Computation Offloading for Real-time Systems

Anas Toma
Department of Informatics
Karlsruhe Institute of Technology, Germany

anas.toma@student.kit.edu

ABSTRACT

Computation offloading has been adopted to improve the perfor-
mance of embedded systems by offloading the computation of some
tasks, especially computation-intensive tasks, to servers or clouds.
This paper explores computation offloading for real-time embed-
ded systems to decide which tasks should be offloaded to get the
results in time. Such a problem is A"P-complete even for frame-
based real-time tasks with the same period and relative deadline.
We develop a pseudo-polynomial-time algorithm for deriving fea-
sible schedules, if they exist.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management—Scheduling.

Keywords

Computation offloading, task scheduling, real-time systems.

1. INTRODUCTION

Mobile devices are getting increasingly popular nowadays. They
have become devices that are often used for multiple functionali-
ties. Specifically, many of their applications are computation inten-
sive, such as video processing,image and voice recognition, etc.

However, even though the performance improvement for mobile
devices will continue, their computation capabilities are still quite
limited, due to the resource constraints on these devices. It may not
be worth to improve the embedded systems just to execute some
computation-intensive applications for extreme cases. Therefore,
computation offloading, as illustrated in Figure 1, can be adopted
in the embedded systems with constrained resources by moving a
task from a resource-constrained device (here, we call it a client) to
one or more devices (here, we call them servers). The task can be a
part of an active program or a complete one. The servers can either
provide faster execution in general or accelerate the execution for
some specific tasks. Moreover, even when the servers are slower,
offloading may also be beneficial for the client as the computation
is done remotely so that the energy consumption of the client can be
reduced or another task can be executed on the client while awaiting
the results from the servers.

We explore the computation offloading mechanism to meet the
timing constraint of real-time tasks. Although the idea of computa-
tion offloading has been studied previously [1-7], all of the existing
approaches decide whether a task is executed locally or is offloaded

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’13 March 18-22, 2013, Coimbra, Portugal.

Copyright 2013 ACM 978-1-4503-1656-9/13/03
http://doi.acm.org/10.1145/2480362.2480670 ...$10.00.

Jian-Jia Chen
Department of Informatics
Karlsruhe Institute of Technology, Germany

jian-jia.chen@kit.edu

Offloaded tasks

{r1,T2,73}

Scheduler
Locally executed tasks |
{TaTs}

|

Embedded —
System |
|

Cloud of computers

Server 1 Server 2

Figure 1: Offloading Mechanism.

without scheduling the execution order, even for independent tasks.
Therefore, during the remote execution of an offloaded task, the
client always remains idle until the result of the task returns from
the server. Also, they assume that a server, implicitly, is dedicated
for the client to run an offloaded task immediately.

Moreover, timing requirements are important for real-time appli-
cations, in which the results may become useless or even harmful
to the client if the deadlines are not met. Most of the approaches
with computation offloading either do not consider the timing sat-
isfaction requirement for real-time properties, e.g., in [2-4, 6, 7],
or use pessimistic offloading mechanism for deciding whether a
task can be offloaded [5]. Although the offloading mechanism by
Nimmagadda et al. [S] can improve the response time and the local
execution time on the client, they do not fully exploit the potential
of computation offloading for satisfying the timing requirement or
achieving better performance by increasing the sampling rates.

Due to the space limitation, we only present the key conceptual
observations, and omit all the detailed proofs.

2. SYSTEM MODEL

Suppose that we are given a set 7 of n independent frame-based
real-time tasks. All the tasks have the same arrival time O, period
D and relative deadline D . Each task 7; € 7T is associated with
the following timing parameters:

o Worst-case local execution time C;.

e Setup time S;: It includes any local pre-processing opera-
tions before offloading, and also includes the transmission
time of the offloaded task to the server.

e Round-trip offloading time /;: the interval length starting
from the end of setting up S; for task 7; until getting the
result from the server. The client contacts the server/s before
scheduling to get the values of I;.

Figure 2 shows these timing parameters, where tasks 7 and 7
are offloaded, and tasks 73 and 74 are locally executed. The client
has to schedule task executions to satisfy the real-time constraints,
whereas the servers have their own scheduling policies to handle
the tasks that are offloaded from the clients and to ensure I; value.

2.1 Problem Definition

Given a set T of n frame-based real-time tasks, the SElective

Local 4 2 o < l

Processor %1 ; S ; , 93 , l St ! Y >
0 D

Server(s) { L

Processor(s) I

Figure 2: Timing parameters and optimal ordering for a set of tasks.

Real-Time Offloading (SERTO) problem is to schedule the tasks
and to decide when and what to offload without violating timing
constraints for a client.

A schedule is feasible if all the locally-executed and offloaded
tasks are finished no later than the deadline D. A scheduling algo-
rithm is said to be optimal offloading scheduling algorithm if it is
able to find a feasible schedule, if and only if one exists.

Suppose that z; is equal to 1 if task 7; is decided to be offloaded;
otherwise, z; is 0. We use a vector &, = (z1,Z2,...,%n) tO
denote an offloading decision for the given n tasks.

3. HARDNESS OF THE SERTO PROBLEM

Suppose that the computation offloading decisions have been
made. The following lemma decides the optimal ordering.

LEMMA 1. If the execution order is not specified, all the of-
floaded tasks should be executed before any locally-executed task.

