Server Resource Reservations for Computation
Offloading in Real-Time Embedded Systems

Anas Toma
Department of Informatics
Karlsruhe Institute of Technology, Germany
anas.toma@student.kit.edu

Abstract—Mobile devices have become very popular nowadays.
They are used nearly everywhere. They run complex appli-
cations where the multimedia data are heavily processed. For
example, ubiquitous applications in smart phones and different
surveillance tasks on mobile robots. However, most of these
applications have real-time constraints, and the resources of
the mobile devices are limited. So, it is challenging to finish
such complex applications on these resource-constrained devices
without violating the real-time constraints. One solution is to
adopt the Computation Offloading concept by moving some
computation-intensive tasks to a powerful server. In this paper,
we use the total bandwidth server (TBS) as resource reservations
in the server side, and propose two algorithms based on the
computation offloading to decide which tasks to be offloaded and
how they are scheduled, such that the utilization (i.e., bandwidth)
required from the server is minimized. We consider frame-based
real-time tasks, in which all the tasks have the same arrival
time, relative deadline and period. The first algorithm is a
greedy algorithm with low complexity based on a fast heuristic.
The second one is a pseudo-polynomial-time algorithm based on
dynamic programming. Finally, the algorithms are evaluated with
a case study for surveillance system and synthesized benchmarks.

I. INTRODUCTION

Mobile devices are running more and more complex ap-
plications that include computation-intensive data processing.
For example, surveillance robots perform real-time moni-
toring for security, rescue and safety purposes [4, 9, 11].
Also, smart phones are increasingly used to run heavy tasks
such as 3D navigation [18, 26], ubiquitous and multimedia
applications [3, 19], etc. Google Glass [2] is an example
of the next-generation ubiquitous systems, which performs
voice recognition, navigation, translation, video streaming and
recording, etc. Such multimedia mobile applications usually
require high computation power. However, these mobile de-
vices are resource-constrained. They have limited computation
capabilities and battery life. They may not be able to complete
the execution of the computation-intensive tasks in time. Com-
putation offloading concept has been adopted in the literature
to improve the performance of the mobile devices with the
help of external resources, i.e., remote processing unit. Figure
1 shows an example of the offloading mechanism. We use the
term client to refer to the mobile device that offloads the tasks,

Published in the 11th IEEE Symposium on Embedded Systems for Real-
time Multimedia (ESTIMedia), Montreal, QC, Canada, October 3-4, 2013.
http://dx.doi.org/10.1109/ESTIMedia.2013.6704500

Jian-Jia Chen
Department of Informatics
Karlsruhe Institute of Technology, Germany
jian-jia.chen @kit.edu

T~ = \

\ \ D

\ \ o8

‘] | Smart phone

‘ ‘ ///

\ |

S ===/ 7 Surveillance
ST robot [1]

Remote e

H - p——
Processing S —— "
Unit T Google glass [2]

Fig. 1: Example of the offloading Mechanism.

and the term server to refer to the remote processing unit that
executes the offloaded tasks.

In this paper, we exploit computation offloading to schedule
frame-based real-time tasks in a client, where all the tasks
have the same arrival time, period and relative deadline. For
instance, in surveillance systems once the camera captures
an image, several tasks start processing it, in which all of
them should be completed before the next capture, which
represents the relative deadline of the task execution. Usually,
the tasks in the surveillance systems run periodically (with
each image capture) and usually include motion detection,
object recognition, behavioral analysis, and analysis of the
stereo vision [24, 25]. These tasks are computation intensive
for resource-constrained devices, and may not finish before the
deadline. Therefore, our proposed algorithms use the computa-
tion offloading to guarantee the execution of the tasks without
violating the real-time constraints. To solve this problem, two
decision-making points should be addressed: (1) which tasks
to be offloaded (i.e., offloading decision), and (2) when to
offload the selected tasks for offloading (i.e., task ordering).

In real-time systems, when the client decides to offload a
task to a server, such computation offloading should still make
the offloaded task meet its (hard or soft) timing constraint, i.e.,
the task should be completed in time under the given (hard or
soft) timing parameters. Therefore, the server should also pro-
vide some timing properties for executing the offloaded tasks.
The offloading decision in the most of existing studies, e.g.,
[7, 16, 27], is based on a simple comparison to check whether
it is beneficial in terms of processing time (or processing cost)
to offload a task.

In our previous study in [23], we design and analyze the
computation offloading mechanism for frame-based real-time

tasks when the server provides round-trip timing information.
That is, when an offloaded task arrives at the server at
time ¢, the client can receive the computation at time ¢
plus the provided round-trip time. However, such a round-
trip timing information requires resource reservations in the
server(s) before the offloading decisions are made. If a task
is not offloaded such a reservation becomes useless and the
capability of the server(s) is wasted. In another study in [22], a
total bandwidth server (TBS) [21] is used in the server side to
serve a client for computation offloading. Specifically, when
the bandwidth (utilization) of the TBS is given, the algorithms
in [22] minimize the finishing time (makespan) by using a
heuristic algorithm and a dynamic programming approach.

