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Abstract—Computation offloading concept has been recently
adopted to improve the performance of embedded systems by
moving some computation-intensive tasks (partially or wholly)
to a powerful remote server. In this paper, we consider a
computation offloading problem for frame-based real-time tasks,
in which all the tasks have the same arrival time and the
same relative deadline/period, by adopting the total bandwidth
server (TBS) as resource reservations in the server side (remote
execution unit). We prove that the problem is NP -complete and
propose two algorithms in this paper. The first algorithm is
a greedy algorithm with low complexity and provides a quick
heuristic approach to decide which tasks to be offloaded and
how the tasks are scheduled. The maximum finishing time of
the solution derived from the greedy algorithm is at most twice
of the finishing time (makespan, maximal on the client and on
the server) of any schedule. The second algorithm is a dynamic
programming approach, which builds a three-dimensional table
and requires pseudo-polynomial time complexity, to make an
optimal decision for computation offloading. The algorithms
are evaluated with a case study of a surveillance system and
synthesized benchmarks.

I. INTRODUCTION

In the recent years, we have seen a significant increase in
the use of video surveillance systems for real-time monitoring.
They are widely used for security, rescue and safety purposes
[22, 23]. Specifically, the mobile robots are the preferred
platforms for the surveillance in the difficult and dangerous
situations. The mobility of the robots provides a wider range
for the vision so that the blind areas can be observed and moni-
tored as shown in [3, 9, 12]. Moreover, such robots have been
used for the missions that are hazardous for human beings.
For instance, a mobile surveillance robot, called SURBOT, has
been used since 1987 for real-time monitoring at the Browns
Ferry Nuclear Plant in United States in order to reduce the
radiation exposure [24]. Recently, there has been a growing
interest in adopting surveillance robots for home security.
These robots are used for indoor reconnaissance and patrolling,
and also for monitoring of the surroundings [2, 11, 21].

To perform real-time surveillance, the video stream, con-
sisting of a sequence of real-time images captured by a
camera (or the cameras) on the robot, should be analyzed
under the specified timing constraints. It usually involves
several image processing tasks, such as motion detection and
recording, object recognition, behavioral analysis, and analysis
of the stereo vision [22, 23]. The period of time between two
consecutive images is called a frame and represents the relative
deadline of the tasks. All of the required surveillance tasks
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Fig. 1: Offloading Mechanism.

should be executed and finished within this frame to preserve
the real-time property of the system.

However, the resource limitations in the computational
capabilities of the mobile robots may limit the possibility to
complete all the tasks in time. One of the solutions for such
a resource-constrained problem is to perform computation of-
floading, which offloads a part of the tasks ( i.e., computation-
intensive tasks) to some remote processing units, i.e., servers.
Figure 1 illustrates the computation offloading mechanism.
Hereafter, we denote the embedded system that offloads its
tasks as the client, and the remote processing unit that executes
the offloaded tasks from the client as the server.

Our Contribution: In this paper, we consider a com-
putation offloading problem for frame-based real-time tasks
by adopting the total bandwidth server (TBS) in the server
side for resource reservations, in which all the tasks have the
same arrival time and the same relative deadline/period. The
computation offloading mechanism exploits the idle time on
the client when a task is offloaded and does not implicitly
assume a dedicated server for the client. Our contribution can
be summarized as follows:
• We prove that the offloading problem is NP -complete.
• The proposed approximation algorithm is a greedy algo-

rithm with low complexity. The maximum finishing time
of the solution derived from the greedy algorithm is at
most twice of the finishing time of any schedule.

• The proposed dynamic programming algorithm builds a
three-dimensional table in pseudo-polynomial time com-
plexity to make an optimal decision for computation
offloading.

• We present a case study and randomly synthesized bench-
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Fig. 2: Simple offloading decision adopted in [16].

marks for evaluating our proposed algorithms.
• The proposed algorithms can also be extended to min-

imize the period (or maximize the sampling rate) of
the tasks by minimizing the finishing time (makespan,
maximal on the client and on the server) of the resulting
schedule.

The remainder of the paper is organized as follows: Sec-
tion II provides the related work and discusses their drawbacks
and limitations. Section III presents the system model. The
optimal ordering of the tasks is shown in Section IV after
an offloading decision is made. The NP -completeness of the
studied problem is shown in Section V. Section VI presents
our approaches. Experimental evaluations and simulations are
presented in Section VII, and Section VIII concludes the paper.

II. RELATED WORK FOR COMPUTATION OFFLOADING

This section summarizes the related work in computation
offloading and provides the explanations for the limits of their
approaches for real-time systems.

A framework for computational offloading is proposed in
[6, 25] for computational grid settings to improve the perfor-
mance. The offloading decision is represented as a statistical
decision problem. The scheduler determines when to move
parts of computation to more capable devices based on the
prediction of the local execution time, remote execution time
and the transmission time. Nimmagadda et al. [16] propose a
framework for mobile robots in order to perform recognition
and tracking for moving objects without violating the real-
time constraints. The offloading decision in the two previous
approaches is basically based on the comparison between the
data transfer time added to the remote execution time, and the
local execution time, as shown in Figure 2.

The computation offloading mechanism is used in [17, 27]
for mobile handsets. The mobile application is represented as a
directed graph, where each vertex represents a Java class with
memory and CPU costs. The edges of the graph represent the
communications between the classes of the application. Graph
partitioning algorithms are developed in [5, 14, 15] to decide
how to partition the application to be executed on the servers
and the client.

