Cross-Layer Dependability Modeling and
Abstraction 1in System on Chip

Andreas Herkersdorf™, Michael EngelT, Michael GlaR¥, Jorg Henkel®, Veit B. Kleeberger®,
Michael A. Kochtet, Johannes M. Kﬁhn”, Sani R. NassifY, Holm Rauchfuss*, Wolfgang Rosenstiel”,
Ulf Schlichtmann*, Muhammad Shafique®, Mehdi B. Tahoori®, Jiirgen Teich?, Nobert Wehn**,
Christian Weis**, and Hans-Joachim Wunderlich'f

‘*Technische Universitit Miinchen
§Karlsruher Institut fiir Technologie
**Technische Universitit Kaiserslautern

Abstract—The Resilience Articulation Point (RAP) model aims
at provisioning researchers and developers with a probabilistic
fault abstraction and error propagation framework covering all
hardware/software layers of a System on Chip. RAP assumes
that physically induced faults at the technology or CMOS device
layer will eventually manifest themselves as a single or multiple
bit flip(s). When probabilistic error functions for specific fault
origins are known at the bit or signal level, knowledge about
the unit of design and its environment allow the transformation
of the bit-related error functions into characteristic higher
layer representations, such as error functions for data words,
Finite State Machine (FSM) state, macro interfaces or software
variables. Thus, design concerns at higher abstraction layers can
be investigated without the necessity to further consider the full
details of lower levels of design. This paper introduces the ideas of
RAP based on examples of radiation induced soft errors in SRAM
cells and sequential CMOS logic. It shows by example how prob-
abilistic bit flips are systematically abstracted and propagated
towards higher abstraction levels up to the application software
layer, and how RAP can be used to parameterize architecture
level resilience methods.

I. INTRODUCTION / MOTIVATION

Nanometer feature size CMOS technologies are susceptible
to a variety of dependability threats affecting all abstraction
layers of System on Chip (SoC). A non-exhaustive list of
examples for possible errors and their corresponding root
causes are: Intermittent or permanent bit flips (SEU, SET) in
memories as well as combinatorial and sequential logic due
to radiation induced charge separation in the CMOS substrate;
Transient signal integrity degradations and register timing
violations due to capacitive coupled cross-talk or NBTI aging;
Irreversible electromigration damages on interconnect wires
due to excessive current densities or temperature hotspots, pos-
sibly in combination with manufacturing process variations.

Depending on the where and when such faults occur within
an SoC, they either have no effect at all on the SoC behavior
(because the fault is masked by other circuit conditions), cause
an erroneous function output or data structure corruption or,
in the worst case, result in a system crash.

While all of the above referenced faults originate at the
low-level process or CMOS technology layers, the resulting
errors and failures manifest at, and may propagate through,
all HW/SW abstraction layers. Consequently, there are coun-
termeasures to conquer these various error symptoms at every

tTechnische Universitit Dortmund
WIBM, Austin Research Laboratory
T Universitit Stuttgart

{Universitit Erlangen-Niirnberg
IUniversitit Tiibingen

abstraction layer. However, it is not clear upfront, which fault
type or error is most effectively tackled at what abstraction
layer and by what form of countermeasure. Detecting and
correcting an error directly at the level where it occurred
may be possible but may not be the most efficient mean.
For example, hardening SRAM cells against radiation-induced
bit flips by means of using larger transistor comes at the
expense of an area increase for each and every SRAM cell
within the memory array. Applying information redundancy
techniques in form of error detection and correction coding
(ECC) during memory write/read operations results in much
less area overhead and achieves the same result.

To effectively tackle these challenges while not compro-
mising with performance targets, the ability to model and
evaluate the various faults and errors at and across all SoC
abstraction layers is a necessity. It is the declared objective
of the German Research Foundation (DFG) Priority Program
SPP1500 "Dependable Embedded Systems” to develop new
cross-layer design methods and architectures for coping with
reliability, performance degradation and increasing power dis-
sipation issues when migrating to new CMOS technology
nodes [1].

The proposed Resilience Articulation Point (RAP) method
is the result of several working group meetings among
SPP1500 partners and aims at provisioning a probabilistic er-
ror modeling and bottom-up error abstraction / transformation
framework to characterize errors at different SoC hardware
and software layers.

II. RESILIENCE ARTICULATION POINT (RAP) MODEL

The RAP model is based on three principal pillars: First,
the hypothesis that whatever physical phenomenon is the
root cause for a fault, if it is not masked (i.e. eliminates
itself), it will manifest as a permanent or transient single-
or multi-bit signal invalidation Pp;; (see Fig. 1). Second,
cross-layer dependability optimization requires probabilistic
methods for reliability modeling in order to cope with, abstract
and quantify the impact of complex low-level fault exposures
at higher levels. Third, transformation functions 77, convert
probabilistic error functions P;, at abstraction level L into
probabilistic error functions P ; at level(s) L +14 (¢ > 1).