In [22], if the given bandwidth (utilization) of the TBS for
a client is too high, the capability in the server side is still
wasted. Determining the bandwidths for individual clients re-
mains open. In this paper, we consider computation offloading
for real-time embedded systems, in which the objective is to
find the minimum required bandwidth reservation for TBS
in the server side to meet the timing constraint of the real-
time tasks. Therefore, depending on the availability of the
remaining bandwidth in the server, the server will grant the
clients the required utilization (or even adjust the bandwidths
from other clients to make all the clients meet their timing
constraints).

The considered problem is a dual problem of the problem
studied in [22]. That is, the bandwidth (utilization) of the TBS
is a given constraint and the minimization of the finishing time
of the tasks is the objective for the problem studied in [22],
whereas the finishing time of the tasks is a constraint and the
minimum required bandwidth (utilization) of the TBS is the
objective in this paper. It has been shown in [22] that the
decision version for studied problem in this paper and also in
[22] is also A/ P-complete in the weak sense.

Our Contribution: Our contribution can be summarized
as follows:

o In our model, we consider the scheduling on both client
and server sides, where the server can serve more than
one client.

« We propose two computation offloading algorithms, a
greedy algorithm with low time complexity, and a dy-
namic programming algorithm with pseudo-polynomial
time complexity. The algorithms schedule the real-time
tasks on the client side, and decide which tasks to be
offloaded to the server, such that the real-time constraints
are satisfied and the required utilization is minimized.

« We evaluate our algorithms using a surveillance system
as a case study and randomly synthesized benchmarks.

II. RELATED WORK

In this section, we provide a summary for the recent studies
in the field of computation offloading. Also, we discuss the
limitations of the existing approaches.

Nimmagadda et al. [16] use the computation offloading to
improve the performance and satisfy the real-time constraints
for a mobile robot. The robot performs real-time moving object
recognition and tracking. For each task, the offloading decision

is taken if the summation of the communication time and the
server execution time is less than the local execution time
on the robot. The computation offloading is also considered
by Wolski et al. [27] and Gurun et al. [7] to improve the
performance for computational grid settings. The offloading
decision in their work is based on the prediction of the client
execution time, the transfer time and the server execution time.
They assume that the offloading of a task is beneficial only if
the expected cost of the remote execution, including the server
execution time and the data transfer time, is less than the cost
of the local execution.

The Offloading problem is represented as a graph partition-
ing problem in [6, 14, 15, 17, 29] and has been solved using
different approaches. Each vertex of the graph represents a
computational component, such as program class in [6, 17, 29]
or a task in a program as in [14, 15]. An edge between two
vertices represents the communication cost between them. The
main idea is to partition the graph into two parts, client side
and server side.

A middleware for mobile Android platforms is proposed in
[12] to offload the computation intensive tasks to a remote
clouds. The offloading problem is represented as an optimiza-
tion problem and solved using integer linear programming. To
reduce the energy consumption in battery-powered systems,
the computation offloading is adopted in [28] based on a
timeout mechanism, and also adopted in Hong et al. [8] for
a system that performs content-based image retrieval. Ferreira
et al. [5] explore the computation offloading to improve the
quality of service in the adaptive real-time systems.

The offloading decision in the most of existing studies is
based on either simple comparison for each task alone, or
representing a program as a graph and then partition it [13].
In both approaches, the task scheduling is not considered
neither on the client nor on the server. For example, the client
remains idle during offloading until the result returns back
from the server. Instead, an independent local task can be
executed during the offloading of another task to improve
the performance. Also, it is important to consider the server
model, and how it schedules the tasks to serve more than one
client. Based on the existing approaches, the powerful server
is always ready to execute the offloaded tasks from the client
immediately, which means that the server is dedicated for one
client.

III. SYSTEM MODEL

This section presents the system model of the paper. As
the problem is a dual problem of [22], the terminologies and
system architecture are similar to our previous work in [22].
However, the problem definition here is different from [22].
We say that a schedule for a set of tasks is feasible if the total
finishing time for all of the tasks is within the deadline D.

A. Client Side

On the client side, a set 7 of n independent frame-based
real-time tasks arrive periodically at the same time ¢ = 0,
have the same period D, and require execution within the
same relative deadline D. The client schedules the tasks and

Client

| Task sef Scheduler Local Tasks :

| B -

Task = Offloading Sl

: Deadline ordering decision |

o] = =) Offloaded |

! || 5 Tasks |
Offloading

_____ |

Scheduler |

~ [RRS]| |

- |

For other clients |

Fig. 2: Offloading System Architecture.

decides which of them to be offloaded to the server in order
to satisfy the real-time constraints. Each task 7, € T (for
i = 1,2,...,n) is characterized by the following timing
parameters:

e C;: Local execution time on the client side.

o S;: Setup time. The execution time required on the client
side to be ready for offloading. It includes any prepro-
cessing operations such as encoding and compression. It
also includes the sending time of the data of the task from
the client to the server.

e« R;: Remote execution time. The execution time on the
server side.

