-Level Parallelism is very efficient in parallelizing
large independent chunks of the application but its applicability
to loops – especially those with loop-carried dependencies –
is very limited. Therefore, the task-level approach is combined
with a pipeline parallelization approach, presented in Sec-
tion IV-B. As can be seen in Algorithm 1, the multi-objective
aware pipeline parallelization approach is executed for each
node representing a loop of the application in line 18, while the
coarse-grained task-level parallelization approach is executed
for each non-loop node in line 20. Both approaches return a
front of Pareto-optimal solutions containing beneficial versions
of the node to be parallelized. These results are combined with
the sequential versions of the node in line 22. This set is finally
returned as a result of the parallelization function.

On the next hierarchical level, the GA-based parallelization
approach is able to choose one parallel solution candidate for
each child node (which may contain parallelism which was
found deeper in the hierarchy). In addition, these solutions
are combined with new parallelism extracted on the current
hierarchical level, if the solution optimizes at least one of
the considered objectives. This step is repeated until the root
node of the graph is reached. As a result, the front of Pareto-
optimal solutions is returned to the application designer in
line 4. Thus, the solution which fits best to the considered
application scenario can be chosen and finally implemented
in line 5. It should be mentioned here, that the hierarchical
structure of the algorithm drastically reduces the complexity of
the parallelization problem. In addition, the complexity scales
only linear with the program size since new nodes are added
for each statement but the number of statements processed
per hierarchical level does not increase. This enables the use
of sophisticated parallelization algorithms, like the GA-based
one presented in the next Section.
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Fig. 2. Structure of Heterogeneous Task-Level Individual

IV. MULTI-OBJECTIVE AWARE EXTRACTION OF

PARALLELISM

Genetic algorithms are favored for solving optimization
problems in a multi-objective aware manner. An optimization
developer has to provide a comprehensive representation of
the individuals’ structure as well as three methods imple-
menting mutation, recombination and evaluation of possible
solution candidates. A genetic algorithm starts to create an
initial population containing individuals representing possible
solution candidates. Afterwards, the individuals are evaluated
for the considered objectives. Based on these results, some
individuals are chosen to survive or are used for mutation
and recombination (which is also called cross-over) to create
new solution candidates for the next population. This step
is repeated and several populations are created until a given
stopping criterion, like, e.g., a maximum number of created
populations, is fulfilled. Finally, a front of Pareto-optimal
solutions is returned as the result of the optimization step. This
makes genetic algorithms well applicable to extract parallelism
in a multi-objective aware manner. Our approach uses the PISA
framework [16] for Selection and Variation purposes.

In the following, Section IV-A presents the individuals’
structure used to extract task-level parallelism while the struc-
ture used to extract pipeline parallelism is described in Sec-
tion IV-B. Afterwards, Section IV-C defines the functions used
to evaluate the considered objectives before some hints about
portability are given in Section IV-D. Finally, the proposed mu-
tation and cross-over functions are described in Section IV-E.

A. Extraction of Task-Level Parallelism

The first challenge in using genetic algorithms is to map
the values of the solution space to genes of the individuals’
chromosomes in such a way that they can be changed and
evaluated efficiently. Figure 2 shows the structure employed
by our novel approach to extract task-level parallelism from a
hierarchical node of the application and map the extracted tasks
to processing units of a heterogeneous MPSoC. As already
explained in Section III-B, each hierarchical node is processed
in isolation which drastically reduces the complexity of the
parallelization problem. Due to the bottom-up approach, all
nodes deeper in the hierarchy are already processed, so that a
front of Pareto-optimal solutions Si,j exists for each child node
Ni containing solution candidates which might implement
parallelism deeper in the hierarchy.

The first part of the employed chromosome structure maps
each child node of the node to be parallelized to newly ex-
tracted tasks (cf. Figure 2). The second part of the individuals’
chromosome structure chooses one hierarchical solution for
each child node while the third part maps newly extracted tasks
to processor classes of the targeted MPSoC. In the example of
Figure 2, nodes N1 and N2 are mapped to task T1 while node
N3 is mapped to task T2 and so on. In addition, solution S1,4 of



child node N1’s Pareto front is chosen as hierarchical solution
while S2,3 is chosen for child node N2. Task T1 is mapped to
processor class P1 while task T2 is mapped to processor class
P2.

