
Simple Analysis of Partial Worst-case Execution Paths on
General Control Flow Graphs

∗

Jan C. Kleinsorge
TU Dortmund

jan.kleinsorge@tu-
dortmund.de

Heiko Falk
Ulm University

heiko.falk@uni-ulm.de

Peter Marwedel
TU Dortmund

peter.marwedel@tu-
dortmund.de

ABSTRACT

One of the most important computations in static worst-case
execution time analyses is the path analysis which computes
the potentially most time-consuming execution path in a
program. This is typically done either with an implicit path
computation based on solving an integer linear program, or
with explicit path computations directly on the program’s
control flow graph. The former approach is powerful and
comparably simple to use but hard to extend and to combine
with other program analyses due to its restriction to the linear
equation model. The latter approaches are often restricted to
well-structured graphs, suffer from inaccuracy or require non-
trivial structural analyses or graph transformations upfront
or during their computations.
In this paper, we propose a generalized computational

model and a comprehensive explicit path analysis that oper-
ates on arbitrary directed control flow graphs. We propose
simple and yet effective techniques to deal with unstructured
control flows and complex flow fact models. The analy-
sis does not require a control flow graph to be mutable, is
non-recursive, fast, and provides the means to compute all
worst-case paths from arbitrary source nodes. It is well suited
for solving local problems and the computation of partial
solutions, which is highly relevant for problems related to
scheduling and execution modes alike.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal methods; D.2.8 [Software Engineering]:
Metrics—Performance measures

General Terms

Reliability, Verification, Performance

Keywords

Worst-case Execution Time, Path Analysis, Static Analysis

∗
This work was partially supported by Deutsche Forschungsgesellschaft (DFG)

under grant FA 1017/1-1 and EU COST Action IC1202: Timing Analysis on
Code-Level (TACLe).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT ’13 09/29/2013, Montreal, Canada

1. INTRODUCTION
The worst-case execution time (WCET) of tasks is a critical

metric in all hard real-time systems. An upper bound on the
WCET can be estimated by static analysis. Input to such
an analysis is typically a program in its binary form. For
this, fine grained analyses can be performed as instructions,
data and their locations are usually complete and statically
known. Worst-case estimations of the execution time of
individual basic blocks can then be derived from possible
CPU states and the access patterns to memories and caches.
Ultimately, this information is used to perform an estimation
of the WCET of an entire task. The worst-case path (WCEP)
problem is to find the most time-consuming path through the
control flow graph (CFG) from its entry to its exit. Cycles in
the control flow pose a particular problem since without any
knowledge of an upper bound on loop iterations, the worst-
case path length is unbounded. The required loop bounds can
be determined analytically or need to be supplied manually.
As such, it is vital that the control flow reconstruction is
able to identify loops correctly and to feature simple means
to (manually) annotate the control flow with flow facts (e.g.,
loop bounds, alternative or infeasible paths) where necessary.
The predominant approach to WCEP analysis is the im-

plicit path enumeration technique (IPET) [12]. The worst-
case path problem is formulated as an integer linear program
(ILP) which allows to easily model arbitrarily structured
control flow and flow facts in one monolithic model. A dis-
advantage is that it only yields the WCET from the entry
to the exit of a task and neither directly exposes the WCEP
nor any information on subpaths. It is not ideal for modeling
problems related to scheduling, where detailed information
of timing of interior program points is required (e.g. mul-
titask, multicore), for partial analyses in general (e.g. to
provide bounds for schedulability analysis) and for analyses
that could be interleaved with the path analysis to increase
their accuracy, specifically.
As opposed to that, explicit path analysis techniques are

significantly more difficult to employ and no generally ac-
cepted computational model is used. These analyses depend
on the availability of high-level structural information of
the control flow since loops are typically processed one at a
time. The rationale is that longest paths are easily computed
on the acyclic control flows of the loop bodies. Loops are
then processed in a recursive manner starting from the most
deeply nested ones. This is unfortunate since contextual
information for a loop (such as path infeasibility or hardware
states for timing analysis) is only available after it has been
fully processed. Also, in this model, flow facts are either

978-1-4799-1443-2/13/$31.00 ©2013 IEEE

only allowed to be simple (one iteration bound for the entire
loop), or the algorithms become significantly more complex
[8]. For multi-entry loops, loop nestings are ambiguous and
preprocessing steps [18] are mandatory that enumerate all
possible combinations or even require a modification of the
CFG. This can cause redundancies in the computations, re-
quires changes to already existing frameworks and potentially
reduces the analysis accuracy, as flow facts now do not nec-
essarily match the presumed program semantics anymore.
Although rare, it is critical to be able to handle such cases in
all generality. Examples are analysis of low-level code, state
machines, co-routines, cooperative scheduling, etc..
In this paper, we propose a generalized computational

model and a comprehensive explicit worst-case execution path
analysis for the evaluation of complex (partial) control-flows.
Our concrete contributions are: The analysis can directly be
performed on arbitrarily structured and immutable control-
flow graphs. The computational model is non-recursive with
regard to loops, cleanly isolates problems related to graph
structure and context/path-sensitivity from the actual analy-
sis and only exposes a simple, locally restricted join/transfer
propagation model, which is easy to extend and specifically
allows for the easy interleaving with other existing analy-
ses. By means of path-compression and the avoidance of
redundancy where possible, it scales very well. It computes
worst-case paths at basic block level from arbitrary source
points to all other points, as opposed to being limited to
entry-to-exit paths and allows for the specification of complex
flow constraints beyond simple loop bounds. In particular,
the fine-grained analysis results provide a basis for improved
interference analyses in multitask and multicore scenarios.
The paper is structured as follows. In Sec. 2, we review

related work. In Sec. 3, we discuss problems related to the
structure of CFGs and propose a simple solution. Sec. 4 ad-
dresses the actual path analysis by introducing the technical
foundation and by presenting our reference implementation.
We trade a thorough formal analysis in favor of a practical
evaluation in Sec. 5. In Sec. 6 the paper is concluded and
future work is discussed.

2. RELATED WORK
Path analyses in the domain of WCET analysis can roughly

be separated into ones based on IPET [12] and ones based on
algorithms for the classic single-source shortest paths problem
[6]. They are two approaches to solve the same problem [16].

IPET is predominant in its original form even in industrial
WCET analysis solutions [19], although variations based on
parametric ILP [3] have been proposed. For explicit path
analyses, however, different approaches are known [8, 2, 5].
For IPET, its limited extensibility inhibits a combined anal-
ysis of paths and CPU or cache states [17], which potentially
profit from this additional contextual information. As op-
posed to that, explicit path analyses allow to directly model
problems beyond the mere longest path problem, so that an
interleaving with other analyses becomes possible [15].