A task is said locally executed if it is executed with at
most C; amount of time only on the client side. A task is
said offloaded if it is executed on the server side after setting
up on the client side. That is, if a task is offloaded, it has
to be executed (at most) S; amount of time on the client,
and then executed with (at most) R; amount of time on the
server. The timing information Cj, S;, and R; can be either
soft based on profiling or hard based on static timing analysis
with predictable communication fabrics. When the information
is soft, we provide soft real-time guarantees, and vice versa.

B. Server Side

The server is able to serve more than one client. Total
Bandwidth Server (TBS) is considered in our server model
[20, 21]. The client finds the feasible schedule that requires
the minimum utilization (or bandwidth) U from the server.
If it is possible, the server assigns a TBS for each requesting
client such that the total utilization of all given TBS’s are less
than or equal to 100%. Figure 2 shows the architecture of the
offloading system. The TBS of each client assigns an absolute
deadline d,(t) for each incoming (offloaded) task 7; from that
client, where 7; arrives at the server side at time ¢. Let ds(¢7)
be the absolute deadline of the previous offloaded task, and
ds(07) is equal to 0. Then, the absolute deadline d;(t) can be
calculated as follows:

ds(t) = max{t,ds(t7)} + %

S

The server schedules the offloaded tasks according to the
Earliest Deadline First (EDF) algorithm based on the assigned
TBS deadlines. By having at most 100% total utilization,
the server guarantees that all the offloaded tasks meet their
assigned deadlines [21].

C. Problem Definition

The problem addressed in this paper can be defined as
follows: Given a set T of n frame-based real-time tasks and a
deadline D. The problem is to find a schedule that meets the
deadline D, and the offloading decisions for the tasks in T
with the minimum required TBS utilization Uy from the server.

IV. KNOWN RESULTS FOR MINIMIZING MAKESPAN

In this subsection, we summarize the technique used in
our previous work in [22] to find the optimal ordering of
the tasks for a given Ultilization U,;. We define the vector
Z = (x1,22,...,2,) to represent the offloading decisions of
the tasks in 7 = {71,72,...,7n}. ; = 1 means that the
task 7; is assigned for offloading, and x; = 0 means that it is
assigned for local execution. We suppose that the offloading
decisions & are known for all the tasks (i.e., what to offload),
and we want to determine here the ordering of the tasks (i.e.,
when to offload). The makespan of a task set T is the total
completion time of the tasks in 7 on both client and server
sides.

For each task 7;, let P; . be its execution time on the
client side, and P; , its remote execution time divided by
the utilization of the TBS. The two terms can be defined as
follows:

Pic=2:S; + (1 —2;)Cy, (D
R;
P, = Izis)

Based on Johnson’s rule [10] we divide the tasks into two
sets 71 and 73 as follows:

1= {Ti|Pi,c < R@}

L 7-2 = {Ti|Pi,c > Pi,s}-

First, we schedule the tasks in the set 77 in increasing order
according to P; .. Then, the tasks in the set 7 in decreasing
order according to P; ;.

Lemma 1: For a given ¥ and utilization U, the ordering
of the tasks execution based on Johnson’s rule is optimal for
minimizing the makespan of the execution.

Proof: The proof is in the paper [22]. []

Corollary 1: All the local tasks belong to the set 75 and
scheduled at the end.

Proof: This comes from the definition that P; ; = 0 if 7;
is locally executed. u

For a given set of tasks 7, the proposed dynamic pro-
gramming algorithm F(7,D,Us) in [22] returns true if
there exists a schedule, under a given utilization U, with a
makespan less than or equal to D. Otherwise it returns false.

V. OPTIMAL TASK ORDERING

As we discussed in Section I, the offloading decision and the
task ordering are important to solve our offloading problem.
In this paper, we use the optimal ordering from our previous
work in [22] to minimize the makespan of the execution. In
Section IV we discussed the optimal ordering of the tasks for
a given U,. But in our problem, we want to minimize the
required utilization from the server. Changing the utilization
may also changes the execution order of the tasks. In Sub-
section V-A we determine all the possible utilization levels
that may change the ordering of the tasks. In Subsection V-B
we find the interval that contains the minimum required
utilization.

A. Utilization Levels

Lemma 2: For any given 0 < U, < 1, and according to the
increasing order of the tasks by %, if 7 < j and the task 7;
is in the set 75 then 7; is also in the same set.

Proof: By the definition of the set 75, 7; € ’TQ implies

that S; > 57 = Us > I;— But we know that < %
(because of the ordering and i < j). Then, U, > £+ = §; >
R’ =71 €T [|

SBased on the definition of the sets 7; and 72, changing the

utilization Us may change the relation between S; and 51' and

then moves a tasks(s) from one set to another, which will result
in a new combination of 7; and 75. The following theorem
determines the maximum number of possible combinations for
71 and 7.

Theorem 1: The combinations of the sets 7; and 75 are at
most 1 + 1 combinations.

Proof: Let task 7; be the task with the maximum 1;?
in the set 75. According to Lemma 2 and the increasin:g
order of the tasks by g—:, Tz = {n,7,...,7} and T =
{Tit1,Ti+25--.,Tn}, which are at most n — 1 combinations
for i = {1,2,...,n — 1}. Clearly, by considering also the
two cases when 77 and 73 are empty, we have in total n + 1
combinations.]

