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Abstract—Heterogeneous multi-core platforms are increas-
ingly attractive for embedded applications due to their adaptabil-
ity and efficiency. This proliferation of heterogeneity demands
new approaches for extracting thread level parallelism from
sequential applications which have to be efficient at runtime. We
present, to the best of our knowledge, the first Integer Linear
Programming (ILP)-based parallelization approach for hetero-
geneous multi-core platforms. Using Hierarchical Task Graphs
and high-level timing models, our approach manages to balance
the extracted tasks while considering performance differences
between cores. As a result, we obtain considerable speedups
at runtime, significantly outperforming tools for homogeneous
systems. We evaluate our approach by parallelizing standard
benchmarks from various application domains.

I. INTRODUCTION

The designs of state-of-the-art multiprocessor systems-
on-chip (MPSoCs) show an interesting pattern: they depart
from traditional homogeneous multicore architectures towards
heterogeneity in processing speed. Still, many of these de-
signs maintain binary compatibility between cores in order
to ease software development. Early ideas on these so-called
heterogeneous same-ISA multicores have been published by
Kumar et al. [1]. Recently, the idea has caught on in industry,
resulting in designs like ARM’s big.LITTLE architecture [2],
using Cortex A15 and A7 cores, as well as NVidia’s Tegra 3
with five Cortex A9 cores at different clock speeds or Texas
Instruments’ OMAP4 using Cortex A9 cores and slower Cortex
M3 cores for task offloading.

While multi-core architectures have been available for a
significant time, the state of software development for these
platforms leaves much to be desired. Even today, many appli-
cations are developed using a sequential mindset and subse-
quent manual parallelization. On homogeneous platforms, this
approach has already shown to be time-consuming and error-
prone, prompting the development of automatic parallelization
tools that extract parallelism for multicore systems on different
levels of granularity. For heterogeneous systems, the task of
parallelizing a given application becomes even more complex
than in the homogeneous case, since the execution time
required for a given section of code differs between cores.
Hence, manual parallelization of sequential code and balancing
of tasks becomes a nearly infeasible problem for developers.
As a consequence, efficient automatic parallelization becomes

*Parts of the work on this paper have been supported by Deutsche
Forschungsgemeinschaft (DFG) within the Collaborative Research Center SFB
876 “Providing Information by Resource-Constrained Analysis”, project A3.
URL: http://www.sfb876.tu-dortmund.de

indispensable when targeting heterogeneous platforms. We
show in Section II that most state of the art parallelization
tools so far only consider homogeneous platforms or require
a significant amount of manual interaction to target heteroge-
neous systems. While the heterogeneous systems considered
behave identically on the ISA level, performance on a given
core depends on the core’s clock speed. Additional architec-
tural parameters like, e.g., the pipeline structure, may also
be influential. However, for performance reasons, evaluating
highly precise low-level models of CPU cores with different
architectural properties is usually infeasible due to the analysis
overhead involved. Thus, efficient parallelization based on
adequate high-level timing models is an interesting alternative.

In this paper, to the best of our knowledge, we present
the first, efficient parallelization approach for heterogeneous
MPSoC platforms. Our approach extracts task-level parallelism
which is automatically balanced by the consideration of execu-
tion time differences for the various cores of a heterogeneous
MPSoC. Its central property, the use of a Hierarchical Task
Graph, is described in Section III. It allows the tool to
reconsider different combinations of code sections on different
granularity levels like instructions, loop iterations, or functions.
This enables adaptation to heterogeneities in processing speed
for different sections of code. The large design space inherent
in parallelization for heterogeneous multicores is explored by
using a state-of-the-art, Integer Linear Programming (ILP)-
based approach, described in detail in Section IV. While ILP
solving is NP-hard in general, the results presented in Section
VI show that on the one hand, the ILP-based solution is
able to provide significant speedups for a range of typical
benchmark applications while on the other hand, the time
overhead required to solve the ILPs at design time is still in
the order of minutes on a current development platform. Here,
our approach significantly outperforms existing approaches for
homogeneous platforms. Details on the evaluation environment
and additional tools used in our parallelization framework are
described in Section V and an outlook to an integration of
additional parallelization techniques is given in Section VII.

To summarize, the main contributions of this paper are:

1) To the best of our knowledge, this paper presents the first
approach which uses ILP to exploit task-level parallelism
for heterogeneous multiprocessor systems.

2) Our approach is enriched with an adequate cost model
embedded in an ILP system. This enables automatic
control of the granularity of the extracted parallelism.

3) The created tasks can be automatically balanced for pro-
cessing units with different performance characteristics.
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II. RELATED WORK

In recent years, technical improvements as well as lim-
itations in, e.g., processing speed and energy consumption
led to an increasing adaption of multiprocessor systems-on-
chip (MPSoC) devices, replacing traditionally used single-core
platforms. However, most embedded applications are written
in sequential C code so that coarse-grained software-based
parallelism has to be extracted to benefit from multiple cores
on one die. As a result, many techniques have been developed
which automate or at least simplify this task.