Explicit path analysis techniques typically suffer from their
inherent limitation to reducible graphs (single-entry loops)
[9] and therefore rely on preprocessing such as node split-
ting [10] or explicit enumeration of possible permutations of
loop nests [18]. The implication is that either control flow
representations must be modified or the analyses must be
tailored towards the underlying approach. Another typical
limitation is the restriction to simple loop bounds. Most

a

b

c

d

1

2

(a)

a

b

c

d

a < d

(b)

a

b

c

d

(c)

a

b

c

d

(d)

Figure 1: Examples for (a) ambiguous backward edges, (b)
ambiguous scope nesting, (c) virtual exit edges and (d) virtual
bottoms.

explicit path analyses perform their computations loop-wise
or at a similarly coarse granularity. Mandatory worst-case
bounds for loop iterations can then only be specified at this
granularity as well [2], which can lead to over-estimations.
An exception is [8], which comes at the price of a complex
computational model. Except for [4] which is based on IPET,
no approach addresses the problem of partial worst-case path
analyses to the best of the authors’ knowledge. Notably, the
approach proposed in [2] is capable of recursively computing
longest paths from a global entry node to all others but is
restricted to single-entry, single-exit loops and to a simple
flow fact model. A general overview of different path analysis
techniques, in particular in the context of WCET analyses,
is given in [19].

3. STRUCTURING CONTROL FLOW
In the following, we address problems related to control

flow structure and loops. In particular we propose a very
simple data structure and algorithms upon which a path
analysis can be performed efficiently and non-recursively.
In Sec. 3.1, we propose a data structure that models loop
relations in a control flow and serves, along with the CFG,
as input to the analysis. In Sec. 3.2, we present our approach
to a non-recursive traversal of loop nests.

3.1 Scope Tree
If a CFG is reducible (all loops have a single entry) [13],

we can directly construct a so-called loop nesting forest [14]
by means of depth-first search (DFS) [6] to represent the
relation of loops to one another and to define the membership
of nodes to loops.
Let G = (V,E) be a CFG. Given G is reducible, loop

nesting forest construction relies on the classification of the
CFG edges E(G) into forward (F (G)) and backward (B(G) =
V (G) \ F (G)) edges. Loops are then uniquely characterized
by B(G) and nesting relations are unambiguous.

The problem on irreducible graphs is that B(G) is ambigu-
ous, so that classic approaches to edge classification cannot
be used directly. In Fig. 1(a), depending on whether a DFS
starting in a visits b or c first, backward edges could be either
(b, c) or (c, b). Worse yet, loop relations, such as depicted
Fig. 1(b), can then also be ambiguous. Either loop {a, b, c} or
{b, c, d} could be the nested loop, as far as program semantics
are concerned.
Our approach is to avoid the problem of ambiguity alto-

gether in the first place instead of being required to try out
all possible combinations at some later time. The rationale is
that such an enumeration makes little sense in the first place
since the semantic model that was originally intended (by the
developers) is unambiguous. Since a good understanding of
program semantics is usually required to provide correct and

tight flow facts in the general case, we propose two simple
extensions to flow facts beyond mere execution bounds.
First, we disambiguate the DFS by allowing flow facts to

guide the algorithm in ambiguous cases. Such a prenumbering

abstracts from the actual order in which nodes will be visited.
In Fig. 1(a), only nodes b and c need to be prenumbered
(grayed labels) such that the visitation order of a modified
DFS corresponds to the numeric relation of the two numbers
(b before c). For single-entry loops, these annotations are
optional and therefore only required in rare cases.
Second, complex nesting relations as in Fig. 1(b) are un-

ambiguously resolved by allowing explicit nesting relations
as flow facts. In the figure, node a is supposed to belong
to a loop that is nested in the one of node d (grayed label).
Also here, this is optional and rather rare but is sufficient to
model arbitrarily complex control flows.
For our analysis, a minimal data structure (similar to a

loop nest forest) to maintain the structural information must
be constructed. A scope denotes an arbitrary cyclic region in
G. A scope tree S = (V,E) is a directed graph, where each
node s ∈ V (S) represents a scope and each edge (s, t) ∈ E(S)
denotes that scope t encloses scope s. A scope label defined
by scope : V (G) 7→ V (S) uniquely identifies the membership
of a control flow node to a node of the scope tree. If a control
flow node logically belongs to multiple scopes, its label is
that of the innermost scope.

Per scope, we explicitly maintain four sets of nodes. Given
that a scope s can now be unambiguously characterized by
its backward edges Bs ⊆ B(G), the (singleton) set top is
defined as top(s) = {v|(u, v) ∈ Bs}. Analogously, we define
bottom(s) = {u|(u, v) ∈ Bs}.

Let ~G = (V (G), F (G)) denote the directed acyclic graph
(DAG) of G. Let T denote the function that maps to the

transitive closure of any directed graph. If (u, v) ∈ E(T (~G)),
then node v can be reached from u.
Given the edge (u, v) ∈ F (G), the labels ū = scope(u),

v̄ = scope(v) with ū 6= v̄. Then the set of entries are the
nodes that can be reached from enclosing or neighboring
scopes: entry(v̄) = {v|(v̄, ū) ∈ E(T (S)) ∨ (ū, v̄) /∈ E(T (S)).
Analogously, the set of exits are the nodes that either reach
an enclosing or neighboring scope: exit(ū) = {u|(ū, v̄) ∈
E(T (S)) ∨ (v̄, ū) /∈ E(T (S)).
Fig. 2(a) shows a CFG of three scopes (outermost region

and the two loops) that are explicitly depicted in Fig. 2(b)
and labeled 0̄, 1̄ and 2̄, respectively. The corresponding scope
tree is depicted in Fig. 2(c) along with the node sets.

Since we want to focus on the path analysis itself, we have
to leave the algorithmic details for the prenumbering DFS
and the scope tree construction aside.

3.2 Scope Order
For worst-case path computations, explicit path analysis

techniques typically recursively descent into a loop nesting
representation similar to our scope tree and compute longest
paths one loop at a time starting from the innermost ones.
Since the loop bodies – given nested loops have been succes-
sively replaced by (appropriately weighted) representative
nodes – are acyclic, longest paths can be computed easily.
The global worst-case path is then a comparatively unstruc-
tured concatenation of independent subpaths.
Although this approach seems quite generally applicable,

it has several drawbacks. For multi-entry or multi-exit loops,
it is not straightforward to replace a nested loop by some

a

b

c d

e

f

(a) Control flow graph

0̄a

f

1̄b

e

c

d
2̄

(b) Scope representation

0̄

1̄

2̄

top(1̄) = {a}
entry(1̄) = {a}

bottom(1̄) = {f}
exit(1̄) = {f} top(2̄) = {b}

entry(2̄) = {b, c}
bottom(2̄) = {e}
exit(2̄) = {d, e}

(c) Scope tree and sets

•

(IKO)

(IKO) (IKO) (IKO)

. . .