In graph theory, an articulation point is a vertex that con-
nects sub-graphs in a biconnected graph, and whose removal
would result in an increase of the number of connecting arcs
within the graph. Translated to our domain of dependability
challenges in SoC systems, spatially and temporally correlated
bit flips represent the single connecting vertex between lower
layer fault origins and the upper (hour glass) layer error and
failure models of HW/SW system abstraction.

|:Failure Crash “~

— Data corruption

s ,No effect”

Wrong branch
Invalid CPU reg ~” decision
Error

L Bit Flip

Faults Jitter Electromigration

. ; Crosstalk
Signal / Vdd noise \
— / A '
Physical Temperature Coupling (C)

sources, Radiation Process variation

Fig. 1. Cross-layer representation of faults, errors, and failures with bit flip
as Resilience Articulation Point

Error functions for different fault origins (radiation, aging,
crosstalk or thermal hotspots, to name a few) and error
transformation functions (such as for determining silent data
corruption (SDC) or detected uncorrectable error (DUE) rates
in microprocessor designs) are vital for the expressiveness of
a RAP-based dependability assessment. However, it is not the
intention of RAP (and beyond its abilities) to consider error
and transformation functions to be an integral part of RAP.
Neither is RAP a tool to develop such functions. RAP rather
provides a framework where different fault origins, each being
expressed as probabilistic bit errors for a particular signal,
can be accumulated to represent an error function covering
several physical shortcomings. Even when this accumulation
and individual error models are approximate, they relief the
SoC designer with expertise at higher abstraction levels from
the details of the technological and device level aspects of
SoC. This concept is applicable at each abstraction level
including and above the bit or signal level.

Cross-layer approaches are suggested in related work as
feasible techniques to enhance reliability of complex sys-
tems ([2],[3]). RIF [4] proposes a standard language to
foster exchange of reliability information and models among
components at different levels and different EDA tools. Fault
and error modeling in the space and time domain has a long
tradition in the LSI testing community. The generalized condi-
tional line flip model [5] allows specification of Boolean and
temporal activation conditions. Excessive process variations
may cause test invalidation of delay tests which threatens
product quality. Probabilistic fault modeling aims to quantify
the quality of the test and final product w.r.t. the parameter
space in spite of high uncertainty of variations [6].

The remainder of the paper is structured as follows: Sec-
tion III introduces the basic assumptions of our probabilistic

error modeling under environmental, process and system state
related constraints. A realistic SRAM circuit was used as
example in section IV to calibrate the analytical model with
real hardware for the fault scenario of radiation induced bit
flips (soft errors). This is followed by a generalization of the
SRAM fault model towards combinatorial and sequential logic
circuits. Section V and VI describe how the RAP bit flip
model is propagated towards higher abstraction levels up to
the software application layer.

III. THE LOWER HALF OF THE HOUR GLASS

The task of an error model at the lower levels is to describe
the probability of an occurring bit error as a function of
parameters that may change during system design or operation.

We propose to model the error probability P of a bit by an
error function F of three parameter vectors: Environmental
and operating conditions &£, design parameters D, and (error)
state of correlated bits S.

P =F(,D,S) (1)

This generic model has to be adapted to every circuit
component and fault type independently. This enables then
the modelling of different components (e. g. SRAM or latches)
and different errors (e. g. soft errors or timing violations).

A. Environmental and Operating Conditions £

Almost all the functionality of a circuit is dependent on
its environmental conditions. Device temperature and supply
voltage values determine the electrical properties of all com-
ponents in the circuit. Circuit age changes electrical properties
such as threshold voltage. Other possible parameters include
clock frequency or neutron flux density.

These parameters represent an interface to either user deci-
sions or other models in the design process. For example, in
a simplified analysis supply voltage might be a fixed value,
while in a more detailed analysis it might come from some
more advanced model [7].

B. Design parameters D

During the design stage several decisions have to be made.
For example, shall arithmetic adders follow a ripple-carry
or carry-lookahead architecture (enumerative decision)? What
technology node to choose (discrete decision)? How much area
should one SRAM cell occupy (continuous decision)?

This allows the designer to make trade-offs between differ-
ent decisions which all influence the error probability.

C. Correlated (Error) States S

To model the dependence of the error probability on loca-
tion, circuit state, and time it might be necessary to include
several state variables.