Theorem 2: The decreasing of the utilization U, from 1 to
0 moves the tasks from the set 75 to the set 77.

Proof: Assume that U, and U, are two different uti-
lization values, such that U, > U,,. Also, let T1(U;) and
T2(Us) be the two sets 71 and T3 for a given utilization Us.
We want to proof that if Uy, > U,,, T1(Us,) C T1(Us,) and
Ta(Us,) 2 Ta(Us,).

Suppose for contradiction that there exists a task 7; such
that 7, € T1(Us,) and 7; ¢ T1(Us,). Clearly, if 7, € T1(Us,)

we have:
R; R‘
S; < Us, < 3
0., = Us, S 3
Also, if 7; ¢ T1(Us,) we have:
R; R;
S; L= Us " 4
> U, 52 > S “)

From Equations 3 and 4, we have U, < U,, which contradicts
our assumption that Us, > Ug,. The same argument applies
for T1(Us,) 2 T1(Us,). [|

Algorithm 1 Utilization levels

T = {TZ“Si <= Rz},

Ta = {m|Si > Ri};

: V7; € Ta, order them according to %;

- Initialize a vector V|| 73| + 2]; '

k<« 1,Vy <0, Vsize(V) «—1;

: while 73! = 0 do

pick the task 7; from 7> with the maximum %;
k<« k + 1; !
Vi S)

T+ T\ {7}

Ti+ TiU{m}

: end while

: return \7;

R AN i e

— e =
W N = O

Algorithm 1 finds all possible utilization levels that may
change the ordering of the tasks; i.e., the ordering of the tasks
will never change if the utilization changes within the same
interval (between two consecutive utilization levels). Starting
from Us; = 1, we order the tasks according to Lemma 1 by
offloading all of them, to construct the sets 7; and 73 (Lines 1
and 2). A vector V is initialized to store the utilization levels,
including Us = 0 and Us; = 1 (Lines 4 and 5). According
to Theorem 1, all the combinations of 7; and 75 are known.
The next combination happens by decreasing the utilization
according to Theorem 2, which moves the task 7; with the
maximum R from 75 to 771 (Lines 6-12). ThlS task moves
once its S, = ", which implies that U ST is the next
utilization level.

Clearly, the time complexity of the ordering (Line 3) is
O(nlogn), and the while loop (Lines 6-12) is O(n). So, the
time complexity of the algorithm is O(nlogn).

B. Minimum Utilization Interval

We determine the utilization intervals in subsection V-A,
where the execution order does not change by changing the
utilization within the same interval. Now, we want to find
the utilization interval that contains the minimum utilization
required from the server such that the schedule is feasible. We
call it here the minimum utilization interval.

The function F(T, D, Us), from our previous work in [22],
is used in Algorithm 2 to check if there exists a feasible
schedule. The algorithm returns NULL, if there is no fea-
sible schedule under the highest possible utilization Us = 1
(Lines 2-4). We use the binary search (Lines 5-12) to find the
minimum utilization interval (V;, V},]. This interval is between
two utilization levels V; and V;;;, such that there exists a
feasible schedule under the utilization Us = V;4;, and there
is no feasible schedule under the utilization U; = V. The time
complexity of the function F(T, D,Us) is O(nD?), and the
binary search is O(logn). Therefore, the total time complexity
of Algorithm 2 is O(D?nlogn).

VI. HARDNESS OF THE OFFLOADING PROBLEM
Theorem 3: The offloading problem is N P-hard.

Algorithm 2 Minimum utilization interval

2l 1, h+ size(V)
if |\F(T,D,V,) then
retrun NULL;

end if
while h — [> 1 do
i |2
if |\F(T,D,V;) then
|« 1
else
h < 1;
end if
end while
: return (Vi, Vs

R e A A S e

—_ e
w2

Proof: The current offloading problem is an optimization
problem to minimize the required utilization. The decision
version of this problem is the same as the COTBS problem in
our previous paper [22], which has been proved that it is an
NP-complete problem. [

VII. OUR APPROACH

The solution of our offloading problem is composed of two
parts: the task ordering (from Section V) and the offloading
decision. In this section, we propose two algorithms to deter-
mine the offloading decision.

Algorithm 2 is used to determine the minimum utilization
interval (V;, V},]. Then, the binary search within this interval
can be used to find the minimum required utilization in order
to be feasible. The time complexity to check if there exists a
feasible schedule under a given utilization is O(nD?), and
the binary search complexity is O(log V’*ZV’), where € is
the tolerance of the search. So, the total time complexity is
O(nD?log @) Our proposed algorithms in this section
provide solutions that are close to the optimal, and faster than
the binary search.

In our system, the client finds the minimum required utiliza-
tion from the server that guarantees a feasible schedule. The
following theorem shows that the feasibility is also guaranteed
if the server provides the client with a utilization value that is
more than the required.

Theorem 4: A feasible schedule based on the minimum
required utilization remains feasible even if a higher utilization
is provided from the server.

Proof: If the given utilization from the server does not
affect the ordering (i.e., the ordering remains according to
Lemma 1), the schedule remains feasible. If the order of
the tasks changes after the given utilization, the makespan
decreases due to the optimality of the ordering of Lemma 1,
and then the schedule remains also feasible. In both cases the
response time from the server decreases.]