Each chromosome is represented by an array of integers.
The size of each chromosome is twice as large as the number
of direct child statements n contained in the hierarchical node
to be parallelized (1× node to task mapping + 1× hierarchical
solution) plus the number of maximal extractable tasks i1.
Thus, each chromosome can be encoded very efficiently by
2× n+ i integers.

The impact on the evaluation of the individuals’ objectives
is depicted in Figure 3. The example parallelizes a hierarchical
node with seven child nodes which can be mapped to four
newly created tasks on a platform providing four processing
units grouped into three processor classes. The figure shows
the genes’ values on the left-hand-side and their impact on
the evaluation on the right-hand-side. The upper part of the
figure shows the task graph representation of the node to be
parallelized according to the node-to-task mapping defined on
the left-hand-side. As can be seen, nodes N1 and N2 belong
to task T1 while node N3 belongs to task T2. Edges between
the created tasks depend on the node-to-task mapping. Here, a
dependence edge between node N2 and N3 exists which also
adds a dependence edge between tasks T1 and T2. Thus, the
execution of task T2 has to wait for completion of T1 since
data has to be communicated between both tasks before T2

can start with its execution. These task execution orders as
well as inserted communication costs should be considered in
the evaluation functions for the applied objectives.

The second part of the chromosome representation contains
the selection of hierarchical parallel solution candidates for
all child nodes. Due to the bottom-up approach, all child
nodes are already processed by the GA-based parallelization
technique. Thus, a front of Pareto-optimal solutions exists for
each child node evaluated by the high-level functions presented
in Section IV-C. The frontiers contain solution candidates
with parallelism which was found deeper in the hierarchy.
The approach has to choose one solution candidate from
each child nodes’ Pareto-frontier providing different objective
values for the corresponding node. A solution with more
extracted parallelism may, for example, reduce the overall
execution time at the cost of the system’s energy consumption.
Thus, this part of the chromosome’s structure also influences
the objectives’ evaluation.

The last part of the chromosomes’ structure defines the
task-to-processor class mapping which is crucial if applications
should be parallelized for heterogeneous MPSoCs. Execution
time, energy consumption, and other objectives depend on the
processing unit used for a task. Therefore, these gene values
map the tasks created in the first part of the chromosomes to
processor classes representing identical processing units. In the
example shown, task T1 which contains nodes N1 and N2 is
mapped to processor class C1, while task T3 which executes
the statements of nodes N4 and N5 is mapped to processor
class C2. Also here, the genes’ values directly influence the
evaluation of all objective values.

1The maximum number of extractable tasks is set to the number of available
processing units by default but can be changed by user.
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To summarize the gene representation, new tasks can
be extracted, mapped to processor classes, and can also be
combined with tasks which were found deeper in the hierarchy.
More details on the evaluation of the considered objectives are
presented in Section IV-C.

B. Extraction of Pipeline Parallelism

Even though task-level parallelism is very efficient for large
independent blocks of the application, its applicability to loops
of embedded applications, especially those with loop-carried
dependencies, is limited. Therefore, this section describes
a second parallelization approach which is able to extract
multi-objective aware pipeline parallelism for heterogeneous
architectures. As already described, both approaches can also
be applied in a combined manner.

The main target of pipeline parallelism is to split a loop’s
body horizontally into different pipeline stages so that the
statements in the loop body belong to disjunct tasks. The
benefit of such a parallelization is that a task T1 can start with
its next iteration as soon as it has communicated its output
data to its predecessor task T2 waiting for the data (and the
data for the next iteration of task T1 itself is also available).
Hence, a pipelined execution behavior can be created even for
loops with loop-carried dependencies. However, the amount of
parallelism which can be extracted by pure pipeline creation is
limited. Therefore, we also allow to distribute the iterations of
a pipeline stage to concurrently executed sub-tasks. Thus, e.g.,
iterations 1, 2, and 3 of task T1 can be executed in parallel
if no data dependencies between the different iterations exist.
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These targets as well as iteration balancing and processor class
mapping have to be extracted by a GA-based parallelization
approach targeting heterogeneous MPSoCs.