Furthermore, Ferreira et al. [4] explore the computation
offloading to improve the quality of service in the adaptive
real-time systems. A timeout mechanism is used for the of-
floading decision in [26] to reduce the energy consumption on
battery-powered systems. Hong et al. [7] propose an offloading

strategy to save energy for mobile systems. The strategy is
used for performing content-based image retrieval.

Kovachev et al. [13] develop the Mobile Augmentation
Cloud Services (MACS) middleware for mobile Android plat-
forms. The middleware offloads the computation intensive
tasks to a remote clouds. Offloading decision is represented
as an optimization problem based on some input parameters,
such as CPU load, available memory, remaining battery, and
the bandwidth. Integer linear Programming (ILP) is used to
solve the problem on the mobile device.

However, these approaches suffer from three drawbacks: (1)
The client in all of the existing solutions remains idle during
the offloading, and awaits the result from the server side. Also,
they do not consider the scheduling on the client. Changing the
execution order of the tasks may improve the performance. For
example, a task that is executed locally on the client without
offloading can be executed during the remote execution of an
offloaded task instead of idling. (2) They do not consider the
server system model or explain how the server can execute
the offloaded tasks. They implicitly assume that the powerful
server is dedicated for one specific client and can execute any
offloaded task immediately. In practice, a powerful server can
serve more than one client, because the client might not require
a complete server for offloading. Therefore, the capability of
the server is not fully exploited. (3) Furthermore, most of the
computation offloading researches do not consider the real-
time systems in their approaches.

In our recently study in [20], we explore an offloading
scheme for frame-based real-time tasks by assuming that the
server(s) provides a (worst-case) round-trip time guarantee
for an offloaded task as an input. That is, if an offloaded
task arrives at the server at time t, its processing in the
corresponding server will be done by at most t plus the round-
trip time. It does not require dedicated servers for the client.
However, the round-trip time guarantee requires a certain
reservation in the server. If the schedule in the client does not
offload a task, the server can release the reservation for the
task. This may result in the reduction of the round-trip times
of the other tasks. But the scheme in [20] cannot handle such
dynamic behavior. In this paper, we adopt the total bandwidth
server (TBS) in the server side to resolve the drawbacks
mentioned above.

III. SYSTEM MODEL

This section presents the system model and the problem
definition. We use the terms locally executed and offloaded
for a given task to refer to the processing of that task on the
client processor and on the server, respectively.

A. Task Model

We explore the scheduling of a set T of n independent
frame-based real-time tasks that are independent in execution.
All the tasks arrive at time t = 0, have the same period D,
and require execution within a common relative deadline D.
Each task τi ∈ T (for i = 1, 2, . . . , n) can be executed locally
or offloaded, and is characterized by the following parameters:
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• Ci: Local execution time on the client side.
• Si: Setup time, which is the execution time required on

the client side for task τi to be ready for execution on the
server side. It includes the sending time of the data from
the client to the server and any preprocessing operations
(such as encoding and compression). For example, send-
ing time can be estimated as Z

β , where Z is the size of the
offloaded data and β is the estimated network bandwidth
between the client and the server.

• Ri: Remote execution time, which is the execution time
on the server side. For example, if the server side uses
the same program as in the client for local execution, it
can be estimated as Ci

α , where α is the speed-up factor
of the server. Under such a setting, if α > 1, we can say
that the server is α times faster than the client; otherwise,
if 1 > α > 0, the server is said 1

α times slower than the
client.

We assume that the parameters Ci, Si, and Ri are given
based on the system setup. When all these parameters are
specified for (the upper bounds of) the worst cases, we would
like to provide the hard real-time guarantees. Otherwise, the
information is based on estimations, and we would like to
meet the timing constraint by exploiting the services provided
from the server.

We assume that the post processing time of any offloaded
task is negligible, because the results returned from the server
need very short post processing time. For instance, the returned
results in our case study of a surveillance system are the
coordinates of the moving object or the distance between it
and the cameras.

B. Server (Remote Processing Unit)

When adopting a server to handle the offloaded tasks for
real-time systems, the server has to provide a guarantee for
the response time of the offloaded tasks to preserve the real-
time property of the system. The server should provide a
certain resource reservation for a client. In the Resource
Reservation Server (RRS) model1, one can receive bandwidth
guarantees, such as the total bandwidth server (TBS), or
receive budget guarantees for a given time interval, such as

1This is a logical server, inherited from the literature

a constant bandwidth server (CBS), a deferrable server (DS),
and a sporadic server (SS) [1].

In this paper, we adopt the Total Bandwidth Server (TBS)
[18, 19] as RRS in the server side. The server allocates a TBS
for each requesting client with a utilization (or bandwidth)
value Us, if it is possible. The TBS assigns an absolute
deadline ds(t) for an incoming (offloaded) task τi that arrives
at the server at time t as follows:

ds(t) = max{t, ds(t−)}+
Ri
Us

where ds(t−) is the absolute deadline of the previous offloaded
task served by the TBS, and ds(0−) is defined as 0.

The server side will execute the offloaded tasks by using
the Earliest Deadline First (EDF) scheduling algorithm under
the assigned TBS deadlines. To meet the absolute deadlines
assigned to the offloaded tasks (from one or more than one
client) in the server, the total utilization of all the TBS’s in
the server should be less than or equal to 100% [19]. Figure 3
shows the offloading system architecture.