.

. . .

0̄

1̄

2̄

(d) Unroll model

Figure 2: Concepts of the computational model

representative. Even if measures have been taken earlier
to be able to deal with multiple loop entries (cf. Sec. 2),
multiple exits are still a problem1. Depending on the flow
fact model, a loss of accuracy has to be accepted [2] or
the control-flow representation becomes significantly more
complex in addition to previous changes to the original CFG
[10, 8]. Moreover, recursion implies that computations on
nested loops are context-insensitive. Detection of unnecessary
computations and early elimination of invalid data is not
possible. For example, only once enclosing loops have been
processed, path infeasibility of paths in subloops can be
detected. This can also lead to much redundancy, which
might not be an apparent problem for just the path analysis
by itself. But once it is interleaved with other expensive
static analyses [19], this can be significant.
We propose a simple non-recursive solution. In Fig. 2(a),

if we remove the backward edges ((f, a), (e, b)), a possible
topological order of the nodes is (a, b, c, d, e, f). Replacing
node labels by scope labels yields (1̄, 2̄, 2̄, 2̄, 2̄, 1̄), or, without
duplicates, (1̄, 2̄, 1̄). This corresponds to the recursive traver-
sal of the scope tree (from 1̄) in Fig. 2(c) and guarantees
(here) that all nodes of scope 2̄ have been visited before all
nodes of scope 1̄. Specifically, a scope is considered fully
processed once all of its bottom nodes (cf. Sec. 3.1) have
been visited since then all paths are known. Computations
in 2̄ can therefore be context-sensitive and the worst-case
path is composed in the “general direction” of control-flow in
~G, not just for single loops.
In general, loops are not nested such that any arbitrary

topological order yields the property that all nodes of nested
loops have been visited before all nodes of enclosing loops.
The rationale is that once all nodes of a scope are known, a
(virtual) unrolling can be performed according to the given
flow fact model.

The problem is twofold. In Fig. 1(c) (ignoring the dotted
edge), node d could be visited before node c, which means
the loop is not fully known once a node of the enclosing loop
might already be dependent on that information.

Additionally, even if the topological order is unambiguous,
for a graph layout such as depicted in Fig. 1(d), all nodes
of a scope could have been visited before any nodes of its

1Multiple exits are far more common than multiple entries:
e.g. error/exception handling

subscopes. Loops {b, c} and {c, d} are nested in {a, b}.
First, let b∗(s) denote the set of bottoms of scope s and

all of its subscopes. We call the set of “bottom-most” nodes
of b∗(s) the set of virtual bottoms and define it as:

vbottom(s) = {u|u ∈ b∗(s), ∀v ∈ b∗(s) : (u, v) /∈ E(T (~G))}

In Fig. 1(d), the sets of virtual bottoms for all scopes are
equal to {d}. All three scopes are fully known only once
node d is visited.
Second, all scope bottoms must have been visited before

any of the adjacent nodes of the exit nodes (cf. Fig. 1(c)). For
~G, the scope order denotes a sequence of nodes (u1, . . . , un)

with ui ∈ V (~G) such that for a scope s, a node uj ∈ exit(s)
and a node uk ∈ vbottom(s) exists with s = scope(uj) =
scope(uk): ∀ul ∈ successors(uj) : l > k.
We can easily achieve the desired result by adding ad-

ditional virtual exit edges from the (v)bottoms to the exit
successors, as indicated by the dotted edge (c, d) in Fig. 1(c).
A simple extension to an algorithm for topological sorting
[6] suffices to achieve this without modifying the graph itself
and at minimal costs.
Scope order simplifies the computation worst-case paths

such that we can reason about worst-case paths in one control
flow node by merely referencing its predecessors in ~G.

4. PATH ANALYSIS
The objective of our path analysis is to compute the latest

execution time (LET) for all nodes in the CFG. In the follow-
ing Sec. 4.1, the overall computational model is presented.
We briefly address our flow fact model in Sec. 4.2. Sec. 4.3
describes the algorithm itself.

4.1 Model of Computation
The basic principle of the LET computation is a virtual

unrolling of all scopes. In such a – now – cycle-free control
flow graph, the LET of the exit node of the control flow graph
would be equal to the longest path from the root scope’s top
to its bottom.
To unroll a scope, we distinguish three phases for each

scope: An entry phase I, a kernel phase K and an exit phase

O. In the I phase, all paths from all entries to the bottoms
can be taken. In the K phase, only paths from top to bottom
can be taken. In the O phase, only paths from the top to
the exits can be taken. A longest path through an unrolled
scope is a concatenation of a single path of the I phase, as
many paths of the K phase as possible according to some
upper bound, and a single path of the O phase.

For each path of each phase of a parent scope, all subscopes
have to be unrolled as well. Consider Fig. 2(d) which sketches
the space of unroll phases for Fig. 2(b). For example, in
scope 1̄, the three phases IKO have to be computed. For
each such phase, three phases in scope 2̄ have to be computed
as well, because for each path in 1̄, we also traverse 2̄. This
is denoted by the edges in Fig. 2(d). All phase triples of one
level in the figure refer to the same scope. But not all paths
in the same phase of the same scope are feasible at all times.
This depends on the current phases of the parent scopes.

For example, if scope 1̄ is in phase K, then the edges to
and from scope 0̄ via the nodes c and d cannot have been
taken, since only the paths from the top of 1̄ to its bottoms
are possible. The observation is that phases of the same
scope but under a different context potentially yield different
results and thus must potentially be distinguished.

However, there usually exists a high degree of redundancy
that we can exploit. For example, all K phases of scope 2̄
will yield identical paths regardless of its context, since the
only paths that are feasible during this phase are the ones
from the top to the bottoms. Also, the paths of the O phases
are subpaths of the ones of the K phase. Depending on the
entries and the context, I paths could also be redundant.
Reducible graphs are the special case where all phases of

all scopes under all contexts have identical feasible paths.
We propose a virtual unrolling scheme that yields the least

possible amount of redundancy and the ability to easily scale
up to the most general case.