A. Greedy algorithm

We propose a greedy algorithm that requires only low
complexity, where its time complexity is O(nlog?n). The
algorithm is faster than the binary search. Based on the

*

|
Clientl Y Yorer(l—zi)a; l
ServerT l
D
) ()
Client| Y] Snerd e ||

Server ZneT =i R; l
D

(d)
*

Client| Y | Yrerd—oa ||

Server ZnETIiRi R; l

*
Client| Y |

Serverl ZneT ziRi ‘

(d
Fig. 3: Tllustration of Algorithm 3.

offloading decision from this algorithm, and the ordering of
the tasks according to Lemma 1, the next utilization level that
achieves a feasible solution can be easily determined using the
utilization levels from Algorithm 1. For notational brevity, we
use the following notations in this subsection:
o Y =3 S the summation of the setup time for all
of the tasks.
e a; = (C; — S;) for 7;: the difference between the local
execution time and the setup time.
We know that a schedule is feasible if the following two
conditions hold:

1) the offloaded tasks finish their setup time and the local
tasks finish their local execution time within the deadline,
ie., Y + ZﬂeT(l —x;)a; < D, and

2) the last TBS deadline of the offloaded tasks, which is at
least Zn T xi%’, is less than or equal to the deadline.

Where z; is equal to 1 if task 7; is decided to be offloaded;
otherwise, x; is equal to 0. Our algorithm minimizes the value
of Zﬂ_eT x; R; without violating the first feasibility condition
mentioned above (we will use the term condition 1), which can
be represented by the following integer linear programming
(ILP):

minimize Z z; R; (5a)
ET
stY 4+) (1—-=;)a; <D (5b)
ET
x; € {0,1} Vi=1,2,...,n. (5¢)
e > er iR,
The utilization Us; = ="~5—— is a lower bound of the

minimum required utilization from the server. Here, we present
a heuristic to decide whether a task is locally executed or
offloaded by using the heuristic presented in Algorithm 3.

Algorithm 3 Greedy Algorithm

(Ci - Si);
S; < Cj, order them according to Bi in alist £;

aj

: VTZ‘ S T, T; < 0, Y = ZHETSZ" a; =
V1 €T
: while (Y +3°_ (1 —w;)a;) > D do

1

2

3

4: pick the task 7; from £ with the minimum f—j;
5: Tj 1; .
6 L+ L\{r;};

7: end while

8 min <y cr iR, ind < j;

9: Tj < 0;

10: while £! = () do

11: pick the task 7; from £ with the minimum 5—;;
122z« 1

13 W (O, crmiRi <min)AN(Y +3 cr(1—zi)a; < D)

then
14: min < Zne’r z;R;, ind < j;
15: end if
16: Tj < 0;

17 L+ L\{7};
18: end while
190 Ting < 1;

20: return "g” ;

The greedy algorithm, which is described in Algorithm 3,
works as follows:

o At the beginning, all the tasks are assigned for local
execution. Only the tasks that may be beneficial for
offloading, their S; < Cj, are ordered in the list £
(Lines 1 and 2).

o As long as condition 1 is not satisfied (as represented in
Figure 3a), the algorithm keeps picking the task 7; with
the maximum value of %’ from the list £ and assigns it
for offloading, as illustrated in Figures 3b and 3c (Lines 3
and 7).

e The algorithm stores the index of the first task 7; that
makes the condition 1 satisfied as soon as it is assigned
for offloading, and also stores the value of Zn e TR as
a minimum possible value. Then, it is assigned for local
execution without returning it back to the list £ (Lines 8
and 9).

o For the remaining tasks in the list £, the algorithm
searches for a task 7;, such that if it is assigned for
offloading we gain the minimum possible Zﬂ e Tl

value, without violating the conditionl. The resulting
value %” returned in Line 20 provides a lower bound
of the utilization for this decision of x;s.

The time complexity for deciding whether a task 7; is
offloaded or not for all the tasks is O(nlogn), which is
dominated by the sorting of % After the decision is done, we
still have to find a suitable utilization to ensure the feasibility
for this offloading decision. Here, we incrementally check the
utilization levels defined in Section V-A, by considering the
utilization levels that are larger than %. The algorithm stops
when a certain utilization returns a feasible schedule. Verifying
the feasibility of a schedule under a given utilization level

tsel
(51
Client | S1

0 D
71
R1/ U51

Server‘

\

K—i
F(lytsel ytloc)

()

i
51
Server, ‘Rll‘USl‘ vy .
— b
F(thse(vtloc)
(b)
A » + N
tset " Yoc 7
71 T4 T2 73 J
Client Sl T S4 T T T Ca\ T T T >
0 D
71 T4
Server Ri/Usy ‘ Ra/ Usp vy .
lH T T T T T T T T D bl
F(4xtset xtloc)

Fig. 4: Tllustration of the dynamic programming algorithm.

requires O(nlogn) time complexity, whereas the search of
the minimum utilization levels defined in Section V-A for the
offloading decision to be feasible takes O(logn) iterations.
Therefore, the overall time complexity is O(nlog? n).