For the rest of this paper, we will assume that Us provided
from the server side to the client does not violate the utilization
constraint (100%). Therefore, the assigned absolute deadline
for an offloaded task will always be met, and we will take
this absolute deadline as the worst-case finishing time of the
offloaded task.

C. Problem Definition
Based on the TBS with Us provided from the server to

the requesting client, the client decides which tasks should be
offloaded and how. Therefore, the tasks in T will be divided
into two sets: (1) the set of local tasks and (2) the set of
offloaded tasks, as shown in Figure 3.

Based on the above model, the scheduling problem that is
focused on this paper can be defined as follows:

Given a set T of n frame-based real-time tasks and a TBS
with bandwidth Us provided by the server, the Computation
Offloading with TBS (COTBS) problem is to schedule the tasks
and decide which to be offloaded and which to be locally
executed without violating their timing constraints.

A schedule is considered to be feasible if the finishing
times of all locally-executed and offloaded tasks are within
the deadline D. A scheduling algorithm is said to be optimal
algorithm if it is able to find a feasible schedule, if and only
if one exists.

The finishing time on the client of a task τi is the time that
τi finishes its setup (if τi is offloaded) or its local execution
if τi is not offloaded. Suppose that the finishing time of τi is
ti. Moreover, the finishing time on the server of a task τi is
defined as the TBS deadline for task τi (i.e., ds(ti)) if τi is
offloaded or the maximal between ti and last TBS deadline
set before τi (i.e., max{ti, ds(t−i )}) if τi is not offloaded.

The makespan is defined as the maximum of the finishing
time on the client and the finishing time on the server. Suppose
that xi is equal to 1 if task τi is decided to be offloaded;
otherwise, xi is 0. We use a vector ~x = (x1, x2, . . . , xn) to
denote an offloading decision for the tasks.
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IV. OPTIMAL TASK ORDERING

In this section, we will explore the task ordering on the
client to decide the execution sequence under the assumption
that the decision of offloading or local execution for all the
tasks is already known, i.e., ~x is given. Based ~x, we can define
the following two terms:
• Pi,c = xiSi + (1− xi)Ci, and
• Pi,s = xi

Ri
Us

,
where Pi,c is the execution time on the client for task τi and
Pi,s is the remote execution time divided by the utilization of
the TBS.

For completeness, we will link the ordering of execution for
the COTBS problem to the well-known two-stage flow shop
problem [10]. In the two-stage flow shop problem, there are
n jobs, arriving at time 0. Each job Ji is characterized by the
the execution time Pi,c on the first machine (or stage), and
the execution time Pi,s on the second machine. Moreover,
each job must be processed on the first machine first, and
then on the second machine. The two-stage flow shop problem
is to schedule the jobs in order to minimize the makespan
(maximum completion time for the entire operation on both
machines) [10]. Based on the Pi,c and Pi,s, we call the above
concrete instance spanned by ~x as the corresponding two-stage
flow shop problem.

We use the terms first machine, second machine and jobs to
refer to the two-stage flow shop problem. And the terms client,
server and tasks to refer to our problem. When considering
the scheduling of the corresponding two-stage flow shop
scheduling problem, the ordering on the second machine is
the same as the first machine.

The following lemma shows the properties of the finishing
times of the tasks on the client and on the server of any
sequence of ordering for the COTBS problem with known
~x.

Lemma 1: For a given order of tasks (τ1, τ2, . . . , τn) with a
known offloading decision ~x, the finishing time of task τk on
the client (server, respectively) is the same as the finishing time
of the corresponding job Jk on the first (second, respectively)
machine for the corresponding two-stage flow shop problem.

Proof: Without loss of generality, we can consider the
execution order follows the index from 1, 2, . . . , n − 1 to n.
This lemma can be proved by induction. In the corresponding
two-stage flow shop problem, the second machine starts the
execution of the first job J1 at time P1,c (after finishing the
execution on the first machine), and finishes at time P1,c +
P1,s. In our problem, The TBS starts executing the first task
after setup time P1,c and assigns a deadline of ds(P1,c) =
max{P1,c, 0}+ R1

Us
= P1,c + P1,s.

Suppose that Ji finishes at time zi on the second machine
in the corresponding two-stage flow shop problem under this
ordering. We assume that the finishing time of τi on the server
is set to zi. Now, we consider Ji+1. Clearly, Ji+1 finishes
on the first machine at time

∑i+1
j=1 Pj,c. Moreover, τi+1 also

finishes on the client at time
∑i+1
j=1 Pj,c. Let’s consider two

cases for the finishing times on the server and the second
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Fig. 4: An example of optimal ordering for five tasks.

machine:
• τi+1 is not offloaded: by definition Pi+1,s is 0, there is

no need to execute on the second machine or on the
server. The finishing time of Ji+1 on the second machine
is defined as max{

∑i+1
j=1 Pj,c, zi}. The finishing time of

τi+1 on the server is also equal to max{
∑i+1
j=1 Pj,c, zi}.

• τi+1 is offloaded: Ji+1 finishes on the second machine at
time max{

∑i+1
j=1 Pj,c, zi}+Pi+1,s. Moreover, according

to the definition of TBS server, the finishing time of τi+1

on the server is max{
∑i+1
j=1 Pj,c, zi}+ Pi+1,s.

According to the induction hypothesis, the lemma is proved.

It has been shown in [10] that Johnson’s rule is optimal for
minimizing the makespan for the two-stage flow shop problem.
The tasks are divided into two sets T1 and T2 as follows:
• T1 = {τi|Pi,s > Pi,c}.
• T2 = {τi|Pi,s ≤ Pi,c}.