4.2 User Annotations
Besides the annotations for structural disambiguation (cf.

Fig. 1(a), Fig. 1(b)) which are only needed in irreducible
CFGs, we support a single numeric constant per node that
bounds the maximal number of occurrences of this node
on the unrolled path of a single scope. Fig. 3(a) gives an
example of a scope with node a bounded by 1, node b by 2
and d by 0. This enables an accurate modeling of control
flows since for multi-entry and multi-exit scopes in particular,
bounds at loop-granularity (unroll factor) are insufficiently
accurate. In addition, this allows for the specification of
multiple, mutually exclusive longest paths in a scope and
can easily be extended to deal with (global) infeasibility
constraints. Since, for brevity, the paper focuses on the base
algorithm only, we will not discuss global constraints in the
following.

4.3 LET Computation
The algorithm is presented in two stages. In Sec. 4.3.1, the

basic data structures, their construction, their relation to
each other and the main pass of the algorithm are presented,
which is sufficient to compute the LET of the exit. With
the algorithm in Sec. 4.3.2, the LET of all interior nodes are
computed.

4.3.1 Single Path LET

The path analysis solely depends on three input entities:
DAG ~G, scope tree S and flow bounds.
A node u is called a flow anchor if it has explicitly been

annotated with a bound. The set of flow bounds is defined
as B = {. . . , (u, c)i∈B, . . . } where u ∈ V (G) is the anchor
and c ∈ No is its numeric value. We call the index set B the
flow bound index.
Fig. 3(a) illustrates a scope with annotated flow bounds.

Consequently, the set of flow bounds is B = {(a, 1)0, (b, 2)1}.
The subscripted numerals denote the flow bound indices.

Also, each basic block represented by a control flow node
has a specific WCET that is denoted by cost : V (G) 7→ N0.

For the sake of simplicity, in the following, we use the tuple
notation (a,), where the underscore means “don’t care” if
an element is not relevant in the given context.

Simple Paths.
In a scope s, a simple path is defined as a path ph,j =

(uh, . . . , uj) such that its head uh ∈ entry(s) and scope(uj) =
s for any node uj . We define length(ph,j) =

∑

h≤i≤j
cost(ui).

The trace of only the anchors A along such a path is:

A(ph,j) =

A(ph,j−1).(uj) if (uj ,) ∈ B ∧ h ≤ j
A(ph,j−1) if (uj ,) /∈ B ∧ h ≤ j
() otherwise

ab0 7→ 1

bb1 7→ 2

c d 0

e

(a) Bounded scope

f0

f1

f2

f0 7→ b0, f1 7→ b1, f2 7→ b1

(b) Respective flow trees

u B V (F (a)) V (F (b)) P (u)
∅ ∅ ∅ ∅

a (a, 1)0 (b0, 1)0 ∅ (a, f0, 1)
b (a, 1)0, (b, 2)1 (b0, 1)0, (b1, 2)1 (b1, 1)2 (a, f1, 2), (b, f2, 1)
c (a, 1)0, (b, 2)1 (b0, 1)0, (b1, 2)1 (b1, 1)2 (a, f1, 3), (b, f2, 2)
d (a, 1)0, (b, 2)1 (b0, 1)0, (b1, 2)1 (b1, 1)2 ∅
e (a, 1)0, (b, 2)1 (b0, 1)0, (b1, 2)1 (b1, 1)2 (a, f1, 4), (b, f2, 3)

(c) Build-up of flow bounds, flow trees and path states

Figure 3: Interleaved construction of data structures

In Fig. 3(a), where a and e represent the top and the bottom
of the scope, the complete set of traces for all paths pa,e is
{(a, b), (a, d), (a, b, d)} and for all paths pb,e it is {(b), (b, d)}.
A flow tree F (u) = (V,E), where u is an entry node into

a scope, is a compressed representation (a trie [11]) of each
such a set of traces with common prefixes. Its set of nodes
is defined as V (F (u)) = {. . . , (b, l)i∈F(u), . . . } where b ∈ B
refers to the corresponding flow bound and l = length(ph,j)
to the length of a simple path to the bound’s anchor uj . The
index set of V (F (u)) is F(u). We refer to a path in such a
flow tree as flow trace.

Fig. 3(b) shows the corresponding flow trees for the sets of
traces. The nodes are labeled with the corresponding node
indices, the mapping from flow tree nodes to flow bounds
is shown beneath. Note that since the flow bound of CFG
node d is zero-valued all paths through it are infeasible and
we can ignore the traces that include this node (indicated by
the dashed nodes). Note that the size of the flow trees is a
function of the number of annotations not of the number of
CFG nodes. Fig. 3(a) in turn depicts the mapping from flow
bounds to their numeric values.

Finally, a path state represents the length of a simple path
to a CFG node uj within a scope. The set of path states is
defined as P (uj) = {. . . , (uh, f, l), . . . } where uh ∈ V (G) is
the head node of a path ph,j (which is necessarily an entry),
the index f ∈ F(uh) refers to a node of a flow tree and
l = length(ph,j) is the length of that path.
The following relation of data structures holds: Let ui

be the most recent anchor on a path from uh to uj . If a
path state (uh, f, l) ∈ P (uj) exists, it references a unique
flow tree node (b,)f ∈ V (F (uh)) which in turn references a
flow bound (ui,)b ∈ B. In short, a path state summarizes a
simple path from an entry to any node in the same scope,
while it references a path in the flow tree that summarizes
its history of visited flow bounds.

Two path states are called comparable iff their heads and
flow tree nodes match. To compute the set of path states
P (u) in a node u is by propagation from preceding nodes in ~G.
Let Ppred(u) = ∪v∈pred(u)P (v) be the union of all predecessor
states. Then P (u) is the minimal set of predecessor path
states that consist only of the incomparable path states of
maximal length, adjusted by the costs of u:

P (u) = {(uh, f, li + cost(u))|∀(uh, f, lj) ∈ Ppred(u) : li ≥ lj}

The general idea of this is to solve the k-shortest paths
problem [7] by precomputing the minimal set of paths that
are not comparable due to their unique flow traces. This
prevents us from unnecessarily enumerating all paths later.
We compute flow bounds, flow trees and path states con-

currently while traversing the control flow nodes in scope

order. Fig. 3(c) illustrates how this is performed in general,
assuming that every node has a cost of 1.

We start with an empty set of flow bounds, an empty forest
of flow trees for either entry a (F (a)) and b (F (b)) and an
empty set of path states (P (u)) and traverse the CFG nodes
in Fig. 3(a) in scope order. Upon visiting a, an initial flow
bound b0 is initialized with an anchor value of a and a bound
value of 1, according to the annotation in a. Concurrently,
the flow tree F (a) is initialized with a node f0, referencing
the flow bound b0 and a distance value to this anchor of 1.
Also an initial path state is emitted, which represents all
paths starting in a, belonging to flow tree node f0 and the
same distance value as it’s corresponding flow tree node.