The employed chromosome structure implementing such
a parallelization approach based on a genetic algorithm is
depicted in Figure 4. The first part of the chromosome maps
child nodes of the loop to be parallelized to disjunct pipeline
stages. An example using this chromosome representation is
shown in Figure 5(a). As can be seen, nodes N1 and N2 are
mapped to task T1 while node N3 is mapped to task T2. Thus,
two stages are extracted which can be executed in a pipelined
manner. Unfortunately, a dependence edge exists between
both tasks which drastically limits the achievable speedup of
this solution. Therefore, the second part of the chromosome
structure (called Sub-Tasks Used) defines whether sub-tasks
are used for a given task 2. In our example, three sub-tasks
are used for T1 processing this task in parallel to faster supply
task T2 with the required input data. Task T2 uses only one
sub-task and is not split into concurrently executed sub-tasks.

So far, pipeline stage extraction and sub-task generation
are encoded in the chromosome structure. This structure is –
in general – sufficient if applications are to be parallelized for
homogeneous architectures. For heterogeneous ones, however,
the execution time of a task’s iteration may change depending
on the executing processing unit. Therefore, the third gene
block allocates chunk sizes of the pipeline stages’ iterations
to the according sub-tasks. Thus, sub-tasks which execute
larger chunks can, e.g., be executed on faster processing units
to balance the overall execution behavior. In the example of
Figure 5(a), sub-task T1,1 executes 6 iterations while sub-tasks
T1,2 and T1,3 execute 4 and 2 iterations, respectively. Sub-task
T2,1 of pipeline stage T2 executes all 12 iterations of the loop.
The chunk sizes of T2,2 and T2,3 are ignored since the sub-
tasks are not used according to the zero values in the last two
positions of the Sub-Tasks Used genes. Note that the chunk
sizes are not directly taken from the genes’ values because the
probability that the sum of all chunk sizes per pipeline stage
is equal to the number of loop iterations is quite low. Since
all loop iterations of a pipeline stage must be executed exactly
once by the generated sub-tasks, a solution with less or more
executed iterations is invalid. To avoid this, the chunk sizes
are translated into percentage-values so that the iterations are
mapped to the sub-tasks according to these percentages.

The fourth block of gene values maps the extracted sub-
tasks to the processor classes of the targeted heterogeneous
MPSoC. In our example, sub-task T1,1 is mapped to processor
class C1 which contains two fast processors. This is a good
choice for this scenario, since T1,1 executes more iterations
then both other sub-tasks of pipeline stage T1. T1,2 and T1,3

are mapped to processor class C2 and C3 with respect to their
execution load.

2The maximum number of generated subtasks can also be defined by the
user and is set to the number of available processing units by default.
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Fig. 5. Heterogeneous Pipeline Parallelization

The last position in the chromosome’s structure is reserved
for iteration scheduling. In our current approach we support
three different scheduling strategies, namely chunk-based, in-
terleaved and fully-interleaved. The first one maps all iterations
continuously to a sub-task respecting its chunk size. Thus, sub-
task T1,1 would be allocated with iterations {0, .., 5} while
T1,2 would be allocated with iterations {6, .., 9}, respectively.
This scheduling policy has very good cache locality but all
succeeding iterations are executed by the same task, so that
tasks waiting for the generated data do not obtain the data of
iterations concurrently. The interleaved policy executes smaller
chunk sizes in an interleaved manner. Thus, task T1,1 could
for example execute iterations {0−2, 6−8} while T1,2 and
T1,3 could execute iterations {3−4, 9−10} and {5, 11}, re-
spectively. This scheduling policy is a good trade-off between



cache locality and a faster response time for waiting tasks.
The last scheduling policy, namely fully-interleaved, schedules
the iterations in a way that all tasks start with the execution
of a pipeline stage’s iteration as soon as possible while
respecting the configured chunk sizes. A possible schedule
for this example with this scheduling methodology could be
{0, 3, 5, 6, 9, 11}, {1, 4, 7, 10}, and {2, 8} for tasks T1,1, T1,2,
and T1,3, respectively (cf. Figure 5(b)). All three tasks execute
one of the first three iterations concurrently. Afterwards, task
T1,3 starts with the next iteration after task T1,1 has executed
3 iterations, like defined by the chunk size. In the future, we
would like to integrate additional scheduling strategies as well.