Tasks in set T1 are scheduled first by the increasing order of
Pi,c. Then, the tasks in set T2 are scheduled by the deceasing
order of Pi,s. Figure 4 presents an example of five tasks with
this ordering. Tasks τ1 and τ2 are offloaded and belong to the
set T1. Tasks τ3, τ4 and τ5 belong to the set T2, where the
first two of them are offloaded and the last one is executed
locally.

Therefore, we have the following lemma for the optimal
ordering when ~x is given.

Lemma 2: For a given ~x, the ordering of the tasks execution
based on Johnson’s rule is optimal to meet the deadline.

Proof: This comes from Lemma 1 and the optimality of
the Johnson’s rule ordering.

Corollary 1: For a given ~x, all the locally-executed tasks
belong to the set T2 and scheduled at the end.

Proof: This comes from the definition that Pi,s = 0 if τi
is locally executed.

V. HARDNESS OF COTBS PROBLEM

When the decisions for offloading is known, i.e., ~x is known,
Section IV shows that following Johnson’s rule is optimal.
However, the difficulty of the COTBS problem comes from
the unknown ~x. The following theorem shows that COTBS
problem is NP-complete.

Theorem 1: The COTBS problem is NP-complete.
Proof: The COTBS problem is in NP , since we can use

the task ordering in Lemma 2 to verify whether a solution is
feasible or not in polynomial time. The NP-completeness can
be proved by a reduction from the SUBSET SUM problem:
Given a set of n− 1 positive integers V = {v1, v2, . . . , vn−1}
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and an integer A, the objective is to find a subset V ′ ⊆ V ,
such that

∑
vi∈V′ vi = A.

Suppose that δ and Us are positive real numbers, in which
0 < δ < 1 and 0 < Us ≤ 1. In the reduction, we first define
D = δ+

∑
vj∈V 2vj−A. Moreover, we define ρ = D−δ−A

A =
2((

∑
vj∈V

vj)−A)

A . Furthermore, the reduction creates n tasks.
Task τn is with the following parameters:

• Sn = δ with 0 < δ < 1,
• Cn = D, and
• Rn = A · Us.
Then, for each vi in V , the reduction creates τi (for i =

1, 2, . . . , n− 1) with:

• Si = vi,
• Ci = 2vi, and
• Ri = vi · ρ · Us.
The above reduction can be done in polynomial time.

Clearly, task τn should be offloaded because of the very long
local execution time; otherwise, the solution is not feasible.
According to Lemma 2, it is also clear that task τn should be
the first task to be executed in the client.

Suppose that T ′ is the set of tasks to be offloaded, in which,
by definition, τn is in T ′. We would like to prove that T ′ is
a feasible solution for deciding the computation offloading of
the reduced problem if and only if

∑
τi∈T ′ Si = A + δ. To

finish T ′ before D in the client, we know that
∑
τi∈T ′ Si +∑

τi∈T \T ′ Ci ≤ D, which implies that∑
τi∈T ′

Si ≥ A+ δ. (1)

Now, let’s focus on the offloaded tasks in the server side.
According to Lemma 2, the offloaded tasks should be always
executed before the locally executed tasks. As Sn = δ and
Rn
Us

= A, we know that the TBS deadline will be set to A+ δ
for task τn in the server. Therefore, any offloaded tasks that
arrive the server before A+δ will always have to set up the new
TBS deadline according to the existing TBS deadline before
it arrives. As a result, if

∑
τi∈T ′ Si ≤ A + δ, we know that

the TBS deadline for the last offloaded task will be exactly
δ +

∑
τi∈T ′

Ri

Us
= δ + A +

∑
τi∈T ′\{τn}

Ri

Us
≤ D. On the other

hand, if
∑
τi∈T ′ Si > A+ δ, we know that the TBS deadline

for the last offloaded task will be at least δ +
∑
τi∈T ′

Ri

Us
=

δ+A+
∑
τi∈T ′\{τn}

Ri

Us
> D. As a result, to meet the deadline

constraint in the server side, we need∑
τi∈T ′

Si ≤ A+ δ. (2)

Therefore, by (1) and (2), we know that there exists a
feasible task set T ′ for offloading in the reduced input instance
of the COTBS problem if and only if there exists V ′ ⊆ V with∑
vi∈V′ vi = A. Since the COTBS problem is in NP , by the

above reduction, we know that the COTBS problem is NP -
complete.

VI. OUR APPROACH

This section presents our proposed algorithms for the
COTBS problem. As determining the feasible solution is
NP -complete, we seek for approximations to minimize the
makespan of the schedule in Section VI-A. If the makespan
is less than or equal to the deadline D, then this schedule
is feasible. Section VI-B presents a dynamic programming
approach for the COTBS problem with pseudo-polynomial
time and space complexity.

A. Approximation Algorithm

In this subsection, we propose a greedy algorithm to min-
imize the makespan, and show that the algorithm provides a
solution with an approximation factor, which is defined as the
derived makespan divided by the minimum makespan, equals
to 2 for any input instance. That is, the makespan of the
solution derived from our algorithm is at most twice of the
optimal makespan. For notational brevity, we use the following
notations in this subsection:
• Y =

∑
τi∈T Si: represents the summation of the setup

times of all tasks,
• ai = (Ci − Si) for τi: the difference between the local

execution time of and the setup time,
• bi =

Ri
Us

for τi: the minimum response time of task τi on
the server.