Upon visiting b, a new flow bound b1 and a new flow tree
F (b) are emitted. Flow tree F (a) is extended by a new node
f1, which is now referenced by the path state for the entry a.
A new path state is emitted that represents all paths from
the entry b and which references F (b).

Since node c is neither annotated nor an entry, merely the
distance values of the path states are updated. Since node d
is bounded by 0, the sets of flow bounds and flow tree nodes
remain the same and we clear the set of path states
Finally, in e, the path states are joined by keeping the

incomparable ones of maximal distance.
The result in e is a minimal set that represents simple paths

through the scope and a path-compressed representation of
the possible paths through the anchors. These paths are
mutually dependent in that they refer to the very same
flow bounds. This effectively leaves us with a network flow
problem [6] that is constrained by the flow fact model.

Unrolling.
An unroll path of a scope is a concatenation of simple

paths such that its first node u is the entry of the scope, its
last node v is any node of the scope and no anchor occurs
more often than its flow bound specifies. An unroll path
(u, . . . , v) is maximal if no other unroll path of greater length
exists.

Recall from Sec. 4.1 that we conceptually distinguish three
unroll phases I, K and O. For an unroll path to exist, the
flow bounds must allow for at least one feasible simple path
from an entry u to a bottom b (I path) and at least one
feasible simple path from a top t to an exit v (O path) or,
if no such two paths exist, at least a single feasible simple
path from u to v. We refer to the length of a maximal unroll
path from an entry to an exit as the maximal scope weight.
As an example, consider Fig. 3. For entry a (top) and

exit e (bottom), we first make sure that a feasible I path is
present. In the path states, only one path state with a root
of a exists ((a, f1, 4)). Starting from flow tree node f1, the

Algorithm 1 Unrolling

1: function UnrollMax(I,K,O,D)
2: w ← wmax ← 0
3: for all i← I with test(i) > 0 do

4: apply(i, 1)
5: w ← w + length(i)
6: for all o← O with test(o) > 0 do

7: apply(o, 1)
8: w ← w + length(o)
9: for all k ← K do

10: n← test(k)
11: apply(k, n)
12: w ← w + length(k) ∗ n

13: wmax ← max(wmax, w)
14: reset flow
15: w ← 0
16: if wmax = 0 then

17: for all d← D with test(d) > 0 do

18: return length(d)

19: return wmax

20: end function

21: function Unroll(s, u, v)
22: B ← ∪b∈vbottom(s)P (b)

23: I ← {p|(h, f, l) = p ∈ B, h = u}
24: K ← {p|(h, f, l) = p ∈ B, h ∈ top(s)}
25: O ← {p|(h, f, l) = p ∈ P (v), h ∈ top(s)}
26: D ← {p|(h, f, l) = p ∈ P (v), h = u}
27: return UnrollMax(I, sortlen(K), O, sortlen(D))
28: end function

minimal flow bound along the path is obtained by traversing
up the flow tree (“test”) instead of traversing the actual path.
Since the I path is taken once only, we now “apply” the flow
by effectively decreasing the bound value on a to 0 and on b
to 12. Trying to reserve a K or O path for entry a will now
fail since no feasible path exists anymore (due to the lowered
flow bounds). There exists no feasible, unroll path for this
entry. However, there exists a feasible direct path from a to
e (I equals O path) with a weight of 4, which results from
the path (abce).
For entry b (side-entry) and exit e (bottom), we test and

apply an I path in the same manner. However, a feasible K
path remains from a to e since we have not traversed node a
before. Since this K path is also a legal O path, the unroll
path is (bce).(abce) with a weight of 7.

Alg. 1 sketches how we compute the maximal unroll paths,
which slightly deviates from our example. We do not directly
compute maximal unroll paths to all exits but generalize this
computation for any node of the same scope.

The function Unroll is invoked with the scope label s, the
scope entry u and a target node v (l. 21) and returns the
length of the longest unroll path to node v for this entry.
For multiple bottoms, we simply join all path states upfront
(l. 22). In l. 23-26, we partition the path states for the I, K
and O phases according to Sec. 4.1. The set D contains all
path states from u to v. UnrollMax is invoked with these
sets, where the sets for the kernels and the direct paths are
sorted by descending length (l. 27). In UnrollMax (l. 1),
we reserve one I path and one O path at a time and then
maximize the length of the unroll path by reserving as many
remaining K paths as possible. The function test traverses
the flow traces in the flow tree for the given state and returns

2The principle is that of finding residual paths in the flow
tree similar to the classical Ford-Fulkerson method [6].

0̄a

e

b d

1̄

p2

p2, p3

p0

p0, p1

p1

∅

(a) Restoring states

0̄

1̄

2̄

p0

p2

p1

p0

(b) Far entry states

0̄

1̄

2̄

p0

p1

p2

p0

(c) Far exit states

Figure 4: Handling external path states

the minimal flow bound value along its trace. If it returns
0, the path is infeasible. If it returns ∞ the unrolling is
unbounded. In turn, apply reduces the flow bound values
along the respective trace by the given amount3. For each
pair of I and O paths, we dedicate all remaining flow n to
the K paths in descending length to maximize the length
of the unroll path (l. 12). Also, for each such pair we have
to repeat the computation. Thus, the flow bounds must be
reset to their original value (l. 14). If no feasible I and O
paths could be found, we use the longest direct path from
the entry to the target node (l. 16-18).

Computing unroll paths to all nodes yields a lot of redun-
dancy. For example, in Fig. 3(a), for entry a, node e and the
least recent (feasible) anchor b, it suffices to unroll the loop
for b as the target node to directly derive the path lengths
to c and e as well without further unrolling. Therefore, we
effectively compute the longest unroll paths for all pairs of
entries and anchors instead and only derive all other path
lengths (including all exits) later.
Unrolling is the most expensive computation of the anal-

ysis. However, the complexity of computing all maximal
weights for all pairs of source and target nodes depends pri-
marily on the complexity of the flow fact model, to a lesser
degree on the number of entries and exits but not on the
complexity of the CFG itself, since only path summaries
exist that are discriminated by their flow traces. Due to the
flow tree, we explicitly avoid enumerating all possible path
combinations, which is a frequent bottle-neck of path-based
analysis techniques.

States and Scope Transitions.
If a path crosses one of its child scopes, its length is ex-

tended by the respective weight. Fig. 4(a) schematically
illustrates the scope in Fig. 3(a) (without interior nodes),
labeled 1̄. The path states p0 and p1 from some enclosing
scope 0̄ are propagated to the entries a and b of scope 1̄.