B. Dynamic Programming Algorithm

Based on dynamic programming, we present a pseudo-
polynomial-time scheduling algorithm to minimize the re-
quired utilization from the server, without violating the timing
constraints. To construct the dynamic programming table, we
need to order the tasks first. We consider the ordering of the
tasks according to Lemma 1 when all of them are offloaded.
We use Lemma 1 just for ordering. The offloading decision is
determined using the dynamic programming algorithm.

For a given set of tasks 7 = {r,72,...,7,}, consider
the subproblem for the first ¢ tasks, i.e., {7, 7a,...,7;}. Let
U (i, tset, tioc) be the minimum required utilization from the
server, such that the schedule of the tasks is feasible, under
the following constraints:

o The total setup time for the offloaded tasks among the

first ¢ tasks is less than or equal to tge;.

« The total execution time for the local tasks among the

first ¢ tasks is less than or equal to #j,.
Also, let F(i,tset, tioc) be the setup time of the first offloaded
task under the same constraints above. Figure 4c shows
an example for a schedule of four tasks to illustrate the
dynamic programming parameters, where the tasks {7y,74}
are offloaded, and the tasks {72, 73} are executed locally.

We construct two tables U and F', with three dimensions
and size n x D x D. All the elements in U(0, tset, tioc) and
F(0, tset, tioe) are initialized to zero. For 1 < ¢ < n, we fill

the table U according to the following recursion:

Equation 7 tset + tioe < D.

Ui, tset, tioe) = { 00

otherwise ©)

Where 0 < tgor < D and 0 < tjo. < D.

For any given ts¢; and tj,., such that ¢,y + tjoe < D,
the algorithm determines the offloading decision for the task
7; that achieves the minimum required utilization for the
subproblem {7y, 7o,...,7}. If tset + tioe > D, there is no
feasible solution and oo is stored in the table.

According to Equation 7, the task 7; can be offloaded if it
is beneficial (i.e., S; < C;), and there is enough setup time
tser (€., tser > S;). Also, it can be executed locally if there
is enough local execution time ¢, (i.e., tjoc > C;). If the task
7; 1s assigned for local execution, the utilization remains the
same as of the previous subproblem U (i — 1, tset, tioe — C1).
Also, the the value of F (i, tsct, tio.) remains the same as F'(i—
1, tset, tioe — C;), because the setup time of the first offloaded
tasks does not change by adding local tasks. Figure 4b shows
an example where assigning the task 7 for local execution
does not change the utilization Uy, of the previous subproblem
shown in Figure 4a (where ¢, is equal to 0).

If the task 7; is assigned for offloading, the value of
F(i,tset,tioc) also remains the same as F(i — 1,tser —
Sistioc). It only changes if 7; is the first offloaded task,
where F'(i — 1,tset — Si,tioc) = 0. Then, we consider
F(i — 1,tset — Siytioe) = Si, which leads the utilization to
be equal to DR 5 Therefore, the two parameters that change
the system utilization by offloading 7; (where it is not the first
offloaded task) are: its remote execution time R; and the time
at which the server start executing it. So, the new value of the
system utilization U (%, tset, Lioc), in the case of offloading, is
the maximum of the following:

o U(i—1,tset = Sistioe) + 5= = 1iet75“tloc) where the
utilization of the task 7; in the period D — F(i — 1, tget —

Si,tioc) 1s added to the system utilization of the previous
subproblem.

DRﬂE In this case, the 4. is too long such that the
utilization above violates the system feasibility. Then, the
utilization of task 7; in the period D — ¢4 restricts the
system utilization to maintain the feasibility.

The algorithm stores the offloading decisions combined with
all elements of the table U.

Finally, to minimize the required utilization, we find the
minimum of U(n, tset, tio.) for all possible values of tg.; and
t10c, such that their summation is less than or equal to D. Then,
we backtrack the table starting from the location that achieves
the minimum value above. If the task 7; is assigned for offload-
ing, we backtrack to U (i — 1, tset — Sy, tioe). If it is assigned
for local execution, we backtrack to U (i — 1, tset, tioc — Ci)-
The time complexity of the algorithm is O(n.D?).

VIII. EXPERIMENTAL EVALUATION AND SIMULATION

In this section, we evaluate our algorithms using a case
study of surveillance system, and synthesis workload simu-
lation. The terms Greedy and DP refer to the greedy and

TABLE I: Timing parameters of case study tasks (ms)
7; | Description Ci | Si| Ri
71 | Motion Detection 30 7 21
T2 | Object Recognition | 220 | 2 | 102
73 | Stereo Vision 88 16 41
74 | Motion Recording 18 7 14

=>=Greedy |
—@—DP
- ==h=Search -
2
5 1
= J
o
8 -
=
g]
IS 4
>
£
= 1
= —a
_l\\
0 1 1 1 1 1 1 1 1 1 1 \\u
127 148 169 190 211 232 253 274 295 316 337 358
D (ms)

Fig. 5: Case study results.

the dynamic programming algorithms respectively. Also, the
term Search is used to refer to the binary search for the
minimum required utilization. The search is performed within
the minimum utilization interval from Subsection V-B. The
Search algorithm is used here as a baseline to evaluate the
efficiency of the other algorithms.