Taken all genes together, it is possible to extract well-
balanced pipeline parallelism optimized for heterogeneous
MPSoCs. The timing behavior of the genes’ values presented
in Figure 5(a) is depicted in Figure 5(b). As can be seen, the
node-task-mapping, the sub-task creation, the different chunk-
sizes, the processor-class-mapping as well as the iteration
scheduling are considered in the diagram. As soon as the first
six iterations of pipeline stage T1 have been executed, all sub-
tasks are executing without any interruptions. This behavior
would improve further if the loop would be executed for more
than the shown 12 iterations. Note that the solution depicted in
Figure 5(a) has a good execution behavior regarding execution
time. However, our approach considers other objectives, such
as energy consumption, as well. For this objective, other
solutions with, e.g., less used cores may produce better results.
Therefore, our GA-based approach evaluates all considered
objectives for all individuals so that a front of Pareto-optimal
solutions is generated which also contains results with good
trade-offs between the different objectives.

C. Evaluation of Objectives

To be able to choose individuals for mutation and recom-
bination, a genetic algorithm must be able to evaluate the
different objective values for the individuals of the current
population. Therefore, this section defines the evaluation func-
tions for the three objectives which are currently considered
by our framework. They are based on the ones defined in [4]
and [12]. The authors have shown that their models are
accurate enough to be used for homogeneous architectures and
have verified them with target platform simulation. However,
the presented models do not distinguish between different
performance characteristics of processing units used in hetero-
geneous architectures. We present the models used to evaluate
the task-level individuals here. The difference to the models
used to evaluate pipeline individuals is that the latter one has
to split up the nodes’ evaluation to different iterations. Due to
limited space, the description of the evaluation models used
for pipeline individuals has to be skipped here.

1) Execution time: The proposed models used to determine
the individual’s execution time return a linear execution time
estimation. Based on the models presented in [12], the execu-
tion time is equivalent to the execution time of the longest path
within the hierarchical node to be parallelized. With respect to
the node-to-task-mapping shown in the example of Figure 3,
the longest execution path is either N1 → N2 → N4 → N5 →
N6 → N7 or N1 → N2 → N3 → N6 → N7 depending on
the nodes’ execution times – which also depend on the task-to-
processor-class mapping – and the communication delay of the

tasks created. The following equations define the calculation
of the execution time in a more formal way.

The execution time ET (Ti) for task Ti is equal to the sum
of the execution times ETN(n, Sn,j, c) and a constant task
creation overhead TCO. ETN(n, Sn,j, c) is calculated for
each child node n which is mapped to task Ti. The execution
time of the child nodes ETN also depends on the chosen
hierarchical parallel solution Sn,j and the processor class c
executing the task’s statements:

ET (Ti) = TCO +
∑

n∈Nodes(Ti)

ETN(n, Sn,j, c)

The path costs PC(Ti) of task Ti are recursively defined and
equal to the sum of the execution time ET (Ti) of the task itself
plus the path costs PC(t) of the most expensive predecessor
task t including the communication costs CC(t, Ti):

PC(Ti) = ET (Ti)+max{PC(t)+CC(t, Ti)|∀t ∈ Pred(Ti)}

Finally, the overall execution time of the node to be paral-
lelized is equal to the longest execution path:

OverallET = max{PC(t)|∀t ∈ Tasks}

2) Energy consumption: The energy consumption of a task-
level individual contains energy costs which arise due to task
spawning, statement execution on specific processing units and
communication, like shown in the following equations.