A representative parallelization approach was published
by Hall et al. [3] which automatically extracts task-level
parallelism as part of the SUIF Parallelizing Compiler frame-
work [4]. Their approach extracts parallelism which is not
limited to function boundaries. A different approach was
presented by Ceng et al. who developed a semi-automatic
parallelization assistant [5]. The application code is trans-
formed into a weighted statement control data flow graph
which is subsequently processed by a heuristically clustering
algorithm. The approach proposed by Ceng is semi-automatic
since it requires a user feedback loop to steer the granularity
of the parallelized program. Our previous publications [6], [7]
presented two techniques which extract task-level parallelism
with Integer Linear Programming and Genetic Algorithms for
single and multiple objectives, like, e.g. execution time and
energy consumption. Unfortunately, these approaches generate
suboptimal results for heterogeneous architectures since they
do not distinguish between different performance characteris-
tics of the available processing units.

Several other approaches also try to extract coarse-grained
task-level parallelism from sequentially written applications.
E.g., Verdoolaege et al. [8] present a technique which trans-
forms sequential applications into Kahn Process Networks
which implicitly describe the parallelism of applications. This
approach can only parallelize a restricted set of applications
since all loops of the application have to be affine, which
is not always given for real-life code. The approach is also
used in the Deadalus framework [9] and the MADNESS
project [10] to extract the required KPNs. Sarkar [11] has
introduced parallelization techniques based on program de-
pendence graphs and extensions of them. Polychronopoulos et
al. demonstrated the usefulness of hierarchical task graphs for
an automatic scheduling algorithm [12]. A slightly modified
version of this hierarchical task graph is also employed by our
own approach as described in Section III. Other frameworks,
like, e.g., DOL [13], require already parallelized applications
as input to map them to MPSoCs.

Raman et al. [14] and Tournavitis et al. [15] presented
techniques which are able to automatically extract pipeline
parallelism from loops of sequentially written applications.
Both approaches split loops into different pipeline stages
and further increase an application’s performance by splitting
stateless pipeline stages into additional tasks.

Many parallelization approaches have been discussed so
far. However, all of them are restricted to homogeneous
architectures since none of them considers problems which
arise if applications should be parallelized for heterogeneous
architectures. Thus, they will perform worse as soon as pro-
cessing units vary in different performance characteristics. This

observation was also made by Pienaar et al. [16] who presented
an automatic heterogeneous pipelining (AHP) approach. Their
framework uses sequentially written, annotated C++ code as
input. Execution times for each task are extracted by profil-
ing. As output, it generates pipelines, optimized in terms of
throughput, and also creates a suitable schedule. However, the
user has to manually extract and annotate parallel sections
which should be moved to pipeline stages. In contrast, the
approach presented in this paper automatically extracts task-
level parallelism and balances it for processing units with
different performance characteristics. The trend towards het-
erogeneous architectures can also be observed in state-of-the-
art parallel programming languages. One prominent example
is the addition of support for heterogeneous platforms to the
widely used OpenMP API [17]. Using code annotations, the
application designer is enabled to manually specify that a
specific task should be executed on a fixed processing unit.

While previous work shows promising approaches for
homogeneous platforms, our analysis of related work suggests
that parallelization approaches optimized for heterogeneous
platforms, especially embedded ones, mostly do not exist. One
exception is the work of [16]. However, this approach does
not automatically extract parallelism from sequentially written
applications.

III. FRAMEWORK & APPROACH

We have chosen our previously published parallelization
framework [6], [7] as a starting point for the heterogeneous
parallelization approach presented in this paper. Our previous
techniques automatically balance extracted tasks for homoge-
neous architectures by combining estimated information about
execution time, communication and task creation costs into
high-level models. However, the current approaches are not
able to distinguish different execution times for portions of the
application depending on the executing processing unit. This is
crucial to efficiently parallelize applications for heterogeneous
architectures. Therefore, our new approach presented in this
paper is able to consider different performance characteristics
of the available processing units and to automatically balance
the workload into appropriate tasks. In addition, it combines
parallelism extraction with a pre-mapping of tasks to processor
classes representing identical processor types of the heteroge-
neous architecture. Thus, tasks can be optimized for specific
processing units directly in the parallelization process which
was, to the best of our knowledge, not considered by existing
approaches so far.

A. Augmented Hierarchical Task Graph

The parallelization process starts with the extraction of
a so-called Augmented Hierarchical Task Graph from the
application’s source code (cf. Figure 1). The hierarchical
structure of the graph correlates to the hierarchical structure
of the application’s source code. Each node of the graph
represents one statement of the application. The graph contains
Simple Nodes which do not incorporate any further hierarchical
structures and represent, e.g., an assignment statement (a = b).
In contrast, Hierarchical Nodes represent statements which do
contain other statements deeper in the hierarchy, like, e.g., a
loop containing other statements in its loop body. Hierarchical
nodes contain a Communication In- and a Communication
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Fig. 1. Augmented Hierarchical Task Graph

Out-Node which encapsulate communication from outside of
the hierarchical node to any child nodes and vice versa.
Thus, each hierarchical node can be processed in isolation
in the parallelization process which drastically reduces the
complexity of the parallelization problem. The control flow
of the application is directly represented by the hierarchical
structure of the graph. Data-Flow edges are also part of the
graph and denote communication if source and target node are
executed in different tasks. By construction, all leaves of the
graph are Simple Nodes and annotated with iteration counts and
cost information like, e.g., execution costs. This information
is automatically extracted by target platform simulation. How-
ever, to parallelize software for heterogeneous architectures, it
is necessary to distinguish between different execution times
depending on the allocated processor class. Thus, our new
approach extracts this information once per processor class.
All edges are also annotated with information like the amount
of communicated data, the edge type, the iteration count, etc.
We adapt the technique for extracting the Hierarchical Task
Graph from sequentially written ANSI C-code from [6].