These state variables lead to a model which is built from
conditional probabilities P(b;|b2), where the error probability
of the bit b; is dependent on the state of the bit bs.

For example, the failure probability of one SRAM cell
depends on the error state of neighboring SRAM cells due
to the probability of Multi Bit Upset (MCU) [8]. For an 8T

Technology/Vpp Device physics, .
[Cosmic ray collision Physics
Internal node Q @ 1 :
wL . l ||
I
\bo l v
J Klalin M“Q Indpcgd charge Circuit
| T [distribution level
(Eq. 2 & 3) |
|
BL l
I
|
Neg. current injection :
with variable pulse height |
I
1
Calculation v
of Bit flip Architecture

probability (Eq. 4)

Fig. 2. SRAM Bit Flip Model

SRAM cell it also depends on the stored value of the SRAM
cell as the bit flip probability of a stored one is different from
a stored zero.

D. The Error Function F

The error function F finally takes the three parameter sets
&, D, and S and returns the corresponding bit error probability.

The error function is unique for a specific type of fault
and for a specific circuit element. It might be possible to
express the error function by simple analytical formulas. On
the other hand, the error function might also require a non-
closed form representation, e.g. a timing analysis engine or a
circuit simulator.

IV. EXAMPLES FOR LOW-LAYER ERROR MODELS

In the following sections we describe bit flip error models
of SRAMs and combinational or sequential logic cells. Similar
methods were presented in [9].

A. SRAM Single Event Upsets

One common example where bit flips are encountered in
a chip is an SRAM cell. We will show in this example how
neutron induced bit flips can be modeled in an SRAM array
by using the generic model from Section III. A bit flip in
an SRAM cell occurs when a particle strike induces enough
charge on a point within the cell to cause a flip in the cell’s
content. Thus, an SRAM bit flip model requires the critical
charge to flip a cell as well a distribution describing the
probability of charge injection (see Fig. 2).

The critical charge which is required to flip a cell can
be characterized for a given cell architecture using SPICE
simulation [10]. Variation of environment temperature or cell
supply voltage introduces a dependence of critical charge Q..+
on environmental conditions (Fig. 3a). The dependence on
design parameters can also be characterized in a similar way,
and the influence of cell area can be modeled by varying the
size of the transistors inside the SRAM cell. The dependence
on target yield can be found by adding a worst-case analysis

Critical Charge (fC)
Critical Charge (fC)

0.5 ()‘G 0.7 U.‘S 0‘0 ‘1 : 0 "2 ‘1 i‘}) é
Supply Voltage (V) Target Yield (o)

(a) Dependence on Vp p for differ-

ent technologies

(b) Dependence on target yield (in
sigma) for different architectures

Fig. 3. Critical Charge Dependence

to the characterization as described in [11]. This results in
a discrete model for the critical charge Q.,;; dependent on
environmental and design parameters (Fig. 3) which may
additionally be approximated by some analytical function.
For the second part of the model in Fig. 2 we need the
probability that a charge which is larger than the critical charge
is injected by a particle strike. The probability that a neutron
strikes the cell can be modeled by a Poisson process [12]:

(®-A-T)k
k!

This equation expresses the probability that k& neutrons hit
an area A during the time interval 7' which is exposed to a
neutron flux ®. These neutrons are then uniformly distributed
over the SRAM area and may only cause an error if they hit
the critical area of one of the cells.

Once the neutron strikes the critical area of the cell it
may generate electron-hole pairs, which have the potential to
change the charge stored on the capacitances inside the chip.
We assume in the following that the probability distribution of
injected charges due to a neutron strike follows an exponential
distribution [13]:

P(N(T)=k)=exp(—®-A-T))

fQ(Qinjected) = é exp <_621né€:ted) (3)

The parameter (), is the charge collection slope due to

one neutron strike, which is technology dependent [10]. The

probability Psgy of a cell flip, and thus a bit error Py (%, t),

can then be composed from the critical charge of the cell Q.
(Fig. 3) and equation 3:

Pspu(Q 2 QuulNote = 1) = [~ fo(@iQ)
With increasing integration density the probability of Multi
Bit Upsets increases. Possible reasons for this include the
successive hit of multiple storage nodes by the same neutron,
shared charge to adjacent cells, or parasitic bipolar transistors
in the case of bulk technology [14]. To correctly account
for Multi Bit Upsets we therefore have to add error state
variables to the model. For this we first have to characterize
the occurrence probability of given shapes [15]. Using these
occurrence probabilities we can account for Multi Bit Upsets
using conditional probabilities which determine the probability

that an adjacent cell is upset given the upset of spatially close
cells [8].