The energy consumption ICE(Ti) caused by incoming
communication of task Ti is calculated by summing up a
static overhead for the incoming data ICEO (for setting
up the communication channels etc.) and a factor ICM per
communicated byte:

ICE(Ti) =
∑

d∈InData(Ti)

ICEO +#Bytes(d) ∗ ICM

The energy consumption OCE(Ti) for the outgoing commu-
nication is similar to ICE(Ti):

OCE(Ti) =
∑

d∈OutData(Ti)

OCEO +#Bytes(d) ∗OCM

The total amount of energy E(Ti) consumed by each task Ti

is the sum of a constant task creation overhead TCE, the
energy which has to be spent to execute the statements of the
task EE(Ti, c) on the mapped processing unit c and the energy
for the incoming and outgoing communication:

E(Ti) = TCE + EE(Ti, c) + ICE(Ti) +OCE(Ti)

Thus, the overall energy consumption for a chromosome’s
configuration is equal to the sum of the energy consumption
of all tasks:

OverallEnergy =
∑

t∈Tasks

E(t)

3) Communication overhead: The third considered ob-
jective is the overhead introduced by communication. This
objective value is equal to the sum of the communicated bytes
of all tasks multiplied by a specified communication delay:

CommOverhead =
∑

data∈Comm

#Bytes(data) ∗ Costs



D. Portability to Multiple Target Platforms

To enable portability to multiple target platforms, the
hierarchical task graph is annotated with various cost infor-
mation, like, e.g., execution time and energy consumption per
processor class. Thus, as long as these values can be extracted,
our approach is portable to various target platforms.

In addition, all constants of the evaluation functions pre-
sented in the previous section can be configured in our
framework, as well. The communication costs CC(t, Ti) are
determined by multiplying a configurable communication fac-
tor with the amount of communicated bytes. The task creation
overheads for execution time TCO and energy consumption
TCE can also be configured, to mention only some of the
configurable constants. By combining these configurable parts
with the extracted objective values it should be easy to adapt
our framework to various target platforms.

E. Mutation and Cross-Over Functions

Genetic algorithms create new solution candidates by mu-
tating a profitable existing one or by recombining two of
them. These functions have to be provided by the optimization
developer. To generate new parallel solution candidates we
implemented the mutation function with a 1-bit flip mutation
strategy. This means that a random position in the chromosome
of the individual which should be mutated is changed so that
for example one child node is moved from one task or pipeline
stage to another one. It can also happen that, e.g., a created
task is re-allocated to a different processor class.

The employed cross-over function (also called recombina-
tion) splits two individuals at a random position and joins the
left-hand-side of the first one with the right-hand-side of the
second one and vice versa. This can easily be achieved since
all chromosomes of the same node to be parallelized have
the same length and the split position is the same for both
individuals.

So far, both functions seem to be simple state-of-the-art
implementations. However, we have observed that a huge
amount of invalid solutions (> 98%) is created by such
simple mutation and cross-over functions which drastically
reduces the solution quality of the employed genetic algorithm.
Solutions are invalid if, e.g., a deadlock is created by mutation
or recombination so that one task is waiting for data of another
one and vice versa. This can happen if a child node is moved
from one task to another one since dependencies between
the tasks may change as well. Our algorithm also rejects
solutions with more concurrently executed tasks mapped to
the same processor class as processing units are available in
this class. Thus, additional scheduling overhead at runtime can
be avoided.

To circumvent the creation of too many invalid solutions,
our mutation and cross-over functions are enriched with smart
correction algorithms. As soon as a valid solution gets invalid
after mutation or recombination, the algorithm determines the
source of the problem and tries to fix it with a subsequently
executed mutation. Thus, to fix, e.g., a deadlock, the target
node which causes the deadlock is moved to a different task
to solve the problem. If, for example, too many tasks are
allocated to a specific processor class after mutation, one of the

other tasks is moved to a different processor class. These steps
are repeated until the solution gets valid again or a maximum
number of fixing steps is reached.

By applying this strategy, the number of invalid solutions
could be reduced from more than 98% to around 5%, which
significantly improved the solution quality.

V. EXPERIMENTAL RESULTS

To evaluate the applicability of our new multi-objective
aware parallelization approach for embedded heterogeneous
MPSoCs we have chosen several benchmarks included in the
UTDSP benchmark suite [17] covering test cases from typical
real-world embedded application domains. In addition, we also
evaluated other representative applications which are often
used on MPSoCs like a JPEG encoder. As target platform for
our model-based evaluation we have chosen a same ISA-multi-
core platform (like [18]) configured with four ARM cores
running at 100 MHz (1x), 250 MHz (1x) and 500 MHz (2x)
to simulate a platform with large performance variances.