B. Parallelization Algorithm

The structure of the heterogeneous parallelization approach
is depicted in Algorithm 1. The main function expects an inter-
mediate representation of the source code and a target platform
description as input parameters. The platform description [18]
contains information about, e.g., performance characteristics of
the available processing units and interconnects. After the Hi-
erarchical Task Graph is extracted in line 2, the parallelization
approach starts to extract parallelism in a bottom-up search
strategy (cf. Parallelization Level 0-2 in Figure 1) by calling
the function PARALLELIZE for the root node in line 3.

The pseudo-code of the function PARALLELIZE starts in
line 6. It returns the sequential version of the statements
mapped to the different processing units as its only solutions
(line 9) if it is a Simple Node without any nodes deeper
in the hierarchy. If the node contains further hierarchical
structures, the function is recursively called for all child nodes
in line 12, first. This ensures that all child nodes are already
processed before new parallelism is extracted on the current
hierarchical level. For each node, a set of parallel solution
candidates (res) is created containing all extracted solutions
representing parallel versions of the node to be parallelized.
Each parallel solution candidate is tagged by the processor
class executing the main task and contains information about
the extracted node-to-task mapping, the number of inner tasks,

Algorithm 1 Pseudo Code of Global Parallelization Algorithm

1: function MAIN(IR ir, Platform pf )
2: htg ← EXTRACTGRAPH(ir, pf)
3: solutions← PARALLELIZE(htg.getRootNode(), pf)
4: IMPLEMENTBESTSOLUTION(htg, pf, solutions)
5: end function
6: function PARALLELIZE(Node n, Platform pf )
7: res← n.getSequentialSolutions(pf)
8: if ISNOTHIERARCHICALNODE(n) then
9: return res

10: /* Parallelize bottom-up in hierarchy, first. */

11: for all c ∈ n.getChildNodes() do
12: PARALLELIZE(c, pf)

13: /* Parallelize this node now (all child nodes processed). */
14: for all seqPC ∈ pf.getProcClasses() do
15: i← pf.getNumCores()
16: while i > 1 do
17: r ← ILPPAR(n, n.getChildNodes(), seqPC, i, pf)
18: res← res ∪ {r}
19: i← NUMBEROFTASKS(r)− 1
20: end while
21: end for
22: return res
23: end function

the execution time of the parallelized (or sequentially executed)
node as well as the task-to-processor class mapping which is
crucial if applications should be parallelized for heterogeneous
architectures. These solutions are extracted by the ILPPAR

function called in line 17 (described in Section IV) which
extracts new tasks by moving child nodes to concurrently
executed tasks. In addition, the ILP-based approach combines
newly extracted tasks with tasks which were found deeper in
the hierarchy – if it increases the performance. Since ILP-based
approaches always return the best solution only, the approach is
executed multiple times for different processing units (seqPC)
used for the main task’s execution. In addition, an upper bound
of allocatable processing units (i) is also passed to the function
in line 17 which is decreased in every iteration by at least one.
Thus, the algorithm extracts multiple solutions with different
allocated processing units. This yields great flexibility on the
next hierarchical level when new tasks are combined with tasks
which were found deeper in the hierarchy.

On the next hierarchical level, the ILP-based parallelization
approach chooses one parallel solution candidate for each
child node (which may contain parallelism which was found
deeper in the hierarchy) and combines the candidates with new
parallelism on the current hierarchical level, if the solution
increases the performance. This step is repeated until the root
node of the graph is reached so that the most efficient parallel
solution candidate is finally implemented in line 4 of the MAIN

function. It should be mentioned here, that the hierarchical
structure of the algorithm drastically reduces the complexity
of the parallelization problem which enables the usage of
sophisticated parallelization algorithms, like the repetitively
called ILP-based one described in the following Section.

IV. PARTITIONING AND MAPPING MODEL

Integer linear programming is a well-known technique for
partitioning problems which makes it possible to parallelize
sequentially written applications. Many commercial as well
as open source solvers exist which are able to solve most
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Fig. 2. Graphical Representation of the Heterogeneous ILP-based Parallelization Approach (Part 1)

ILPs very efficiently, even if ILPs are NP-hard in the general
case. Another advantage of using ILPs is that the solvers
guarantee to find the optimal solution if one exists and they
can determine that they found it. This is not the case for other
optimization techniques like, e.g., Genetic Algorithms which
just iterate until a given stopping criterion is met. Our new ILP-
based parallelization approach is optimized for heterogeneous
architectures and based on the homogeneous one presented
in [6]. Therefore, we highlight the changes made and show in
Section VI that our new approach significantly outperforms the
existing homogeneous one. Our new ILP-based heterogeneous
parallelization approach covers five main targets:

I) Map statements of direct child nodes into newly extracted,
disjunctive tasks to reduce the overall execution time by
parallel execution.

II) Combine newly extracted tasks with tasks which were
extracted deeper in the hierarchy, if such a solution
increases the overall performance (Parallel Set Mapping).

III) Keep track of dependencies which may change if child
nodes representing statements are moved from one task
to another one.

IV) Minimize the overall execution time by taking task
creation and communication overhead as well as task
execution costs depending on the mapped processor class
into account.

V) Create a mapping of tasks to processor classes to take care
that solutions are well balanced, even for architectures
containing processing units with differing performance
characteristics.