Recall that xi is equal to 1 if task τi is decided to be
offloaded; otherwise, xi is 0. Therefore, we know that the
last TBS deadline of the offloaded tasks must be at least∑
τi∈T xi

Ri
Us

=
∑
τi∈T xibi. Moreover, the tasks will finish

their setup and local executions on the client side at time∑
τi∈T (1 − xi)(Ci − Si) + Si = Y +

∑
τi∈T (1 − xi)ai.

Therefore, the optimal solution M of the following integer
linear programming (ILP) provides a lower bound of the
optimal makespan:

minimize M (3a)

s.t Y +
∑
τi∈T

(1− xi)ai ≤M (3b)∑
τi∈T

xibi ≤M (3c)

xi ∈ {0, 1} ∀i = 1, 2, . . . , n. (3d)

Therefore, the relaxation of the integral constraint in (3d)
gives a lower bound M∗ for the optimal makespan:

minimize M∗ (4a)

s.t Y +
∑
τi∈T

(1− xi)ai ≤M∗ (4b)∑
τi∈T

xibi ≤M∗ (4c)

0 ≤ xi ≤ 1 ∀i = 1, 2, . . . , n. (4d)

We can use the linear programming toolkit to find the
optimal M∗ in (4). Based on the extreme point theory, there
exists an optimal solution for (4), in which at most one task
τj is with 0 < xj < 1.

5



Algorithm 1 Approximation Algorithm

1: ∀τi ∈ T , xi ← 0, Y =
∑
τi∈T Si,ai = (Ci − Si),bi = Ri

Us
;

2: ∀τi ∈ T |Si < Ci, xi ← 1; and order them according to bi
ai

in a list
L ;

3: r ← (
∑
τi∈T xibi)− (Y +

∑
τi∈T (1− xi)ai);

4: while r > 0 do
5: pick task τj from L with the max

bj
aj

;
6: r ← (

∑
τi∈T \{τj} xibi)− (Y +

∑
τi∈T (1− xi)ai);

7: if r ≥ aj then
8: xj ← 0
9: else

10: find xj s.t. (
∑
τi∈T \{τj} xibi) + xjbj = Y + (

∑
τi∈T (1 −

xi)ai) + (1− xj)aj ;
11: break;
12: end if
13: L ← L \ {τj};
14: r ← r − aj ;
15: end while
16: M∗ ← max

{
Y +

∑
τi∈T (1− xi)ai,

∑
τi∈T xibi

}
;

17: if ∃τj with 0 < xj < 1 then
18: generate ~x by setting xj to 0 and generate ~x∗ by setting xj to 1;
19: if the makespan of ~x∗ is better than the makespan of ~x according to

the ordering based on Lemma 2 then
20: replace ~x by ~x∗;
21: end if
22: end if
23: order {τ1, τ2, . . . , τn} according to Lemma 2 based on ~x;

Our greedy algorithm, described in Algorithm 1, is based on
two main steps: First, it finds the optimal solution M∗ based
on a greedy approach in which at most one task τj will have
0 < xj < 1. Second, the offloading decision ~x is decided in
which xj for task τj with 0 < xj < 1 will be greedily set
to test whether setting xj to 1 or setting xj to 0 is the better
solution.

Fortunately, the linear programming in (4) can be solved
by using a simple heuristic. Clearly, only the tasks that may
be beneficial for offloading (with Si < Ci) are assigned at
the beginning for offloading and ordered into the list L. Let r
be a variable that represents the difference between the total
execution time (divided by Us) on the server side and the total
execution time on the client side. See Figure 5a. While there
is still a positive difference r, the algorithm keeps picking
the task τj of the maximum value of bj

aj
and checks if there

is enough space for it to be executed locally (Lines 4-7), as
shown in Figure 5b. This will maximize the decrease of the
value

∑
τi∈T xibi per unit in the decrease of

∑
τi∈T (1−xi)bi.

If there is enough space for the local execution of the task
τj , the task is assigned for local execution, removed from
the list L and r is updated (Lines 7,8,13,14), as shown in
Figure 5c. Otherwise, the algorithm calculates the value of
xj that achieves the best balance between the client and the
server, as illustrated in Figure 5d (Line 10).

The optimal solution M∗ for the linear programming in (4)
is hence derived. However, because there may exist a task τj
that may be partially offloaded (i.e., 0 < xj < 1), we need
to handle such a situation to decide whether xj is 0 or 1.
For such a case, our algorithm tests two possible solutions to
know whether it is better to set xj to 0 or to 1 by testing the

Client Y
∑
τi∈T (1− xi)ai r

Server
∑
τi∈T xibi

(a)

Client Y
∑
τi∈T (1− xi)ai r

Server
∑
τi∈T \{τj} xibi bj

(b)

Client Y
∑
τi∈T (1− xi)ai aj r

Server
∑
τi∈T xibi

(c)

Client Y
∑
τi∈T (1− xi)ai (1− xj)aj

Server
∑
τi∈T \{τj} xibi xjbj

M∗

(d)
Fig. 5: Illustration of Algorithm 1.

ordering according to Lemma 2. The time complexity of the
algorithm is O(n log n).

Theorem 2: The M∗ derived in Line 16 in Algorithm 1 is
an optimal solution for the linear programming in (4), and,
hence, a lower bound of the optimal makespan.

Proof: The proof is very similar to the proof for the
fractional knapsack problem [8]. The details are omitted due
to space limitations.