Detailed results for four of the considered applications can
be found in Figure 6. In the current version, our framework
supports three objectives, namely speedup of the execution
time, energy consumption and inserted communication over-
head. These objectives are arranged on the x-, y-, and z-
axes, accordingly. Other objectives, like, e.g., the reduction
of thermal issues or the size of allocated memory may be
added in the future as well. The sequential version of the
application, executed on the slowest processing unit, is lo-
cated at the bottom-left of each diagram. This solution is
the slowest one with a speedup of 1× and consumes the
lowest amount of energy since only one core – the slowest
and most energy efficient one – is used so that it forms
the base-line, here. For improved readability, vertical bars are
added to the diagrams to project the points into the x-y-plane.
In addition, a solid line marks the front of Pareto-optimal
solutions, also projected to the x-y-plane. Note: The projected
Pareto-frontier is not in a straight echelon form due to the third
objective. Even if a solution is worse in execution time and
energy consumption it may be added to the front of Pareto-
optimal solutions if it adds less communication overhead. Each
diagram contains both, Pareto-optimal and Pareto-dominated
solutions. Of course, only the first ones are finally returned
to the application designer as possible solution candidates.
The diagram contains three different shapes to mark solution
candidates containing parallel sections generated by the task-
level parallelization approach (cf. Section IV-A), the pipeline
parallelization approach (cf. Section IV-B) and a mixture of
both approaches. All objective values of the presented solutions
are based on the high-level models presented in Section IV-C.
The input for these models (e.g., execution time and energy
consumption) was extracted by executing all statements of the
target application in an isolated way on a high-level simulator.

The visualized benchmarks have been selected since they
show different behaviors with respect to the evaluated paral-
lelization approaches and the maximum objective values. The
edge detect application, for example, shown in Figure 6(a)
profits most from the presented pipeline parallelization ap-
proach. Only a few solutions generated by the task-level paral-
lelization approach are part of the Pareto-frontier. In contrast,
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(a) edge detect
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(b) spectral
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(c) jpeg encoder
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(d) boundary value problem

Fig. 6. Front of Pareto-Optimal Solutions Returned by the Parallelization Framework

the solutions generated for the spectral benchmark shown in
Figure 6(b) and the JPEG encoder shown in Figure 6(c) profit
from both approaches and also from a mixture of them. The
last visualized application is the boundary value problem in
Figure 6(d). Here, fewer solutions are generated but it was
possible to extract a speedup of over 12× which is very
close to the theoretical speedup limit of the targeted MPSoC.
However, the solution increases the energy consumption to
940% compared to the slowest solution which is executed
sequentially on the slowest processing unit, only. This high-
lights the trade-offs which are enabled by our parallelization
framework due to our multi-objective aware approach. If the
application designer knows that a speedup of, e.g., 3.4× is
sufficient for the considered application scenario, a solution
which uses less and also slower processing units can be chosen
so that the energy consumption is only increased to around
500% instead of 940%. If 2.2× are sufficient, a solution
with an energy consumption of 320% could also be chosen
to further decrease the system’s overall energy consumption.
Similar trade-offs were also observed for the other evaluated
benchmarks. The fastest solutions, extracted for the edge-detect
benchmark shown in Figure 6(a), increase the system’s energy
consumption to 900% while gaining a speedup of 9×. If a
speedup of 5× is sufficient, more energy efficient cores can
be used for execution to reduce the energy consumption to
700%.

Most solutions generated by the presented pipeline paral-
lelization approach extract the highest speedups at the cost
of the system’s energy consumption. In addition, a lot of
data has to be communicated for this approach. The solutions
generated by task-level parallelism are the ones producing
only a small speedup but are much more energy efficient.
The solutions which contain both, parallel sections based on
task-level and pipeline parallelism, are mostly a good trade-
off between higher speedups and lower energy consumption.
This shows that both approaches are able to extract efficient
parallelism from sequentially written embedded applications.