In the following ILP formulas decision variables are written
in lower case letters, sets start with a capital letter and
constants contain exclusively capital letters. Indices n and o
are used for child nodes of the node to be parallelized, t and
u represent indices for tasks, while c represents a processor
class. A graphical representation of most equations is also
given in Figures 2-5 which visualize the decision variables
and constraints used. The sub-figures have the same titles as
the corresponding subsections.

A. Node in Task Constraint

The ILP-based parallelization approach is executed for each
hierarchical node in isolation. Target I of the approach is
a mapping of child nodes to newly extracted, concurrently
executed tasks. Therefore, a decision variable xt

n is created
in Equation 1 which denotes whether child node n is mapped
to task t.

xt
n =

{
1, if node n is mapped to task t

0, otherwise
(1)

Since the presented approach extracts task-level paral-
lelism, each child node should be mapped to exactly one task
so that it is executed exactly once:

∀n ∈ Nodes :
∑

t∈Tasks

xt
n = 1 (2)

B. Parallel Set Constraint

As explained in the previous section, all child nodes are
already processed by the ILP-based parallelization approach
since the extraction algorithm parallelizes the application in a
bottom-up manner. As a result, all profitable parallel solution
candidates were collected in a so-called parallel set for each
child node. The algorithm has to choose one solution for each
child node which may contain tasks which were extracted
deeper in the hierarchy (Target II). Thus, newly extracted
tasks are combined with tasks which were found deeper in the
hierarchy. Each solution candidate has a different execution
time depending on the number of extracted tasks as well
as its internal task-to-processor class mapping. This mapping
dimension was added to our new approach since it is crucial
to distinguish between different performance characteristics of
the available processing units in heterogeneous architectures.
Equation 3 defines variable pn,c,s which evaluates to 1 if
parallel solution s of node n executed on processor class c
is chosen.

pn,c,s =

⎧⎨
⎩
1, if parallel solution s of child node n

executed on processor class c is chosen

0, otherwise

(3)

Equation 4 takes care that exactly one hierarchical parallel
solution candidate is chosen for each child node.

∀n ∈ Nodes :
∑

c∈ProcClasses

∑
s∈Solutionsn,c

pn,c,s = 1 (4)

C. Predecessor Constraint

Parallel execution is often prohibited by data- or control-
flow dependencies which create a predecessor and successor
relationship between tasks. This relationship has to be explic-
itly modeled since the critical (or most expensive) path for
the execution within the hierarchical node to be parallelized
should be extracted. This is important since the ILP’s objective
is to reduce the execution time of the critical path by executing
child nodes in parallel on different processing units. Equation
5 defines decision variable predt,u which evaluates to 1 if task
t is a direct predecessor of task u.

predt,u =

{
1, if task t is a predecessor of task u

0, otherwise
(5)
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Fig. 3. Graphical Representation of the Heterogeneous ILP-based Parallelization Approach (Part 2)

The relation between tasks must be expressed in the ILP
as claimed by Target III and depends on the node-to-task
mapping, modeled by decision variable xt

n (Equation 1). If a
dependence edge from node n to node o exists (EDGEn,o=1)
and both nodes are mapped to different tasks t and u, then
task t is a direct predecessor of u, like denoted in Equation 6.

∀t, u ∈ Tasks : ∀n, o ∈ Nodes : t �= u : n �= o :

predt,u ≥ EDGEn,o ∗ (x
t
n ∧ xo

u) (6)

If task t is a predecessor of task u then u has to wait
until t has finished its execution, since u has to consume data
produced by task t. The ∧ operator used in Equation 6 is
not part of regular ILP formulations. Nevertheless, it can be
substituted by a new variable and three inserted constraints as
shown in Equation 7.

z = (x ∧ y) ∈ {0, 1}

z ≥ x+ y − 1, z ≤ x, z ≤ y (7)

D. Execution Costs of Task Constraint

The ILP-based parallelization approach should automati-
cally balance the extracted tasks by respecting different exe-
cution times depending on the performance characteristics of
the mapped processing unit. Therefore, costs for each task are
calculated like shown in Equation 8.

∀t ∈ Tasks : costt = EC ∗ TCO+∑
n

∑
c

∑
s

(xt
n ∧ pn,c,s) ∗ COSTSn,c,s (8)

Also here, homogeneous approaches are not able to con-
sider mapping decisions which have a big influence on the
performance on heterogeneous architectures. Therefore, Equa-
tion 8 includes decision variable pn,c,s which selects from dif-
ferent execution costs COSTSn,c,s

1 depending on the mapped
processor class c. The execution costs costt of task t consist
of a configurable task creation overhead TCO multiplied by
the execution count EC. This overhead is increased by the
execution costs COSTSn,c,s of all nodes n which are executed
on processor class c and mapped to task t depending on the
chosen parallel solution candidate pn,c,s. Thus, costt contains
all execution costs of task t by respecting the mapped processor
class.

1Variables COSTSn,c,s were calculated deeper in the hierarchy and are
thus constants in the parallel configurations.

E. Path Cost Constraint

Based on predecessor relationships and calculated costs of
the extracted tasks, it is possible to describe path costs which
contain the execution costs of all predecessor tasks and task t
itself, like shown in Equation 9.

∀t, u ∈ Tasks : predu,t = 1⇒ t �= u :

accumcostt ≥ costt + accumcostu + commcostu (9)

The accumulated path costs accumcostt of task t are equal
to the execution costs of t itself increased by execution and
communication costs of the most expensive predecessor task u.
The precondition predu,t = 1 can be ensured by subtracting
a constant from the right-hand side of the constraint whose
value is greater than the sum of all other possible values, if
the precondition is not met like shown in [6].