Now, we can prove the approximation factor for optimiza-
tion of the makespan for Algorithm 1.

Theorem 3: The makespan of the solution derived from
Algorithm 1 is at most twice of the makespan of the optimal
makespan.

Proof: By Theorem 2, we know that M∗ is a lower bound
of the optimal makespan. Suppose that there is no task τj with
0 < xj < 1 in Line 16 in Algorithm 1. Then, we know that
the maximum finishing time on the server is at most 2M∗

and the maximum finishing time on the client is at most M∗.
Therefore, the makespan of the resulting solution is at most
2M∗. We know that the approximation factor is at most 2 for
such a case.

For the rest of the proof, we focus on the case that there
exists a task τj with 0 < xj < 1 in Line 16 in Algorithm 1.
Note that the value of xj in the analysis is the fractional
value before it is set to integral values after Line 16. Let
A =

∑
τi∈T \{τj} xibi and B = Y + (

∑
τi∈T \{τj}(1− xi)ai).

Based on the existence of 0 < xj < 1 and Line 16 in
Algorithm 1, we know

A+ xjbj = B + (1− xj)aj =M∗.

Therefore, we can have bj =
(1−xj)aj+B−A

xj
. Now, we can

consider the following two cases:

• Case 1: 0 < xj ≤
B
aj

+1

2 : Let’s consider the case that task
τj is executed locally (i.e., ~x in Line 18 in Algorithm 1).

6



For such a solution, the finishing time on the client is at
most B + aj , while the finishing time on the server is at
most B+A. Therefore, the makespan of the resulting so-
lution is at most max{B+A,B+aj}. The approximation
factor is max{B+A

M∗ ,
B+aj

B+(1−xj)aj }. Clearly, as B ≤ M∗

and A ≤ M∗, we know that B+A
M∗ ≤ 2. Moreover,

B+aj
B+(1−xj)aj is an increasing function with respect to xj .

Therefore, B+aj
B+(1−xj)aj is maximized when xj is equal to

B
aj

+1

2 . Then the approximation factor for such a case is,

max{B +A

M∗
,

B + aj
B + (1− xj)aj

}

≤max{2, B + aj

B + (1−
B
aj

+1

2 )aj

} = 2. (5)

• Case 2:
B
aj

+1

2 < xj < 1: Let’s consider the case that task
τj is offloaded (i.e., ~x∗ in Line 18 in Algorithm 1). For
such a solution, the finishing time on the client is at most
B, while the finishing time on the server is at most B +
A+ bj . Therefore, the makespan of the resulting solution
is at most B+A+ bj . The approximation factor for this

case is at most B+A+bj
B+(1−xj)aj =

B+A+
(1−xj)aj+B−A

xj

B+(1−xj)aj . For
notational brevity, let A = γaj and B = βaj , in which
γ ≥ 0 and 1 > β > 0. (If β > 1, this case is never
reached since 1 < xj < 1 is a contradiction. Moreover,
β > 0 due to the setting that Si > 0 for all tasks τi ∈ T .)
Therefore, the approximation factor can be rewritten as

(β + γ)xj + (1− xj) + (β − γ)
xj(β + (1− xj))

=
βxj + β + 1− xj
xj(β + 1− xj)

+
γxj − γ

xj(β + 1− xj)

≤ βxj + β + 1− xj
xj(β + 1− xj)

, (6)

where the inequality comes from the fact that
γxj−γ

xj(β+1−xj) ≤ 0 when xj < 1 and γ ≥ 0. The

second order derivative of βxj+β+1−xj
xj(β+1−xj) with respect to

x is equal to 2
x3
j
+ 2β

(β+1−xj)3 , which is positive when
β+1
2 < xj < 1 and β > 0. Therefore, βxj+β+1−xj

xj(β+1−xj) is
maximized when xj is either β+1

2 or 1. When xj is 1,
we have βxj+β+1−xj

xj(β+1−xj) = 2. When xj is β+1
2 , we have

βxj+β+1−xj
xj(β+1−xj) = 2. Therefore, the approximation factor

for such a case is also 2.
According to all the cases above, as we choose a better

solution between ~x and ~x∗ in Line 20 in Algorithm 1, we
reach our conclusion of the theorem.

The above analysis in Theorem 3 is tight by considering
the following example with one task, in which C1 = 1 +
ε, S1 = 1, R1

Us
= 1 with ε > 0. This task will be offloaded

in Algorithm 1, with a resulting schedule with makespan 2,
while the optimal solution for minimizing the makespan is to
execute this task locally with makespan equals to 1+ ε. When

τi-1

0

Slack

 S2

τi

 tc

Client 

Processor

Server 

Processor

τi

di-1 ti

τi-1

di

τi-1

Slack

τi

τi

di-1ti

τi-1

di

S1

0

Slack

C4Client

Server

C3

d1

t2

R1/Us

d2

Slack

t1

S2

R2/Us

G(4,tc,ts)
τ1 τ2

τ1

τ3 τ4

τ2
 ts

Fig. 6: An example for illustrating the dynamic programming
parameters.

ε approaches to 0, the above example gives the tightness of
our analysis.

B. Dynamic Programming Algorithm

In this subsection, we present a pseudo-polynomial-time
scheduling algorithm based on dynamic programming. Our
proposed algorithm derives a feasible solution for the COTBS
problem if it exists.