A. Case Study of a Surveillance System

The surveillance system consists of a client and a server.
The client performs four frame-based real-time tasks on the
input video. The server processes the offloaded tasks from the
client, and returns the results back. The tasks are independent
of execution and can be described as follows:

« Motion Detection: to detect any moving objects.

« Object Recognition: to recognize and track the object of

the interest.

« Stereo Vision: to construct a depth map of the view.

« Motion Recording: to record the detected video for fur-

ther examination.
All the tasks can be executed either on the client or on
the server. Table I shows the timing parameters of the tasks
in milliseconds (ms). The algorithms are implemented on
the client to find the schedule that minimizes the required
utilization from the server without violating the real-time
constraints.

Figure 5 shows the minimum required utilization using each
algorithm for different deadlines. We observe that there exists
a feasible solution for deadline D > 127, where the required
utilization is close to 1 at D = 127. As the deadline increases,
the required utilization decreases, because the possibility of
executing more local tasks increases. For D > 356, the
required utilization is equal to O because there is enough time
to execute all of the tasks locally.

m' { maX{U(Z) 1’ tset B Si’ thC) + D_F(i_lvtset_si,tloc)7 D_tset}

U(Z - 1a tset, 7’/.loc - CZ)

B. Simulation Setup and Results

A synthetic workload is also used to evaluate our al-
gorithms. Timing parameters of the tasks are generated as
follows:

e C;: Randomly generated integer values from 1 to 50 ms
with uniform distribution.

« S;: Randomly generated integer values from 1 to C; ms
with uniform distribution.

e« Ri:R;, = %, where « is the speed-up factor of the server.

For each value of o = {0.5, 2,4}, we perform 20 rounds. In
each round, a set of 10 frame-based real-time tasks is randomly
generated and evaluated for different deadline values.

Figure 6 shows the average minimum required utilization for
the generated tasks above. If the deadline increases, the client
uses the additional time for local execution, which reduces the
number of offloaded tasks and then the required utilization.
Also, the speed-up factor of the server affects the required
utilization. For a specific deadline (among Figures 6a, 6b and
6¢c), the utilization decreases if the speed-up factor of the
server («) increases, because the response time of the offloaded
tasks becomes shorter. The figures also show that the dynamic
programming and the search algorithms have nearly the same
results.

In Figure 6a, the server is two times slower than the client.
Nevertheless, our system offloads tasks to the server. Because
the local tasks are executed during the offloading of the other
tasks, instead of remaining idle until the results return back
from the server.

IX. CONCLUSION

In this paper, we explore the computation offloading to
satisfy the real-time constraints in mobile devices. We adopt
the total bandwidth server (TBS) on the server side for
resource reservation. There are two challenges to perform
computation offloading: which tasks to offload, and at what
time each task should be offloaded. Therefore, the client
uses the proposed algorithms to schedule frame-based real-
time tasks and decide what to offload to the server, such
that the required utilization from the server is minimized.
The time complexity of the greedy algorithm is less than
the time complexity of the dynamic programming algorithm,
but our experimental evaluation and simulation show that
the dynamic programming is more efficient in the term of
minimizing the required utilization. We plan to extend our
work to consider periodic/sporadic real-time tasks and other
resource reservation servers.

Acknowledgement This work is supported in parts by
the German Research Foundation (DFG) as part of the
priority program “Dependable Embedded Systems”, by
Baden Wiirttemberg MWK Juniorprofessoren-Programms and
Deutscher Akademischer Austauschdienst (DAAD).

Average minimum required utilization Average minimum required utilization

Average minimum required utilization

0.8 T T T

)) > g
S; < C; ANger > S; } %

tloc > C’L

0.7

T T T T T T T T T T T
== Greedy

== DP 1
==fe==Search

0.5

=== Greedy
—@—DP
«=fe==Search

0.3 T

0.25

0.2

0.15

0.1

0.05

— 0O I N O ©O© MM O I~ <
N 1 ©O© M~ N~ 0 & O O «
AN N NN N N N N o0 o ™
D (ms)
b)ya=2
T T T T T T T T T T T T T T
=== Greedy
—&—DP

e=fe= Search

L L L
N OO © ™M
o O «H
N N N N

Fig. 6: Minimum

230
237
244 +
251
258 |
265
272
279
286
293
300
307
314

required utilization for all algorithms.

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

Wall-e robot. URL
http://pixarplanet.com/blog/the-ultim—
ate-walle-robot.

Google glass project.
http://www.google.com/glass/start/.
R. Ballagas, J. Borchers, M. Rohs, and J. Sheridan.
The smart phone: a ubiquitous input device. Pervasive
Computing, IEEE, 5(1):70-77, 2006.

J. Fernandez, D. Losada, and R. Sanz. Enhancing build-
ing security systems with autonomous robots. In IEEE
International Conference on Technologies for Practical
Robot Applications, pages 19 -24, 2008.

L. Ferreira, G. Silva, and L. Pinho. Service offloading
in adaptive real-time systems. In IEEE Conference
on Emerging Technologies Factory Automation (ETFA),
pages 1 -6, 2011.