F. Cycle-Free Constraint

To avoid deadlocks and paths with infinite costs, the
approach has to take care that the paths within the node to be
parallelized are cycle-free. Therefore, all direct child nodes are
topologically sorted by their dependencies and an ascending,
unique id is generated for both, nodes (nodeid) and tasks
(taskid). W.l.o.g., the generated task graph is cycle-free, if
the taskid of node n is greater or equal to the taskids of all
nodes o with a smaller nodeid. This is shown by Equation 10.

∀n, o ∈ Nodes : nodeidn ≥ nodeido :

taskidn ≥ taskido (10)

G. Objective Function

The main objective of the ILP-based parallelization algo-
rithm is to minimize the execution time of the hierarchical
node by moving statements of child nodes into concurrently
executed tasks combined with tasks extracted deeper in the
hierarchy. As already explained in Section III, each hierarchical
node contains a Communication In- and Communication Out-
Node. The latter one is a successor of all child nodes since it
encapsulates the communication which leaves the hierarchical
node. Thus, the overall execution time of the parallelized node
is equal to the path costs of the task, which the sequential out-
node is mapped to, like shown in Equation 11.

exectime = min{accumcosttseqOut} (11)

The objective function’s execution time contains execution,
task-creation, and communication costs as claimed by Target
IV. The presented approach tightly couples task extraction

956948954
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Fig. 4. Graphical Representation of the Heterogeneous ILP-based Parallelization Approach (Part 3)

with mapping decisions which is crucial for heterogeneous
architectures into one model. The remainder of this section
presents the way mapping decisions are taken and how they
are combined with the task extraction approach.

H. Mapping of Tasks to Processor Classes

Up to now, newly extracted tasks are not mapped to any
processor class. This was not necessary for homogeneous
architectures, but has a huge impact on the execution time for
heterogeneous ones. Therefore, the presented approach of this
paper combines the extraction of parallelism with a mapping of
tasks to processor classes which represent identical processing
units of the targeted heterogeneous architecture. This enables
the extraction of well-balanced tasks which are optimized for
a given processor class like demanded by Target V. A new
decision variable maptc is introduced which evaluates to 1 if
task t is mapped to processor class c like shown in Equation 12.

maptc =

{
1, if task t is mapped to processor class c

0, otherwise
(12)

Each task t has to be mapped to exactly one processor class
c, which is ensured by Equation 13.

∀t ∈ Tasks :
∑

c∈ProcClasses

maptc = 1 (13)

I. Available Processing Units per Class

By taking advantage of platform information in the task
extraction step, it is possible to avoid additional scheduling
overhead. Therefore, each processing unit is used by either
newly extracted tasks or tasks which were extracted deeper
in the hierarchy. The number of already allocated processing
units of a processor class c used by chosen hierarchical
solutions must be determined for each task t. The constant
USEDPROCSs,c represents the number of allocated pro-
cessing units of class c for hierarchical parallel solution
candidate s. Equation 14 defines variable procsusedtc which
stores the amount of already allocated processing units on basis
of USEDPROCSs,c for all processor classes c, used by the
child nodes mapped to task t.

∀c ∈ ProcClasses : ∀t ∈ Tasks :

∀n ∈ Nodes : ∀s ∈ Solutionsn,c : (14)

procsusedtc ≥ USEDPROCSs,c ∗ (pn,c,s ∧ xt
n)

With procsusedtc it is possible to calculate the amount of
processors which are still available for allocation of newly

extracted tasks, like shown in Equation 15.

∀c ∈ ProcClasses : numPCc =

NUMPROCSc − (
∑

t∈Tasks

procsusedtc) (15)

The constant number of available processing units
NUMPROCSc per processor class c is derived from the
supplied platform information.

J. Limit Allocated Processing Units

So far, all newly extracted tasks could be mapped to the
fastest processor class even if not enough processing units of
this class for parallel execution would be available. Therefore,
Equation 16 ensures that the number of newly extracted tasks
t, mapped to processor class c, does not exceed the number of
available processors for each processor class.

∀c ∈ ProcClasses :
∑

t∈Tasks

maptc ≤ numPCc (16)

K. Restrict Solution Candidates

All solution candidates pn,c,s of child node n are tagged
with a specific processor class c as explained in Section III.
Thus, the ILP must be restricted to choose only one of those
solution candidates using the same processor class as the task
to which node n is mapped. Therefore, Equation 17 defines
decision variable nodeOnProcClassn,c which evaluates to 1
if node n is executed on processor class c with respect to the
node-to-task mapping xt

n and task-to-processor class mapping
maptc.

∀n ∈ Nodes : ∀c ∈ ProcClasses :

nodeOnProcClassn,c =
∑

t∈Tasks

xt
n ∧maptc (17)

Finally, Equation 18 takes care that only those hierarchical
parallel solution candidates can be chosen which are valid with
respect to the task-to-processor class mapping.