B. Combinatorial and Sequential Logic

When a neutron strikes a combinatorial or sequential logic
block within the SoC, it will result in a charge separation
within the semiconductor substrate material which may lead
to a voltage pulse on a signal wire line (see signal A in Fig. 4).

— t

p

J

A B| & P . B L
1 C Ve _ I
clk‘ clk o
Toup = T

Setup Hold

Fig. 4. Bit flip as result of SEU or SET

The temporal width of the voltage pulse again depends on
the energy of the particle, the technology feature size, the
capacitive load of the signal, the supply voltage (in other
words, on the £, D, and S parameters). However, the voltage
pulse only results in a functional error (i.e. a false bit value
latched into the following register stage affecting signal Y),
if the pulse propagates from the location of occurrence to the
register stage on a combinatorially sensitized path and overlaps
with the critical time window AT¢,it = Tgetup+1THolqd around
the active clock edge. Otherwise, the pulse will be masked
out and thus, never be noticed. The probability for a bit error
Py;+(Z,t) within sequential logic again is spatially (where in
the combinatorial net did the strike occur) and temporally
(what is the combinatorial path delay between strike location
and register input) correlated with the fault and, with the
probability Pse,se to have a sensitized path to the register,
approximated as:

_ Tsetup + THold +1t

Pbit(f7 t) ~ T Ik L. Psense . PSET (5)

Signal Y in Fig. 4 can be considered as an individual bit of
a data word in a sequential data path pipeline or a bit within
a state vector of a control FSM. Upsets on clock trees would
result in multiple (hundreds of) erroneous register contents
(data / control word corruptions). Clock tree upsets can be
modeled as transient bit flips too, but will occur significantly
less likely as clock buffers are usually hardened by multiple
sequential nMOS and pMOS transistors in the buffer / inverter
designs. A signal degradation on an i/o bit will result in
an interface (control) error at a higher layer of abstraction
and is also in line with the RAP model. In consequence,
we now have a probabilistic bit flip model for combinatorial
and sequential logic, interconnect wires, external interfaces
and memory arrays, and thus cover all fundamental functional
building blocks of SoCs or computing architectures.

V. THE UPPER HALF OF THE HOUR GLASS

Bits or individual signals are meaningful targets for de-
scribing errors at the transistor, logic gate and RTL levels
of abstraction. At higher layers, compounds of multiple sig-
nals/bits, referred to as data, control or address words, FSM
state vectors, variables, interfaces or data structures, are more
intuitive and descriptive, particularly for software developers
(see Fig. 5). On the other hand, a memory data word is nothing
but a bundle of multiple (say 32) consecutive memory cells
or memory bits. Thus, when assuming individual bit errors
Pyt (Z,t) in space Z and time ¢ within memory cells to be
independent, one can determine the approximate Pyo.q(Z,t)
error probability by the following concrete transformation
function Tp;;:

Pyora(#,t) = Typir 0 Py (T,1) = 1— H (1= Pyit(zi,t)) (6)
T;ET

The derivation of word error probabilities under consider-
ation of correlated data bits and interleaving is also possible.
We refer to [16] for a more complete discussion of this more
complex case.

When operand variables of arithmetic operations are stored
in an SRAM memory array, then Py,..4(Z,t) describes the
probability with which these variables contain erroneous data.
In case the same variables are kept in the CPU register file,
then a different Py,..4(Z, t) describes the trustworthiness of the
contents of the register file. The two P,q(Z,t) probabilities
are different because the technological (D) and state-related
constraints (S) of SRAM arrays and a register files are differ-
ent. Pyorq(¥,t) can also incorporate potential dependability
countermeasures applied at word level abstraction layers (e. g.
ECC detecting and correcting up to k bit errors per word).
In case of ECC protection, only N > k accumulated bit
errors within one and the same data word and between two
consecutive write refreshes will result in a word / variable
error. N < k bit flips per data word remain invisible (i.e.,
are masked) for the software layer. Hence, an ECC protected
memory has a different Py..q(Z,t) than a non-protected
memory, although both may have the same bit level Py;; (&, t).