Since we need to compute the simple paths and the scope
weight of 1̄ first before continuing in 0̄, p0 is replaced in a
by a path state p2. Analogously, p1 is replaced by p3 for the
side entry b. The states p2 and p3 correspond to the path
states in example Fig. 3(c). Once we visited all nodes of 1̄,
its simple paths are known and we can unroll, restore p0 and
p1 in e and update their lengths by respective weights of 1̄.
For a node v ∈ V (~G), a path state of a preceding node

u ∈ V (~G) is called external iff it belongs to a parent scope.
If it belongs to the same scope, it is internal. We guarantee
that no other cases occur by design. In Fig. 4(a), state p0 is
external in node a. Generally, all external states are replaced
by a representative internal state in each entry. Replaced

3We solve a variant of the MIN-COST flow problem [1] with
node demand on a path-compressed network.

external states are pending until they are restored. Each
new initial state implies a new flow tree and a corresponding
(default) flow bound. To carry information from the outside
into a scope (e.g. to implement global path constraints)
initial states can be created as required at this point.
We call entries from and exits to non-adjacent scopes far

entries and far exits, respectively. In Fig. 2(b), node c is a
far entry and d is a far exit. We refer to path states that
originate from a non-adjacent parent scope as far states.
Far entry states are handled just like all other external

states. They are stored away as pending states and an initial
path state is emitted for the subscope. In Fig. 4(b), the path
state p0, which is internal to scope 0̄, is propagated to the far
entry of scope 2̄. State p0 becomes pending and is replaced
by p2 in 2̄. However, in the exit of 2̄, restoring p0 would be
incorrect. We are supposed to continue the computations
in scope 1̄, but p0 represents a simple path in 0̄. We solve
this by recognizing the far entry to 2̄ as yet another entry
to 1̄. This dynamically extends the static set of entries we
computed during scope tree construction.
The set of virtual entries denotes the set of all entries to

the current scope and the set of all entries to its subscopes
where an entry to a subscope is included iff its set of path
states includes far states. Instead of restoring p0 in 1̄, we add
the entry of 2̄ to the virtual entries of 1̄, migrate p0 into the
set of pending states of 1̄ and create a path state p1 that now
represents the path to the exit of 1̄. Finally, p0 is correctly
restored when resuming computations 0̄.
Symmetrically, a similar problem exists for far exits, as

illustrated in Fig. 4(c). The path states p0 and p1 enter the
scopes 1̄ and 2̄ through their top entries. States p1 and p2
are created as usual. In the exit node of scope 2̄, state p2
would be replaced with p1 to resume a computation in 1̄.
However, the target scope of the exit edge is 0̄. The path
length represented by p2 in the exit is only that of a simple
path in 1̄ and the weight of 2̄. But he latest execution time
is only obtained by also unrolling 1̄ before restoring p0. We
achieve this by dynamically extending the set of exits of 1̄.
The set of all exits of a current scope and the set of all

far exits of its child scopes whose out-edges do not target
another subscope of the current scope are called virtual exits.
In the example, if the far exit becomes another exit of 1̄, then
once 1̄ is resumed, p2 is replaced by p1 as usual. However,
once computations in 0̄ are resumed, p0 is restored including
the scope weights of both subscopes.
Scope order and the non-recursive handling of states ac-

cording to these rules yield the key to a simple join/transfer
model. It is always safe to unconditionally access the path
states in predecessor nodes to compute simple paths lengths
and it enables the analysis to start and terminate in any
node.

Primary Algorithm.
Alg. 2 shows the computation of the LET to the exit node

of G and how to maintain intermediate results such that the
LET to all nodes can be computed cheaply in a second pass.
We chose a high degree of detail since the general ideas so
far do not reflect the full set of ideas that would yield a fast
and self-contained algorithm. In l. 1-5, some mappings are
defined. The set nbottom counts how many (virtual) bottoms
of a scope have already been visited, so that we know when
we can unroll the scope.

Algorithm 2 Computation of sink LET

1: nbottom : scope 7→ int
2: ventry, vexit : scope 7→ node∗

3: maxlen : node 7→ node 7→ int
4: pstate, estate : scope 7→ node 7→ path state∗

5: state : node 7→ path state∗

6: function Enter(s, u)
7: (int, ext)← joinmin(∀v ∈ pred(u) : state(v))
8: state(u)← int

9: if ext 6= ∅ ∨ u = entry(~G) then

10: while u ∈ top(s) do

11: nbottom(s)← |vbottom(s)|
12: ventry ← entry(s); vexit← exit(s)
13: s← parent(s)

14: pstate(s, u)← ext
15: state(u)← state(u) ∪ {(u, (u,∞)b, 0)f , 0)}

16: end function

17: function Annotate(u)
18: if is annotated then

19: if (n← annotation(u)) > 0 then

20: B ← B ∪ {(u, n)b}
21: for all (u′, f ′, l′) = p ∈ state(u) do

22: p← (u′, (b, l′)f , l
′)

23: else

24: state(u)← ∅

25: end function

26: function Restore(s, v, w, lmax)
27: sp ← parent(s)
28: vexit(sp)← vexit(sp) ∪ far exit(s, v)
29: R← ∅
30: for all (, , l) = p ∈ pstate(s, w) do

31: if ¬far(s, p) then

32: R← R ∪ {(, , l + lmax)}
33: else

34: ventry(sp)← ventry(sp) ∪ {w}
35: pstate(sp, w)← pstate(sp, w) ∪ {p}
36: R← R ∪ {(w, ((w,∞)b, 0)f , lmax)}

37: return R
38: end function

39: function Finish(s)
40: for all a ∈ anchors(s) do

41: for all v ∈ ventry(s) do

42: maxlen(v, a)← Unroll(s, v, a)

43: lmax ← 0
44: R← ∅
45: for all v ∈ vexit(s) do

46: for all w ∈ ventry(s) do

47: for all (, (b, lf)f , ls) = p ∈ state(v) do

48: l← maxlen(w, anchor(b)) + ls − lf
49: lmax ← max(lmax, l)

50: (R,)← joinmin(R,Restore(s, v, w, lmax))

51: if estate(s, v) = ∅ then
52: estate(s, v)← R

53: state(s, v)← R

54: end function

55: function Visit(s, u)
56: Enter(s, u)
57: ∀p ∈ state(u) : length(p)← length(p) + cost(u)
58: Annotate(u)
59: while u ∈ vbottom(s) do

60: if (nbottom(s)← nbottom(s)− 1) = 0 then

61: Finish(s)

62: s← parent(s)

63: end function

64: foreach u in scope order(V (~G)) : Visit(scope(u), u)

The virtual entries and exits are denoted by ventry and
vexit. The set maxlen holds the maximal scope weights
for each anchor, discriminated by entry. We will later rely
on this information to compute the longest absolute path
to specific nodes. The pending states for each scope and
each entry are stored in pstates. In estate, the original path
states of the exit nodes are stored before an enclosing scope
is resumed. We need them later for absolute path length
computations. The set state holds the path states per node.
For the entire computation, each node is visited exactly

once in scope order (l. 64). Thus, for the current node u
and its scope s, we first call Enter (l. 56,6). The minimal
set of path states (l. 7) is computed from the states of the
preceding nodes where joinmin returns a pair that discrimi-
nates internal and external states. The internal states int
are maintained (l. 8) but the external states ext denote an
entry and need be replaced.