∀n ∈ Nodes : ∀c ∈ ProcClasses :∑
s∈Solutionsn,c

pn,c,s = nodeOnProcClassn,c (18)

If the task executing node n is not mapped on processor
class c, the sum of all hierarchical solution candidates’ decision
variables must be equal to zero, which avoids the selection of
those solution candidates. Vice versa, if the task of node n
is mapped on processor class c, the sum of all hierarchical
solution candidates’ decision variables must be equal to one,

957949955



���� ,������� �	����	
 ��

�
����

��

�� ��

��

�� � 

�� ��

�� � 

'����	�!!
��
�� ��

5		
'���		�	
��	�����
���
�
���!
�&
���
���	

��
�!
#�	��"
��
�
!����&��
�����!!��
�	�!!
��

���!�
���2
���
��	2
#�
���!��
�&
��!3
��
$����
��
�
�
�!�
�����

���
�!
�������

��
���

!���
�����!!��
�	�!!�

���������������������������
���������������������������
���������������������������

��������������������������
��������������������������
��������������������������
�������� �������� ��������

'����	�!!
�� '����	�!!
� 
� ��

Fig. 5. Graphical Representation (Part 4)

so that one of those candidates must be chosen. Note: The
parallel solution set of child node n contains at least one
solution candidate for each processor class which represents
the sequential execution on this processor class. Thus, it is
guaranteed that the ILP finds a solution for this mapping.

L. Summary

The presented ILP-based parallelization approach com-
bines parallelism extraction with a mapping of tasks to pro-
cessor classes in a clear mathematical model. By using this
model the approach is able to automatically find a good
balancing of extracted tasks for heterogeneous processors with
different performance characteristics and to combine this with
a mapping of tasks to processor classes. Due to the use of a
hierarchical approach, the runtime complexity of our technique
increases only linear with the number of statements of the
application to be parallelized. The following Section presents
details about the parallelization tool flow, and Section VI
shows that our new heterogeneous parallelization approach is
able to significantly outperform homogeneous ones.

V. EXPERIMENTAL ENVIRONMENT

The techniques described in this paper are integrated into
an automatic parallelization and compilation tool flow which
is depicted in Figure 6. As can be seen, the tool flow expects
sequential ANSI-C code together with a platform description
of the targeted heterogeneous architecture as input. The par-
allelization tool automatically extracts the hierarchical task
graph like described in Section III before the parallelization
process (cf. Section IV) automatically extracts well balanced
parallelism from the graph representing the source code of the
sequentially written application. More details on the employed
data-flow analysis and the extraction of execution times for
the statements of the input program can be found in [6].
The generated ILPs which are used as a mathematical model
of the parallelization problem are solved by state-of-the-art
ILP solvers. In the current version of the tool, the user can
choose between the freely available lpsolve [19] and IBM’s
commercially available cplex [20] solver. As a result, the
parallelization tool annotates the source code of the application
to describe the extracted parallelism. The format can either
be compliant with the input specification of the ATOMIUM
(MPA) tools [21] or an extension of OpenMP [17] which
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Fig. 6. Parallelization Tool Flow

enables heterogeneous mapping. Figure 6 shows the tool flow
which is used if the ATOMIUM tools are employed to imple-
ment the extracted parallelism. Here, a parallel specification
which maps labeled statements of the application to tasks
is also created by the parallelization tool. With both inputs,
the ATOMIUM tools automatically implement the extracted
parallelism which is further processed by a mapping tool.
The presented parallelization tool of this paper optimizes the
extracted tasks so that they are automatically balanced even
for processing units with different performance characteristics,
like in heterogeneous architectures. Therefore, a pre-mapping
specification is generated which is passed to the mapping
tool. This specification contains information about the ex-
tracted task-to-processor class mapping to ensure that tasks
are mapped to processing units for which they are optimized.

All tools described so far perform source-to-source trans-
formations. This has the big advantage that the designer is
able to observe the applied code modifications after each step.
In addition, a standard compiler can be used to compile and
optimize the parallelized source code into binary files which
are linked against a library that implements task creation and
synchronization primitives. The tool flow also contains a link
to the cycle accurate CoMET [22] and MPARM [23] MPSoC
simulators, so that the sequentially written source code can
fully automatically be parallelized, mapped and evaluated on
several architectures without manual intervention.

VI. EXPERIMENTAL RESULTS

To evaluate the efficiency of our new automatic paral-
lelization approach for heterogeneous architectures, we present
results achieved from the UTDSP benchmark suite [24] con-
taining representative real-world embedded applications. In
addition, we also evaluated other meaningful applications like,
e.g., the so-called boundary value problem from a physical
application domain. To emphasize the quality of our new
approach, we compare it with results generated by the existing
parallelization approach presented in [6]. Just like any other
existing available parallelization approach, the one presented
in [6] was optimized for homogeneous architectures.

The heterogeneous target platform was simulated with
the cycle accurate CoMET MPSoC simulator [22]. Even
though our parallelization approach would also perform well

958950956
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(a) Accelerator Scenario
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(b) Slower Cores Scenario

Fig. 7. Results for Platform Configuration (A): 100/250/500/500 MHz

for different instruction sets and specialized processing units
since it uses different execution costs for each statement,
we have chosen same-ISA multicore platforms for evalu-
ation purposes. They are used in emerging products, like,
e.g., ARM’s big.LITTLE platform [2] or NVIDIA’s Tegra
3. To emphasize the adaptability of our approach to various
architectures, we present results for at least two platform
configurations. Platform configuration (A) contains four ARM
cores, running at 100 MHz (1×), 250 MHz (1×) and 500 MHz
(2×). This configuration shows that our approach works well
for architectures with large performance variances. All cores
are connected with a level 2 cache on a high performance
bus to enable fast memory accesses for shared data. Platform
configuration (B) contains two 200 MHz and two 500 MHz
cores to simulate a performance discrepancy of approximately
2.5×. This is also the average performance difference of
ARM’s big.LITTLE platform [2].