2
L
£S N ; ”
23 Processy Tasks Driver 4
& L ——— Pyasi
OnCod g variables
Data N = S .
) . HW- _ Memory o 7
Architecture % Accel. Bus Core Pimerfaces
3 \Pipeline Address
E% Macro er_ Decoder/”
%5, == Pword
» RTL
Logic 7 Phuit
Bit Flip
Fig. 5. Abstraction and transformation of bit flips in higher system model
layers

Similar, the vulnerability of data, address and control word
transports on on-chip buses, or the data transformation within
the combinatorial logic blocks of a CPU data path or FSM

control structure can be expressed as Pyorq(Z,). At higher
abstraction layers, the units of words, or compounds of words
referred to as interfaces (or data structures), substitute bits or
signals. The corresponding Pjyter face (Z, t) models are derived
from the error probabilities at bit-level Py;(Z,¢) or word-
level Pyora(Z,t), plus additional knowledge on the internal
IP block architecture and topology. In other words, the D
and S constraints at the respective abstraction layers represent
a transformation model between Py;t(Z,t), Puyord(Z,t) and
Pinterface (fy t)

A. Divide and Conquer

Once we can describe the dependability exposure of a
complex SoC by probabilistic functions for data bus words and
operand variables, higher layer SoC behavior (HW architecture
and SW layers) can again be investigated without maintaining
the complete set of lower layer models. Pyord OF Pinterface
are adequate representatives of the lower layer errors. They
can be considered as adequate error injection means at, e.g.
architecture or system software levels, thereby replacing com-
plex lower layer models.

Abstraction level specific probabilistic error models and
transformation functions can be used for propagating error
models towards higher abstraction levels. Mathematically, this
can be expressed by the following equation and is graphically
depicted in Fig. 6:

Pr+i =T(En,Dr,Sp) o Py, N

Transformation functions can stretch one or several abstrac-
tion levels. The SRAM data word example from Eq. (6) dealt
with two consecutive abstraction levels. Section VI below
will show cases where transformations cover multiple levels,
from bit to architecture level and word to application software
level, respectively. Abstraction levels not only have specific
transformation functions, but also level specific environmental,
design and correlated state parameters. Externally imposed
workloads and fault exposure patterns contribute to the en-
vironmental dimension, abstraction level related design struc-
tures and templates to the design and state related parameters.
Dynamic program flow is considered through the workload
(environmental &; parameters) and, thus, affect the error
model at higher abstraction level(s).

P L+i
Higher level
_____________ P, ,5
Analysis / Simulation L' L
C t level
urrent leve Technigae Structure,
(Tool) Design
_______ L (é_L_’_@ L’ > L)
Lower level
L
Fig. 6. Error transformation / propagation in the upper half layers

VI. TRANSFORMATIONS, TOOLS AND APPLICATIONS FOR
THE UPPER HALF

Transformation functions are essential for raising the level
of abstraction and obtaining application-specific results out
of RAP-based dependability analysis. However, the trans-
formation functions themselves are not an integral part of
RAP. In the following sections we provide examples of how
transformation functions can be used in the context of RAP-
based system analysis and drive architecture related design
decisions.

A. Data and Instruction Vulnerability Analysis

A large number of embedded software applications can tol-
erate certain errors with negligible output quality degradation.
Nevertheless, errors leading to significant output deviations or
even system crashes have to be corrected mandatorily. Flexible
error handling requires meta data to indicate the vulnerability
of a given data object or code sequence to errors. This can
be accomplished by providing reliability annotations in appli-
cation source code, e.g., by means of a binary classification
into “critical” and “non-critical” objects. This information is
propagated throughout the application using static analysis and
source or binary code transformations.

The SPP1500 FEHLER project uses this meta data at
compile time to map data and instructions to components of
appropriate reliability [17]. In addition, for errors manifesting
at runtime, meta data is used by the operating system to
determine the appropriate error correction method considering
current resource availability. Lower level RAP word error
models Py,or-q(Z,t) can be used to decide if, when, and how to
correct a given error. This can significantly help to assess the
overhead required for error correction under different work-
loads (E parameter) at runtime. Extensions to the analysis and
related meta data will help to consider additional design (D)
trade-offs, e.g., between output quality, real-time constraints,
and energy consumption.

Instruction Vulnerability Index (IVI) [18] and Instruction
Masking Index (IMI) [19] are alternative approaches pro-
viding probabilistic estimations/quantifications for the wvul-
nerability, masking of application software at various gran-
ularities, i.e. instruction, basic block, and function. The IVI
model (Eq. (8)) quantifies the spatial and temporal vulnera-
bilities of different types of software instructions in different
microarchitecture/RTL-level pipeline stages ¢ € C' of a given
processor according to their area A, and error probability
Pr(c) [18]. It jointly considers the effects of faults in dif-
ferent processor components (spatial), during the execution of
different instructions (temporal), types of errors, (non-)critical
instructions, and vulnerable bit analysis. The error probability
Pg(c) for each pipeline component is obtained using the
HW-level reliability methods like EPP [20], CEP [21] and
CLASS [22]. These techniques provide probabilistic analysis
of error propagation from error site (Py;(Z,t) or Pyora(T, 1))
to the reachable primary outputs using topological traversal
of the netlist. Moreover, the correlation in propagated errors
to multiple outputs as well as multi-cycle propagation of
latent errors in flip-flops and memories are handled by these

techniques. The correlation coefficient method is adopted to
obtain error probabilities and correlations of primary outputs
due to particle strike at internal nodes. A. is obtained from
the hardware synthesis results.