When the offloading decision &), for the tasks is known, we de-
fine d; = x;(D—1I;)+ (1 —x;)D as the virtual offloaded deadline.
If there is a feasible schedule , then executing the tasks by follow-
ing the order of d; non-decreasingly is also a feasible schedule.
This ordering is called Earliest Virtual Offloaded Deadline First
(EVODF). Please refer to Figure 2, as an illustration example for
an optimal ordering for a given set of four tasks.

LEMMA 2. If the execution order is not specified and there is
a feasible schedule based on the offloading decisions, the schedule
by using EVODF is also a feasible schedule.

LEMMA 3. Suppose that tasks 7; € T are ordered non-decrea-
singly according to D — I;. An offloading decision T, results in a
feasible schedule (by using EVODF) if and only if

(a) 37 xS+ (1 —x;)C; < D, and

(b) a Iy + 35 2,8, < D,Vk=1,2,...,n.

The N'P-completeness can be proved by a reduction from the
SUBSET SUM problem.

THEOREM 1. The SERTO problem is N'P-complete if the exe-
cution order is not given.

4. OUR APPROACH

Based on dynamic programming, we introduce a pseudo-polyno-
mial-time algorithm called Dynamic Real-time Scheduling (DRS)
algorithm to find a feasible solution for the SERTO problem. Ini-
tially, all tasks are ordered non-decreasingly according to D — I;.

An offloading decision &; for the first ¢ tasks, i.e., {71, 72, ..., Ts },
is said partially feasible for offloading if the offloaded tasks can fin-
ish the execution in the servers before the given deadline D. Sim-
ilar to Lemma 3, we know that a vector & is partially feasible for
offloading for {71, 72, ..., 7} if and only if x4 I}, + Z?:l ;55 <
D,VkE=1,2,...,i.

Our strategy is to build a dynamic programming table by main-
taining and storing some scheduling results for the partially feasi-
ble offloading decisions for the first ¢ tasks. Specifically, among all
the partially feasible offloading decisions for {71, 72,..., 7}, let
G(i,t) be the minimum total local execution time for the locally-
executed tasks under the constraint that the total setup time for the

offloaded tasks in {71, 72,...,7:} is less than or equal to ¢. That
is, for a given 4 and ¢, the value G (%, t) is the objective function of
the following integer linear programming (ILP):

minimize Z(l —z;)C; (la)
j=1

sty w8 <t (1b)
j=1

k
ol +Y 28 <D Vk=12,...,i (lo)
j=1

x; € {0, 1}

For notational brevity, when the above ILP has no feasible solution,
G(3,t) is defined as co. Moreover, G(i,t) = oo when ¢ < 0.
Clearly, when i is 1, we know that

[0 S <t<D-1L
G(Lt) = { 4 otherwise.

The construction of G (i, t), for ¢ > 2, can be achieved by using
the following recurrence:

Vi=1,2,...,i. (1d)

@

{ GGi—1,t—8;) ift<D-1I
therwis
G(’i, t) — min oo otherwise (3)
G(i —1,t) + C;

The recursive function in (3) represents the selection of the mini-
mum solution by comparing two cases:

e Case 1: task 7; is offloaded when its local setup execution
finishes at time ¢. For such a case, if t+1; > D, offloading 7;
is an infeasible offloading decision; otherwise, we consider
the offloading decision for the first ¢ — 1 tasks, in which the
total local execution time of this solution is G(i — 1, ¢ — S;).

e Case 2: task 7; is locally executed. Therefore, we consider
the offloading decision for the first s —1 tasks. As aresult, the
total local execution time of this solution is C; + G (i — 1, t).

The standard dynamic-programming procedure can be applied
by constructing a table with n rows for¢ = 1,2,...,nand D +
1 columns for ¢ = 0,1,2,...,D. The time complexity of the
algorithm is O(nlogn + nD), which is pseudo-polynomial.

For an input task set 7, to verify whether a feasible schedule
exists for the SERTO problem or not, we just have to check whether
there exists 0 < ¢t < D with G(n,t) +t < D.

References

[1] L. Ferreira, G. Silva, and L. Pinho. Service offloading in adaptive real-time sys-
tems. In Emerging Technologies Factory Automation (ETFA), 2011 IEEE 16th
Conference on, pages 1 —6, 2011.

[2] Y.-J. Hong, K. Kumar, and Y.-H. Lu. Energy efficient content-based image re-
trieval for mobile systems. In Circuits and Systems, 2009. ISCAS 2009. IEEE
International Symposium on, pages 1673 —1676, may 2009.

[3] Z.Li, C. Wang, and R. Xu. Computation offloading to save energy on handheld
devices: a partition scheme. In CASES, pages 238-246, 2001.

[4] Z.Li, C. Wang, and R. Xu. Task allocation for distributed multimedia processing
on wirelessly networked handheld devices. In Parallel and Distributed Processing
Symposium., Proceedings International, IPDPS 2002, pages 79 —84, 2002.

[5] Y.Nimmagadda, K. Kumar, Y.-H. Lu, and C. Lee. Real-time moving object recog-

nition and tracking using computation offloading. In Intelligent Robots and Sys-

tems (IROS), IEEE/RSJ International Conference on, pages 2449 —2455, 2010.

R. Wolski, S. Gurun, C. Krintz, and D. Nurmi. Using bandwidth data to make

computation offloading decisions. In IEEE International Symposium on Parallel

and Distributed Processing (IPDPS), pages 1-8, 2008.

[7]1 C. Xian, Y.-H. Lu, and Z. Li. Adaptive computation offloading for energy con-
servation on battery-powered systems. In Parallel and Distributed Systems, 2007
International Conference on, volume 2, pages 1-8, 2007.

[6