A. Statistics of the GA-based approaches

Due to limited space it is not possible to present figures
with Pareto-frontiers for all considered applications. Therefore,
Table I summarizes the results for all evaluated benchmarks
while providing additional statistics about timing and the
employed genetic algorithm. The columns contain information
about the required time to extract the final solution space
in minutes and seconds (Time), the number of parallelized
hierarchical nodes (#Nodes), the number of created populations
(#Populations), the number of created individuals (#Individ-
uals), the number of performed mutations (#Mutations) and
cross-over operations (#Cross-Over) as well as the number of
Pareto-optimal solutions (#Solutions) returned to the applica-



TABLE I. EXECUTION TIME AND STATISTICS OF THE COMBINED, GENETIC ALGORITHM-BASED PARALLELIZATION APPROACHES

Benchmark Time3 #Nodes #Populations #Individuals #Mutations #Cross-Over #Solutions

adpcm encoder 01:31 36 1,520 153,453 30,729 104,962 63

boundary value 01:17 12 644 83,973 17,900 54,964 34

edge detect 02:43 105 2,872 200,371 40,002 133,096 118

filterbank 03:24 7 412 50,779 12,229 44,164 47

fir 256 00:30 13 388 29,889 6,629 21,515 44

iir 4 03:02 13 852 105,224 22,631 79,206 63

JPEG encoder 05:13 62 2,868 312,242 68,142 246,427 333

latnrm 32 01:11 17 636 53,642 11,462 39,831 54

mult 10 10 01:01 36 1,060 70,855 14,635 57,226 90

spectral 02:25 51 2,260 213,230 44,696 158,624 114

tion designer. All numbers are summed up over all performed
parallelization steps. The population sizes as well as the
number of populations are determined dynamically so that
nodes with a larger number of child nodes are processed longer
than nodes with a smaller number of child nodes.

As can be seen, the number of finally returned Pareto-
optimal solutions ranges between 34 solutions for the boundary
value problem up to 333 solutions for the JPEG encoder.
Note that some of the solutions are so close to each other
that they overlap with other solutions in the diagrams shown
in Figure 6. Nevertheless, the number of extracted solutions
shows the huge optimization potential for trade-offs served by
our multi-objective aware approach. Another important aspect
is the time the approach needs to parallelize an application.
The time varies between 30 seconds for the fir benchmark up
to 5 minutes for the JPEG encoder measured on a system with
four AMD-Opteron cores running at 2.4 GHz. For the latter
one, over 300,000 solution candidates were created, evaluated
and mutated or recombined. This means that creation and
evaluation of one individual could be done in less than a
millisecond due to the use of the proposed high-level models.

To summarize, the following results were achieved:

1) The consideration of differing performance characteristics
of processing units available in a heterogeneous MPSoC
combined with mapping decisions in the parallelization
process is highly beneficial.

2) The presented framework is able to provide the appli-
cation designer a large number of beneficial solution
candidates for trade-offs between different objectives.

3) The combination of task-level and pipeline parallelization
approaches optimized for heterogeneous MPSoCs in one
framework is advantageous since both approaches per-
fectly complement each other.

VI. CONCLUSIONS AND FUTURE WORK

To the best of our knowledge, this paper presents the first
multi-objective aware parallelization approach combining the
extraction of task-level and pipeline parallelism in one frame-
work, optimized for heterogeneous MPSoCs. The huge opti-
mization potential exploitable by our tool was demonstrated on
several real-world applications employed in typical embedded
application domains. By using our proposed framework, the
application designer is able to apply a parallelized version of
the application optimized for a specific application scenario.
In contrast to other frameworks, a huge amount of energy can
be saved if the designer does not select the solution with the

3Measured on a system with four AMD Opteron cores running at 2.4GHz

highest speedup, returned as the only solution by most existing
parallelization frameworks.

In the future we would like to extend our approaches to
other objectives, like, e.g., code size. In addition, we would
also like to choose between different communication strategies
in the parallel code sections. DVFS techniques can also be
integrated into the models to save even more energy.
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