A. Evaluation of Speedup

We evaluated the presented platforms for two different
application scenarios: (I) The main processor of the platform
is a slow core and the additional processing units are added as
accelerators. (II) The main processor of the platform is a fast
core and the slower processing units are added to the platform
due to, e.g., power or thermal issues. The measurement base-
line in both scenarios is the sequential execution on the main
processor. Figure 7 depicts results for both evaluation scenarios
on platform configuration (A) and compares our new hetero-
geneous parallelization approach to the one presented in [6].
The dashed line shows the theoretical maximum speedup limit
for all evaluated platform configurations which can of course
never be fully reached due to, e.g., inserted communication
and task creation overhead.

Results for the accelerator scenario (I) are shown in
Figure 7(a). As can be seen, both approaches increase the
performance of all evaluated applications well. Since the ho-
mogeneous approach is not aware of different processor types,
it tries to uniformly balance the workload for all available pro-
cessors. Thus, a speedup between 3× up to 4× is achieved for
most applications which is a very good performance increase
for homogeneous architectures equipped with four processing
units. However, the results do not exploit the potential of

the targeted heterogeneous platform well. In contrast, results
generated by our new heterogeneous approach are much more
impressive. It automatically balances the extracted tasks by
respecting different performance characteristics of the available
processing units. Thus, the two processors with 500 MHz
are automatically allocated with heavier workloads than the
slower ones. This results in performance increases of up to 11-
12× for some of the considered benchmarks (e.g., boundary
value, compress and mult) which significantly outperforms
the speedup of the homogeneous parallelization tool and is
very close to the theoretical maximum speedup of 13.5×2.
On average, the homogeneous parallelization tool increased
the applications’ performance by 3.3×. In contrast, our new
heterogeneous approach reached an average speedup of 8.7×.

Figure 7(b) shows results for evaluation scenario (II) with
a fast main processor (500 MHz) and slower additional cores.
Here, the speedup produced by the homogeneous approach
is less than one, meaning that the parallelized application
performs slower than its sequential version. The reason is that
the homogeneous approach uniformly distributes the work to
the available processing units. Thus, the faster processors have
to wait until the slower cores have finished their tasks. This
shows that it is even more challenging to extract beneficial
parallelism for an architecture with slower additional cores.
However, in contrast to the homogeneous tool, our new het-
erogeneous parallelization approach was able to speed up the
application by generating tasks that perfectly utilize the slower
processing units so that all cores finish nearly at the same time.
The speedup ranges between 1.2× and nearly 2.5× showing
that the approach did not only allocate tasks to the 500 MHz
cores and is also very close to the theoretical limit of 2.7×3.

To highlight the adaptability of our new heterogeneous
parallelization approach, Figure 8 on the next page shows
additional results for platform configuration (B) which contains
two 200 MHz and two 500 MHz cores. Both evaluation
scenarios with a slow (I) and a fast (II) main processor
are visualized, respectively. As can be seen in Figure 8(a),
both approaches perform well for evaluation scenario (I).
The homogeneous parallelization approach reached speedups
of around 3× for most evaluated benchmarks. In contrast,

2(1 ∗ 100 + 1 ∗ 250 + 2 ∗ 500MHz)/100MHz = 13.5×
3(1 ∗ 100 + 1 ∗ 250 + 2 ∗ 500MHz)/500MHz = 2.7×

959951957
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(b) Slower Cores Scenario

Fig. 8. Results for Platform Configuration (B): 200/200/500/500 MHz

our new heterogeneous approach reached speedups of more
than 6× for the benchmarks boundary value, compress and
mult. The achieved speedups are not as high as the ones
extracted for platform configuration (A), since the performance
difference between the platform’s processing units is not as
large, here. The theoretical speedup limit of this platform is
7×4, the one for platform configuration (A) was 13.5×. Thus,
the quality of the results is comparable for both evaluated
platforms even if the achieved speedups are different. The
homogeneous approach reached an average speedup of 2.9×
for this platform, while the heterogeneous one was able to
increase the applications’ performance by 4.5× on average.

The same observations were made for evaluation scenario
(II) whose results are presented in Figure 8(b). The homo-
geneous parallelization approach reached speedups of up to
1.7×, while the heterogeneous one increased the applications’
performance up to 2.6×. Also here, the results are very close
to the platform’s theoretical speedup limit of 2.8×5 which
emphasizes that our approach balances the workload between
the available processing units well by respecting different per-
formance characteristics. However, the performance of some
benchmarks (e.g., latnrm or spectral) can still be improved.
Those benchmarks have higher communication loads and the
current approach extracts task-level parallelism only but the
applications profit more from other parallelism types, like, e.g.,
pipeline parallelism. Thus, the adaptation of other techniques
will be addressed in future work.

B. ILP Statistics

Table I on the following page summarizes collected data for
all evaluated benchmarks and compares our new heterogeneous
parallelization approach to the homogeneous one, presented
in [6]. The table contains information about the time in minutes
which was necessary to parallelize the applications with both
approaches (Time), the number of generated ILPs (#ILPs), the
number of created variables for all generated ILPs (#Var), and
the overall number of created constraints (#Constr).