If u is an entry (l. 9), some initialization takes place. If u
is a top entry, it could be shared among scopes. Thus, for
each scope that is entered through this node, we count its
bottoms and initialize the sets of virtual entries and exits
with their actual entries and exits (l. 10-13). External states
become pending for this entry (l. 14) and an initial path state
is created that represents the path starting in u, references a
flow tree node and has a length of 0. The flow tree node is
initialized with a default flow bound and a distance of 0 (l. 15,
written in-line for compactness). The set state(u) now (l. 57)
only consists of internal states and we can unconditionally
update their length values.
Flow bounds are applied in Annotate (l. 58,17). The

function annotation (l. 19) returns the user-supplied flow
bound value. If it is feasible, we create a new flow bound
(l. 20), and assign to each path state a new flow tree node
that references the common bound (l. 21,22). This implicitly
grows the flow trees.
Finish is invoked once all bottoms of a scope have been

visited (l. 59-62), which in turn computes the maximal scope
weight from each entry to all anchors (l. 40-42). Unroll is
described in Alg. 1.
For each exit, we iterate over all entries to assemble all

the (feasible) unroll paths to this exit (l. 45,46). We already
computed the maximal lengths from each entry to each
anchor. The distance from an anchor to the exit v directly
be derived.

All states in v (l. 47) are iterated to obtain their respective
most recent flow nodes (b, lf). The maximal scope weight for
this state is the distance to the anchor (anchor(b)) plus the
distance from the anchor to v (l. 48). From all unroll lengths,
we keep the longest path from entry w to exit v (l. 49).

The set (of external states) R holds all the pending states
from all entries (l. 44,50). In Restore (l. 50,26), the states
that became pending in entry w shall be restored in exit v.
First, the set of virtual exits of the parent scope is extended
(l. 28) by those exits v that are supposed to be virtual exits.
If a state is not external, we only adjust the length according
to the scope weight we just computed (l. 32). Otherwise, we
extend the set of virtual entries of the parent scope (l. 34),
export the far state into the set of pending states of the
parent scope for the new virtual entry (l. 35) and “synthesize”
a non-far state (l. 36) that shall be resumed instead.

Algorithm 3 Computation of LET to all nodes

1: let : node 7→ int
2: eoffset : scope 7→ node 7→ int

3: function UpdateScope(s)
4: for all v ∈ ventry(s) do

5: off ← 0
6: if pstate(s, v) = ∅ then
7: ∀(, , l) = p ∈ pstate(s, v) : off ← max(off , l)
8: else

9: poff ← eoffset(parent(s))
10: for all w ∈ ventry(parent(s)) do

11: for all (, (lf , b), ls) = p ∈ pstate(s, v) do

12: la ← maxlen(w, anchor(b))
13: off ← max(off , poff (w) + la + ls − lf)

14: eoffset(s, v)← off

15: end function

16: function UpdateNode(s, u)
17: if u ∈ exit(s) then

18: state(s, u)← estate(s, u)

19: off ← 0
20: for all (v, (lf , b), ls) = p ∈ state(s, u) do

21: le ← eoffset(s, v)
22: la ← maxlen(u, anchor(b))
23: off ← max(off , le + la + ls − lf)

24: let(u)← off
25: end function

26: function Visit∗(s, u)
27: while u ∈ top(s) do

28: q ← (q).(s)
29: s← parent(s)

30: foreach i in reverse(q) : UpdateScope(i)
31: UpdateNode(s, u)
32: end function

33: ∀s ∈ scopes : eoffset(s)← 0

34: foreach u in scope order(V (~G)) : Visit∗(scope(u), u)

This state then represents the simple path that starts in
the entry w and references the root of a new flow tree which
refers to a default flow bound and its anchor w. The original
states of (the innermost scope) in the exit node are saved for
later use and replaced (l. 51-53).

4.3.2 All Paths LET

To compute the LET of each node, we have to take into
account that each scope itself has a latest execution time we
do not necessarily know yet. Alg. 3 shows its computation
which is carried out after Alg. 2.

Two additional mappings are defined (l. 1,2). The set let
will hold the LET of each node, and eoffset maintains for
each scope and each entry the length of the longest path of
the parent scopes to that entry. As previously, we visit the
nodes in scope order (l. 34). In Visit∗ (l. 26), if the current
node u is a top node, we record the sharing scopes in the
queue q from the innermost to the outermost and invoke
UpdateScope which populates eoffset (l. 27-30). If the entry
v has no pending states (l. 6), then it must belong to the
root scope and the LET to it is just the maximal length of
all simple paths (l. 7). Otherwise, the LET depends on the
LET to the parent scope (l. 9) and the longest path from
any entry of the parent scope (l. 10) to the entry v of the
current scope s. The set pstate(s, v) (l. 11) yields the states
of the parent scope before they were replaced (cf. Alg. 2).

The LET for v (l. 13) is the maximal sum of the LET to
w (poff(w)), the maximal unroll path length from w to the
anchor (la) and the distance from that anchor to v (ls − lf).
Each individual node’s LET is computed in UpdateNode

(l. 31,16). If u is an exit node, then its original states have
been replaced by pending states and have to be recovered
(l. 18). The final, absolute path length (l. 20-24) is the
maximal sum of the LET to the path head of each path state
in the entry v (le), the maximal unroll path length from v to
the anchor (la) and the distance of the anchor to u (ls − lf).
The mapping let now defines each node’s LET (l. 24).

5. EVALUATION
In the following, we evaluate the average performance

of our path analysis (called PAAN in the following). Due
to space limitations, we omit a formal analysis of worst-
case complexity bounds. Instead, we provide experimental
results for inputs that provide a good coverage of average-
and corner-cases alike. All evaluations are carried out on
CFGs constructed from randomly generated abstract syntax
trees (AST) with annotations. The CFG ranges from 10 to
approximately 60 000 nodes with 50 samples taken equally
distributed. The AST is composed of four high-level language
constructs if, ifthen, while and dowhile. Additional
entries and exits to and from loops can be generated, as well
as loop bounds and per-node WCET. Program semantics
are not considered. We explicitly decided against evaluating
“real world” benchmarks since they would be low in number
(benchmarks must be flow fact annotated, thus the number
applicable benchmark suites is limited) and would not provide
the structural diversity to provide a satisfying coverage. Hard
real-time benchmarks are also usually small in size and are
therefore not well suited to demonstrate scalability properties
of our algorithm.