VI — Y wveec IV Iie x Ae x Pg(c)
ZVCEC Ac

IV I;. denotes the vulnerability at a processor component ¢
(with an architecturally-defined size .) is given as the product
of its vulnerable periods in that processor component (v;.)
and vulnerable bits affecting the Correct Execution (8.(,)), as
shown in Eq. (9). A. and 3., capture the spatial vulnerability,
while v;. captures the temporal vulnerability.

®)

ic X c(v
v, = e P ©)

ZVCEC B c
Be(v)y is obtained using the program-level analysis of vul-
nerable bits [18], bit error probabilities (Eq. (10)) and their
correlations [21][22]. The above discussion on IVI model
illustrates that how hardware- and program-level error analysis
can be combined to accurately estimate the reliability at higher
system layers.

Pyirava(ig)
Pyirava(d)

IVI can then be used to derive the vulnerabilities at function,
task, and application program level.

As IVI captures the probability of an error, IMI captures
the software properties of how probable is that this error will
ultimately propagate to the visible program output. Hence, IMI
provides a transformation function 7' covering one or multiple
abstraction layers.

Poiavel(i|j) = (10)

B. Tool Perspective

The concept and advantages of RAP as a basic model for
reliability considerations in the MPSoC domain can enhance
existing and guide future design and analysis tools. As outlined
in Sec. IV, RAP at the level of bit flips has the potential
to close the gap between (a) lowest-level techniques that
are aware of physical effects and (b) numerous higher-level
techniques, e.g., from the fault-injection domain like [23].
The latter are agnostic of physical causes but rely on a math-
ematical description of an error as a discrete deviation from
the expected state occurring deterministically or statistically.
Given that the single bit flip is the smallest functional error
unit, no inherent abstraction prevents the model from being
generally applicable by already neglecting certain aspects. But
RAP not only has the potential to bridge between those two
worlds, but it also enhances the heterogeneous higher-level
tool landscape by means of providing a transformation scheme
as a step towards a cross-layer tool flow. As indicated in
Sec. V-A, the concept behind RAP enables: (a) An abstraction
from concrete fault models, in particular, it may even already
serve as an abstraction for several concurrent fault models, and
(b) different causes of errors can be composed and provided
to the next higher level of abstraction. Modeling errors as
flips in bits, words, interfaces, or variables is individually

covered in existing simulation-based and analytical analysis
tools. Here, RAP may serve as an intermediary between
existing analysis tools and techniques; a step towards solving
the problem of cross-layer analysis as, e. g., discussed in [24].
This cross-layer concept behind RAP will also be reflected
in the implementation of a recent concept for cross-layer
reliability analysis presented in [25].

C. Architectural Layer Application Example

Dynamic Functional Verification (DFV) on Coarse Grained
Reconfigurable Architectures (CGRA) is a low-cost method
to detect faults in SoCs by computing samples of SoC com-
ponents on a fault tolerant CGRA [26]. The method provides
fault detection deadlines which are met with specified proba-
bilities. Specification of these deadlines as well as the desired
confidence to meet the latter allows DFV to be optimized for
the actual demand. CGRAs support this optimization through
temporal and spatial mapping. By mapping these components
into the temporal domain, they are deliberately slowed-down
by the factor s to only calculate as many samples as are
absolutely required to have detection latency DL, the time
from fault occurrence to fault detection, meet the deadline with
the desired confidence. The usage of fault tolerant CGRAs [27]
ensures that the information thereby acquired is reliable.

DL Comparison for different CGRA slow-down factors s
1.5 |

&7 2
\ 5 g8
—o—s=16
\
T
=
-
[=]
0.5F
D S S S DD S
o, B = S —— F =3 |
1 13 1.4 15 16
w sl x107
Fig. 7. DL Comparison with standard deviation § between s = {2,8,16}

and P(FD) = q=10"°

However, with the capability to adjust DFV according to
reliability goals, it is important to asses the initial reliability
situation correctly. Prior to the RAP Model, this was mostly
up to experience and experiments, both which left chances
for under- and overestimating the fault occurrence probabil-
ity P(FO) and thus also its derivative, the fault detection
probability P(FD) = ¢, which is limited by P(FO) as
upper boundary and which shall be assumed to be equal for
simplification. In case of underestimation of P(F'O), the risk
is deemed lower than it actually is and system stability is
jeopardized. Overestimation of P(F'O) leads to excess check-
ing and thus to a waste of computing power and energy. The
RAP model provides a bit flip probability P, enabling specific
optimization for the actual reliability demand, preventing the
aforementioned hazardous scenarios. The following example
shall elucidate.