At the beginning, in the dynamic programming approach,
the tasks τi ∈ T for i = 1, 2, ..., n are ordered according
to Lemma 2, by supposing that all of them are offloaded.
Then, a dynamic programming table is built to maintain
the offloading decision for each subproblem, i.e., the first i
tasks {τ1, τ2, . . . , τi}. Consider the subproblem for the first i
tasks {τ1, τ2, . . . , τi}. Let G(i, tc, ts) be the minimum total
local execution time for the locally executed tasks under the
following two constraints:
• The total setup time for the offloaded tasks among the

first i tasks is less than or equal to tc.
• The finishing time of all offloaded tasks among the first
i tasks on server is less than or equal to ts.

Figure 6 presents an example of four tasks {τ1, τ2, τ3, τ4}
with the dynamic programming parameters, where {τ1, τ2} are
offloaded and {τ3, τ4} are executed locally.

A 3-dimensional table G(i, tc, ts) is constructed for all
values of i, tc and ts, where 0 ≤ i ≤ n, 0 ≤ tc ≤ D
and 0 ≤ ts ≤ D. We start by initializing all the elements
of G(0, tc, ts) to zeros. Then, the following recursion is used
to fill the table for i from 1 to n:

G(i, tc, ts) =

min




G(i− 1, tc − Si, ts − Ri

Us
) if Si < Ci ∧ tc ≥ Si
∧ts ≥ tc + Ri

Us
∞ otherwise

G(i− 1, tc, ts) + Ci

(7)

For each subproblem {τ1, τ2, . . . , τi} and available times tc
and ts, the algorithm chooses the offloading decision (offload
or local) for τi that minimizes the total local execution time.
The task τi is able for offloading if it is beneficial (i.e.,
Si < Ci) and feasible (i.e., tc ≥ Si∧ts ≥ tc+ Ri

Us
). Otherwise,

offloading task τi will violate the timing specification in
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finishing time ts, and, hence, it is assigned for local execution.
If the task τi is chosen for local execution, its execution time
Ci is added to the total local execution time of the previous
subproblem (G(i− 1, tc, ts) +Ci). If it is offloaded, its setup
time Si and remote execution time Ri

Us
are considered from

the available times tc and ts of the previous subproblem
respectively. The algorithm also stores the offloading decision
for each task for further backtracking.

The following lemma shows the optimality the recursive
function for building G(i, tc, ts).

Lemma 3: Given, i, tc, ts, the recursive function in 7 mini-
mizes G(i, tc, ts), when Cj , Sj , and Rj

Us
are all integers for τj

in T .
Proof: According to Corollary 1, Lemma 2, and our

initial ordering by adopting Johnson’s rule before starting the
dynamic programming, it is clear that (1) if τi is offloaded, τi
should execute its setup time before any task τj with j > i
on the client no matter whether task τj is offloaded or not,
and (2) if τi is locally executed, τi should execute its local
execution time after all the offloaded tasks finish their setup
time on the client. Therefore, to satisfy the constraint of ts
and tc, we do not have to consider any task τj with j > i.
Moreover, it is also clear that the best decision to minimize
the total local execution time for the locally-executed tasks
for the first i tasks depends on the sub-optimality for the first
i− 1 tasks. The sub-optimality property can be easily proved
by the induction hypothesis. The details are omitted due to
space limitations.

After filling the table, we can verify whether a feasible
schedule exists for the COTBS problem or not. We just
have to check if there exists tc ≤ D and ts ≤ D in
the table such that max{(G(n, tc, ts) + tc), ts} ≤ D. Then,
we backtrack the dynamic programming table to obtain the
offloading decision for each task τi starting from the solution
found as follows: (1) If τi is assigned for local execution, we
backtrack to G(i−1, tc, ts). (2) If τi is assigned for offloading,
we backtrack to G(i− 1, tc − Si, ts − Ri

Us
).

Clearly, if the objective is further to minimize the makespan,
we can find the minimum of max{(G(n, tc, ts)+ tc), ts}. The
time complexity of the above dynamic programming algorithm
is O(n log n+ nD2) when Ci, Si, and Ri

Us
are all integers for

τi in T . We conclude the section with the following theorem.
Theorem 4: The dynamic programming algorithm can find

a feasible schedule to minimize the makespan, if and only if
feasible schedules exist.

Proof: This comes directly from the dynamic program-
ming scheme and the sub-optimality property shown in
Lemma 3.

VII. EXPERIMENTAL EVALUATION AND SIMULATION

In this section, we evaluate our algorithms by implementing
a case study of a surveillance system, and synthesis workload
simulation. We use the abbreviation Approximation to refer
to Algorithm 1, DP to refer to the dynamic programming
algorithm in Section VI-B, and Offload-Wait [16] to refer to
the algorithm in which the offloading decision is taken based

TABLE I: Timing parameters of case study tasks (ms)
τi Description Ci Si Ri
τ1 Motion Detection 30 7 21
τ2 Object Recognition 220 2 102
τ3 Stereo Vision 88 16 41
τ4 Motion Recording 18 7 14

on the comparison between the data transfer time added to the
remote execution time divided by the TBS bandwidth, and the
local execution time. To show the effectiveness, we report the
resulting makespan by adopting all these three algorithms.

A. Case Study of a Surveillance System

A surveillance system is implemented as a case study to
evaluate our algorithms and compare them with the Offload-
Wait algorithm. The server is Pentium(R) Dual-Core 2.8GHz
64-bit CPU with 4G memory. The client has Centrino Duo
1.73GHz 32-bit CPU and 512M memory, and is provided
with two cameras (left and right). The client performs four
independent real-time tasks on the input video streams. These
tasks are frame-based and can be described as follows:
• Motion Detection: Detects the moving objects.
• Object Recognition: Recognizes and tracks a given

object.
• Stereo Vision: Calculates the distance between the cam-

era and the object of interest by generating a depth map
for left and right images.