X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, and
D. Milojicic. Adaptive offloading inference for delivering
applications in pervasive computing environments. In
IEEE International Conference on Pervasive Computing
and Communications (PerCom), pages 107 — 114, 2003.
S. Gurun, R. Wolski, C. Krintz, and D. Nurmi. On
the efficacy of computation offloading decision-making
strategies. Int. J. High Perform. Comput. Appl., 22(4):
460-479, 2008.

Y.-J. Hong, K. Kumar, and Y.-H. Lu. Energy efficient
content-based image retrieval for mobile systems. In
IEEE International Symposium on Circuits and Systems
(ISCAS), pages 1673 —1676, 2009.

K. S. Hwang, K. J. Park, D. H. Kim, S.-S. Kim, and
S. H. Park. Development of a mobile surveillance robot.
In International Conference on Control, Automation and
Systems (ICCAS), pages 2503 -2508, 2007.

S. M. Johnson. Optimal two- and three-stage production
schedules with setup times included. Naval Research
Logistics Quarterly, 1(1):61-68, 1954.

K. Kim, S. Bae, and K. Huh. Intelligent surveillance and
security robot systems. In IEEE Workshop on Advanced
Robotics and its Social Impacts (ARSO), pages 70 —73,
2010.

D. Kovachev, T. Yu, and R. Klamma. Adaptive com-
putation offloading from mobile devices into the cloud.
In IEEE 10th International Symposium on Parallel and
Distributed Processing with Applications (ISPA), pages
784 —791, 2012.

K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava. A survey of
computation offloading for mobile systems. Mob. Netw.
Appl., 18(1):129-140, Feb. 2013.

Z. Li, C. Wang, and R. Xu. Computation offloading to
save energy on handheld devices: a partition scheme. In
International conference on Compilers, architecture, and
synthesis for embedded systems (CASES), pages 238-
246, 2001.

Z. Li, C. Wang, and R. Xu. Task allocation for distributed
multimedia processing on wirelessly networked handheld
devices. In Parallel and Distributed Processing Sympo-

URL

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

(29]

sium., Proceedings International, IPDPS 2002, pages 79
-84, 2002.

Y. Nimmagadda, K. Kumar, Y.-H. Lu, and C. Lee.
Real-time moving object recognition and tracking using
computation offloading. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages
2449 2455, 2010.

S. Ou, K. Yang, and A. Liotta. An adaptive multi-
constraint partitioning algorithm for offloading in per-
vasive systems. In IEEE International Conference on
Pervasive Computing and Communications (PerCom),
pages 10 —125, 2006.

L. Pei, R. Chen, J. Liu, Z. Liu, H. Kuusniemi, Y. Chen,
and L. Zhu. Sensor assisted 3d personal navigation
on a smart phone in gps degraded environments. In
Geoinformatics, 2011 19th International Conference on,
pages 1-6, 2011.

N. Ravi, P. Stern, N. Desai, and L. Iftode. Accessing
ubiquitous services using smart phones. In Pervasive
Computing and Communications, 2005. PerCom 2005.
Third IEEE International Conference on, pages 383-393,
2005.

M. Spuri and G. Buttazzo. Efficient aperiodic service
under earliest deadline scheduling. In Real-Time Systems
Symposium, pages 2 —11, 1994.

M. Spuri and G. Buttazzo. Scheduling aperiodic tasks in
dynamic priority systems. Real-Time Systems, 10:179—
210, 1996.

A. Toma and J.-J. Chen. Computation offloading for
frame-based real-time tasks with resource reservation
servers. In Euromicro Conference on Real-Time Systems
(ECRTS), page to appear, 2013.

A. Toma and J.-J. Chen. Computation offloading for
real-time systems. In Proceedings of the 28th Annual
ACM Symposium on Applied Computing, SAC ’13, pages
1650-1651. ACM, 2013.

M. Valera and S. Velastin. Intelligent distributed surveil-
lance systems: a review. Vision, Image and Signal
Processing, IEE Proceedings -, 152(2):192 — 204, 2005.
X. Wang. Intelligent multi-camera video surveillance: A
review. Pattern Recognition Letters, 34(1):3 — 19, 2013.
Y. Wang, K. Virrantaus, L. Pei, R. Chen, and Y. Chen.
3d personal navigation in smart phone using geocoded
images. In Position Location and Navigation Symposium
(PLANS), 2012 IEEE/ION, pages 584-589, 2012.

R. Wolski, S. Gurun, C. Krintz, and D. Nurmi. Using
bandwidth data to make computation offloading deci-
sions. In IEEE International Symposium on Parallel and
Distributed Processing (IPDPS), pages 1 -8, 2008.

C. Xian, Y.-H. Lu, and Z. Li. Adaptive computation
offloading for energy conservation on battery-powered
systems. In Parallel and Distributed Systems, Interna-
tional Conference on, pages 1-8, 2007.

K. Yang, S. Ou, and H.-H. Chen. On effective offloading
services for resource-constrained mobile devices running
heavier mobile internet applications. IEEE Communica-
tions Magazine, 46(1):56 —63, 2008.