Based on the chart in Fig. 7 faults shall be detected within
0.5s with a confidence of 95.6%. If P(FO) > P is overesti-
mated, a setup with CGRA slow-down factor s = 2 might be

used, using a more resources than necessary. Underestimating
P(FO) < P might lead to a solution using s = 16 which
would prevent DFV from ever meeting its goal. But if P
is known upfront through the RAP model, all this can be
prevented. In this case, the optimization algorithm presented
in [26] will suggest a solution of s = 8 and a time window
of T'ryy = 1.30ms which will just meet the aforementioned
demand.

VII. SUMMARY

This paper presented the basic idea of the RAP model,
which is intended to serve as the logical interface point for
resilience analysis between lower (technology, circuit, device)
levels of abstraction and higher levels of system implementa-
tion. The intention behind the development of the RAP model
was to allow researchers at all levels of abstraction to be able
to clearly and quantitatively describe the error and fault rela-
tionships between these levels in terms of probabilistic models
and abstraction transformation functions. Thereby, detailed
implementation and technology related aspects of the system
are considered via the lower level models. This property allows
the designer to globally optimize system resilience across all
relevant abstraction levels.

The upper levels of the RAP framework are assigned
abstract and meaningful “units of information” to characterize
the data and control entities that are typically processed at
the respective HW/SW levels. Probabilistic error function Py,
at higher levels can be derived / transformed out of the
probabilistic error function describing the lower level bit flips.

ACKNOWLEDGMENT

This research program is supported by the German Research
Foundation (DFG) as part of the priority program “Dependable
Embedded Systems” (SPP1500 - spp1500.itec.kit.edu). We
would also like to thank all partners within the priority
program for their input and feedback.

REFERENCES

[11 J. Henkel, L. Bauer, J. Becker, O. Bringmann, U. Brinkschulte,
S. Chakraborty, M. Engel, R. Ernst, H. Hartig, L. Hedrich et al.,
“Design and architectures for dependable embedded systems,” in Hard-
ware/Software Codesign and System Synthesis (CODES+ ISSS), 2011
Proceedings of the 9th International Conference on. IEEE, 2011, pp.
69-78.

[2] H. M. Quinn, A. De Hon, and N. Carter, “Ccc visioning study:
system-level cross-layer cooperation to achieve predictable systems from
unpredictable components,” Los Alamos National Laboratory (LANL),
Tech. Rep., 2011.

[3] W. Robinson, M. Alles, T. Bapty, B. Bhuva, J. Black, A. Bonds,
L. Massengill, S. Neema, R. Schrimpf, and J. Scott, “Soft error consider-
ations for multicore microprocessor design,” in Integrated Circuit Design
and Technology, 2007. ICICDT’07. IEEE International Conference on.
IEEE, 2007, pp. 1-4.

[4] A. Evans, M. Nicolaidis, S.-J. Wen, D. Alexandrescu, and E. Costenaro,
“Riif-reliability information interchange format,” in On-Line Testing
Symposium (IOLTS), 2012 IEEE 18th International. 1EEE, 2012, pp.
103-108.

[5] H.-J. Wunderlich and S. Holst, “Generalized fault modeling for logic
diagnosis,” in Models in Hardware Testing, ser. Frontiers in Electronic
Testing, H.-J. Wunderlich, Ed. ~ Springer Netherlands, 2010, vol. 43,
pp. 133-155.

[6]

[7]

[8]

[9]

(10]

[11]
[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

B. Becker, S. Hellebrand, 1. Polian, B. Straube, W. Vermeiren, and H.-J.
Wunderlich, “Massive statistical process variations: A grand challenge
for testing nanoelectronic circuits,” in IEEE/IFIP International Confer-
ence on Dependable Systems and Networks Workshops (DSN-W), 2010,
pp- 95-100.

S. Nassif and O. Fakhouri, “Technology trends in power-grid-induced
noise,” in Proceedings of the International Workshop on System-level
Interconnect Prediction, 2002, pp. 55-59.

S. Lee, S. Baeg, and P. Reviriego, “Memory reliability model for
accumulated and clustered soft errors,” IEEE Transactions on Nuclear
Science, vol. 58, no. 5, pp. 2483-2492, 2011.