As can be seen, the ILP formulations are more complex
in the heterogeneous case since a new dimension was added

4(2 ∗ 200 + 2 ∗ 500MHz)/200MHz = 7×
5(2 ∗ 200 + 2 ∗ 500MHz)/500MHz = 2.8×

describing the task-to-processor type mapping. Our new het-
erogeneous parallelization approach also created and solved
more ILPs than the homogeneous one. This is necessary since
parallel solution candidates for different processor classes have
to be extracted on each hierarchical level. Otherwise, the
parallelization process on the parent hierarchical level would
be limited which would drastically reduce the solution quality.
Besides absolute numbers, shown in the first two blocks
(labeled Homogeneous approach [6] and New Heterogeneous
approach) of Table I, a third block (labeled Factor) shows the
ratio between both approaches. As can be seen, the number
of ILPs increases by factors between 2.4× and 7.4× if we
move from the homogeneous to the heterogeneous case. The
average increase over all evaluated benchmarks is 3.5×. The
increase of newly created variables in the heterogeneous case
ranges from 4.9× up to 14.8× (7.0× on average), while
created constraints are increased by 4.1× up to 11.2× (5.5×
on average). Thus, many new variables and constraints had to
be added to parallelize applications for heterogeneous archi-
tectures. However, if the number of constraints is increased
to 5.5× (average case) while the number of generated ILPs
is increased to 3.5× (average case), the average increase of
constraints per ILP is manageable low (<1.5×). This has also
an impact on the time the parallelization approach needs to
parallelize an application. The original homogeneous approach
had parallelized an application in 8 seconds6 on average, while
the heterogeneous one needs 3:10 minutes6. Note that, due to
the hierarchical approach, run-times are still remaining in an
acceptable state. Nevertheless, the high speedups outweigh the
higher execution times at compile time since the approach has
to be executed only once in the compilation process. The new
heterogeneous approach can also be applied to homogeneous
architectures but due to higher execution times it makes more
sense to use the approach which is optimized for homogeneous
architectures in this case.

To summarize, the following results were achieved:

1) The presented heterogeneous parallelization approach
utilizes heterogeneous platforms in an excellent way.
Speedups of up to 11–12× could be achieved for evalu-
ation platform (A) in scenario (I).

6Measured on an AMD Opteron core running at 2.4 GHz
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TABLE I. STATISTICS OF ILP-BASED PARALLELIZATION ALGORITHMS

Homogeneous approach [6] New Heterogeneous approach Factor

Benchmark Time7 #ILPs #Var #Constr Time7 #ILPs #Var #Constr Time7 #ILPs #Var #Constr

adpcm enc. 00:03 23 6,933 12,686 00:15 78 50,631 70,488 5.0× 3.4× 7.3× 5.6×

bound. value 00:05 7 3,409 6,037 00:08 21 18,303 26,832 1.6× 3.0× 5.4× 4.4×

compress 00:21 59 16,348 31,022 12:12 438 242,382 347,448 34.9× 7.4× 14.8× 11.2×

edge detect 00:08 49 12,335 23,310 00:42 141 73,647 108,594 5.3× 2.9× 6.0× 4.7×

filterbank 00:07 6 3,723 6,700 06:27 20 27,918 38,962 55.3× 3.3× 7.5× 5.8×

fir 256 00:01 10 1,266 1,926 00:02 24 7,152 9,192 2.0× 2.4× 5.7× 4.8×

iir 4 00:02 10 7,387 12,877 00:08 24 35,817 52,950 4.0× 2.4× 4.9× 4.1×

latnrm 32 00:02 14 2,356 3,812 00:04 36 13,200 17,568 2.0× 2.6× 5.6× 4.6×

mult 10 00:02 11 2,276 4,307 00:06 45 16,005 23,157 3.0× 4.1× 7.0× 5.4×

spectral 00:24 33 13,427 25,994 11:40 102 74,595 111,212 29.2× 3.1× 5.6× 4.3×

average 00:08 22 6,946 12,867 03:10 93 55,965 80,640 14.2× 3.5× 7.0× 5.5×

2) The combination of mapping decisions with knowledge
of heterogeneous performance characteristics in the par-
allelization approach is highly beneficial since tasks can
be directly optimized for specific processing units.

3) Our new heterogeneous approach is able to increase the
applications’ performance even for platforms with cores
which are much slower than the main processor.

4) In contrast to the homogeneous approach, our new het-
erogeneous one never generated speedups less than one
for all benchmarks and significantly outperforms the
homogeneous approach on heterogeneous architectures.

5) Even though ILP is NP-hard in the general case, we have
shown that, due to the hierarchical approach, execution
times of our approach still remain acceptable.

VII. CONCLUSIONS AND FUTURE WORK

To the best of our knowledge, this is the first approach
which combines automatic extraction of task-level parallelism
with mapping decisions to efficiently balance created tasks for
heterogeneous multiprocessor architectures. The efficiency of
the tool was demonstrated on several real-world benchmarks
from typical embedded application domains. The measure-
ments, performed on a cycle-accurate MPSoC simulator, have
shown that our new approach significantly outperforms exist-
ing state-of-the-art parallelization approaches.

In the future we intend to extend our heterogeneous par-
allelization framework to be able to extract other types of
parallelism as well, like, e.g., pipeline parallelism to further
increase the applications’ performance. In addition, we will
also consider taking other objectives into account, like, e.g.,
energy consumption or code size.
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