• Motion Recording: Records the video of the detected
motion for records and any further human observations.

Motion detection, object recognition and motion recording
process the images captured by the left camera. Table I shows
the parameters of the tasks above, where time is measured in
milliseconds. If all the tasks are locally executed, the finishing
time on the client is by 356 ms. Offloading algorithms are
implemented to reduce the makespan.

Table II shows the offloading decisions of the evaluated al-
gorithms for Us = 1 and Us = 0.25. Based on these decisions,
the finishing times on the client and on the server are presented
in Figure 7. For Us = 1, which represents a dedicated server,
all of the algorithms offload task τ2 and execute τ4 locally.
Offload-Wait also offloads τ1 and τ3 because the setup time
plus the remote execution time is less than the local execution
time for these offloaded tasks. Moreover, Offload-Wait keeps
the system idle during offloading. Therefore, the reduction of
the makespan (comparing to the pure local executions) by
Approximation and DP is more than the reduction by the
Offload-Wait, as shown in Figure 7a. For Us = 0.25, the server
provides offloading services for four clients. In this case, both
Offload-Wait and Approximation do not offload any task. But,
DP offloads τ1 and τ3, and then reduces the makespan of the
schedule, as shown in Figure 7b.

B. Simulation Setup and Results

We also evaluate the offloading algorithms using synthetic
workload for the tasks. The parameters of the tasks are
summarized as follows:
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(b) Us = 0.25 (four clients).
Fig. 7: Case study results.

TABLE II: The Offloading decisions of the algorithms.
τi

Approximation Offload-Wait DP
Us:1 Us:0.25 Us:1 Us:0.25 Us:1 Us:0.25

τ1 0 0 1 0 1 1
τ2 1 0 1 0 1 0
τ3 0 0 1 0 0 1
τ4 0 0 0 0 0 0

• Ci: Randomly generated integer values from 1 to 50 ms
with uniform distribution.

• Si: Randomly generated integer values from 1 to Ci ms
with uniform distribution.

• Ri: Ri = Ci
α , where α is the speed-up factor of the server.

Each value of Us = {0.1, 0.111, 0.125, 0.143, 0.167, 0.2,
0.25, 0.333, 0.5, 1} is combined with all values of α =
{0.25, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} to get a total of 120 con-
figurations for simulations. We perform 100 rounds for each
configuration. In each round, a set of 25 frame-based real-time
tasks is randomly generated according to the conditions above.

The normalized finishing time reduction of an algorithm for
a task set is the finishing time (makespan) for the task set
execution of the derived schedule divided by the finishing
time for the same task set if all the tasks are executed
locally. For the rest of this subsection, we will discuss the
simulation results for the offloading algorithms using the task
sets described above.

Figure 8 shows the average normalized finishing time re-
duction for all values of Us and α. In general, as the α value
increases, the makespan decreases for all algorithms. Because
with a faster server (higher α values), the offloaded tasks are
finished earlier. Also, The makespan decreases more rapidly
for larger values of Us. The best reduction is when Us = 1,
i.e., when the server is dedicated for one client.

Figure 9 presents a comparison of the normalized finishing
time reduction among the three offloading algorithms for Us =
{1, 0.25, 0.1} and all values of α. Offload-Wait reduces the
local execution time only when the server is faster than the
client. So, there is no reduction when α ≤ 1, α ≤ 4 and
α ≤ 10 for the corresponding values of Us = {1, 0.25, 0.1}
respectively. In contrast, Approximation and DP reduce the
makespan even by offloading to a slower server (RiUs is larger
than Ci), while the offloading decision is feasible. The figure
also shows that the improvement by DP is more than that by
Approximation, because the DP algorithm considers the slack
time and finds the optimal minimum makespan.

VIII. CONCLUSION

In this paper, we explore the idea of computation offloading
by exploiting the total bandwidth server (TBS) in the server
side to guarantee the worst-case behavior when the tasks are
offloaded to the server side. We show that the difficulty of the
problem comes from the decisions to determine which tasks
to be offloaded. We propose an approximation algorithm to
make decisions greedily and develop a dynamic-programming
approach to make the decisions optimally. The evaluation,
using a case study of surveillance system and synthesized
benchmarks, shows that our algorithms also improve the
performance even with a slower remote processing unit by
virtual parallel execution of the tasks in the client and the
server.

The dynamic programming approach can also be extended
to allow a fully polynomial-time approximation scheme (FP-
TAS) for minimizing the makespan, to trade the complexity
with the error. We do not present the FPTAS due to space
limitations. We focus ourselves on the case that 0 ≤ Us ≤ 1 is
already specified for the client. Alternatively, a corresponding
dual problem is to minimize Us under the timing constraints.
The proposed algorithms in this paper can be iteratively
adopted to search a minimal Us as well. However, the NP -
completeness proof in Theorem 1 also implies the difficulty
of approximation when the optimal solution has Us = 1.

For future researches, we will explore systems with pe-
riodic/sporadic real-time tasks, other resource reservation
servers on the server side, and offloading schemes to have
more than one server for a client.
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Fig. 9: Finishing time reduction for Us = 1, 0.2, and 0.1.
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