H. T. Nguyen, Y. Yagil, N. Seifert, and M. Reitsma, “Chip-level
soft error estimation method,” Device and Materials Reliability, IEEE
Transactions on, vol. 5, no. 3, pp. 365-381, 2005.

P. Hazucha and C. Svensson, “Impact of cmos technology scaling on
the atmospheric neutron soft error rate,” IEEE Transactions on Nuclear
Science, vol. 47, no. 6, pp. 2586-2594, 2000.

H. Graeb, Analog Design Centering and Sizing. Springer Amsterdam,
2007.

J. Barth, C. Dyer, and E. Stassinopoulos, “Space, atmospheric, and ter-
restrial radiation environments,” IEEE Transactions on Nuclear Science,
vol. 50, no. 3, pp. 466—482, 2003.

M. Zhang and N. Shanbhag, “Soft-error-rate-analysis (sera) method-
ology,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems,, vol. 25, no. 10, pp. 2140-2155, 2006.

E. Ibe, S. Chung, S. Wen, H. Yamaguchi, Y. Yahagi, H. Kameyama,
S. Yamamoto, and T. Akioka, “Spreading diversity in multi-cell neutron-
induced upsets with device scaling,” in Proceedings of Custom Inte-
grated Circuits Conference (CICC), 2006, pp. 437-444.

D. Radaelli, H. Puchner, S. Wong, and S. Daniel, “Investigation of multi-
bit upsets in a 150 nm technology sram device,” IEEE Transactions on
Nuclear Science, vol. 52, no. 6, pp. 2433-2437, 2005.

S. Baeg, S. Wen, and R. Wong, “Sram interleaving distance selection
with a soft error failure model,” IEEE Transactions on Nuclear Science,
vol. 56, no. 4, pp. 2111-2118, 2009.

A. Heinig, V. J. Mooney, F. Schmoll, P. Marwedel, K. Palem, and
M. Engel, “Classification-based improvement of application robustness
and quality of service in probabilistic computer systems,” in Proceedings
of ARCS 2012, Munich, Germany, Mar. 2012.

S. Rehman, M. Shafique, F. Kriebel, and J. Henkel, “Reliable soft-
ware for unreliable hardware: Embedded code generation aiming at
reliability,” in Proceedings of the International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), 2011,
pp. 237-246.

S. Rehman, M. Shafique, and J. Henkel, “Instruction scheduling for
reliability-aware compilation,” in Proceedings of Design Automation
Conference (DAC), 2012, pp. 1288-1296.

S. Z. Shazli and M. B. Tahoori, “Obtaining microprocessor vulnerability
factor using formal methods,” in IEEE International Symposium on
Defect and Fault Tolerance of VLSI Systems, 2008, pp. 63-71.

L. Chen and M. B. Tahoori, “An efficient probability framework for error
propagation and correlation estimation,” in /EEE [8th International On-
Line Testing Symposium (IOLTS), 2012, pp. 170-175.

M. Ebrahimi, L. Chen, H. Asadi, and M. B. Tahoori, “Class: Combined
logic and architectural soft error sensitivity analysis,” in Proceedings of
18th Asia and South Pacific Design Automation Conference (ASP-DAC),
2013, pp. 601-607.

H. Schirmeier, M. Hoffmann, R. Kapitza, D. Lohmann, and O. Spinczyk,
“Fail*: Towards a versatile fault-injection experiment framework,” in
ARCS Workshops (ARCS), 2012, pp. 1-5.

S. Mitra, K. Brelsford, and P. N. Sanda, “Cross-layer resilience chal-
lenges: Metrics and optimization,” in Proceedings of Design, Automation
& Test in Europe (DATE), 2010, pp. 1029-1034.

M. GlaB, H. Yu, F. Reimann, and J. Teich, “Cross-Level Compositional
Reliability Analysis for Embedded Systems,” in Proceedings of the
International Conference on Computer Safety, Reliability and Security
(SAFECOMP), 2012, pp. 111-124.

J. Kiihn, S. Eisenhardt, T. Schweizer, T. Kuhn, and W. Rosenstiel,
“Improving system reliability using dynamic functional verification on
cgras,” in Proceedings of the International Workshop on Highly-Efficient
Accelerators and Reconfigurable Technologies (HEART), 2012.

T. Schweizer, A. Kuester, S. Eisenhardt, T. Kuhn, and W. Rosen-
stiel, “Using run-time reconfiguration to implement fault-tolerant coarse
grained reconfigurable architectures,” in International Parellel and Dis-
tributed Processing Symposium Workshops (IPDPSW). Shanghai,
China: IEEE, 05 2012.