For reference, we compare our results to that of the IPET
path analysis. The reason is threefold. First, it is the only
technique whose input can directly be derived from graphs of
arbitrary structure and is self-contained in that is does not
require any significant preprocessing similar to our approach
and unlike other approaches. Second, it is the predominant
approach to this problem. Third, most other path analyses
are special cases of our approach. PAAN and IPET compute
identical results on identical graphs (with one exception
we point out below). However, IPET is only capable of
computing the WCET of the globally longest path whereas
we compute all longest paths to all nodes.

The experiments are carried out on a single core of an Intel

Xeon X3220 (2.4GHz) CPU. We measure the accumulated
CPU time of all phases of our path analysis including the
control flow reconstruction (which we excluded from this
paper). For IPET, the construction of the linear equations
is included. The IPET ILP is solved using CPLEX (12.4)
with default arguments.

In Fig. 5, we compare the computation times for inputs
that are quite“typically” found in real-time benchmarks. The
graphs are reducible and are generated with probabilities
p(if) = 0.1, p(ifelse) = 0.2, p(while) = 0.3, p(dowhile)
= 0.4, a probability for additional flow bounds of 0.1, a
maximal loop depth of 3 and a single flow bound per loop.
ipet (std,wcet) denotes the time required to compute
the worst-case path length from the entry to the exit. As
compared to that, paan (std,wcet) computes the same
value with our proposed analysis. As opposed to that, paan

0

1

2

3

4

5

6

6

7

8

0 20000 40000 60000

Nodes (count)

T
im

e
 (

s
)

Method

PAAN (STD, WCET)

PAAN (STD, LET)

IPET (STD, WCET)

Non−degenerate (STD)

Figure 5: Runtimes on non-degenerated graphs

0

1

2

3

3

4

5

6

7

8

9

0 20000 40000 60000

Nodes (count)

T
im

e
 (

s
)

Method

PAAN (STD, LET)

PAAN (LET)

IPET (WCET)

Acyclic

Figure 6: Runtimes on acyclic graphs

(std,let) computes the latest execution times of all nodes
instead of just the single WCET of the global exit node.
The first observation is that PAAN performs and scales

significantly better than the IPET, even if we compute the
WCET to all nodes. It is also notable that it shows signifi-
cantly less variance in its time consumption.
The time consumption for purely acyclic control flow

(p(while) = p(dowhile) = 0) is depicted in Fig. 6. We
show the paan (std, let) results from Fig. 5 for reference
and solve paan (let) and ipet (wcet) for this specific graph
type. IPET shows a much smaller variance. The primary
insight however is that the curve for paan (let) is practically
identical to paan (std, let) and shows that the complexity
of PAAN only marginally depends on the number of loops.

Due to the unrolling, PAAN could potentially be sensitive
to graphs that are excessive regarding their number of loops,
entries to loops and loop bound specifications. Therefore, we
compare the time consumption for degenerated inputs. In
the following, the probabilities are identical to the standard
case except for the features we add for investigation.

Fig. 7 depicts the results for a parameterization of p(while)
= 0.3, p(dowhile) = 0.7 and a maximal nesting depth of
10. In this case, IPET shows to be less predictable. The high
loop count has no significant effect on PAAN.

To summarize the figures so far, PAAN scales largely inde-
pendently of the graph structure itself. It is now worthwhile
to investigate extreme cases of irreducibility and flow bounds.
Fig. 8 shows the sampling for cyclic graphs with loops

having entries to and exits from loops at practically all nodes
(the exclusion of some nodes stems from the fact that nodes
are restricted to an out-degree of 2 in the randomizer).
Nonetheless, we can now observe a significant impact for

some of the inputs for PAAN as well as IPET, and a notice-
able deviation from the reference (paan (std, let)). The
grayed area denotes the confidence interval. The reason for

0

47

94

141

188

235

282

329

376

423

0 20000 40000 60000

Nodes (count)

T
im

e
 (

s
)

Method

PAAN (STD, LET)

PAAN (LET)

IPET (WCET)

Loops (Degenerate)

Figure 7: Runtimes with high loop counts

0

1

2

3

3

4

5

6

7

8

9

0 20000 40000 60000

Nodes (count)

T
im

e
 (

s
)

Method

PAAN (STD, LET)

PAAN (LET)

IPET (WCET)

Multi−entry (Degenerate)

Figure 8: Runtimes on graphs with high entry and exit counts

the excessively large time consumption for PAAN in some
cases is due to the control flow reconstruction (cf. Sec. 3.1).
On average, scalability for PAAN is still very good.
As opposed to that, Fig. 9 shows results for control flow

graphs where every single node is flow bounded. Since every
flow bound potentially doubles the number of states, this is
an approximation for the worst-case number of path states.

Again, IPET is comparably slow and yields a high variance.
Comparing PAAN with its reference paan (std, let) does
not show a noticeable difference on average. The reason for
this is that exponential growth in the state space is always
limited by scopes and for the root scope, we do not need
to split states. Moreover, since all paths pass through the
same bottom nodes, the flow bounds are quickly reached.
PAAN and IPET do not necessarily compute identical results
in this case since the semantics of both (randomized) flow
fact models differ. With better random or careful manual
annotations, identical results can be obtained in these cases.

6. CONCLUSION AND FUTURE WORK
In this paper, we proposed a general and self-contained

method for the computation of worst-case times on general
control flow graphs. We discussed several general problems
of control flow structure and proposed simple yet effective
solutions to each of them and proposed a generalized compu-
tational model. The proposed path analysis is fast, simple,
non-recursive, without structural restrictions, and allows for
a fine grained flow fact model for accurate WCET estima-
tions. It is the only approach that can directly be used to
compute partial worst-case paths on general and immutable
CFGs.
In the future, we will investigate ways to extend our flow

fact model to global constraints and parametric analyses.
Since the computational model itself is not restricted to
worst-case time problems but can be easily interleaved with

0

1

2

3

4

5

6

7

8

9

10

0 20000 40000 60000

Nodes (count)

T
im

e
 (

s
)

Method

PAAN (STD, LET)

PAAN (LET)

IPET (WCET)

Bounds (Degenerate)

Figure 9: Runtimes on graphs with all nodes bounded

or extended by other analyses, we will investigate new strate-
gies for a much more accurate handling of a multitude of
open problems that arise in the context of path analysis,
multitasking and multicore systems.

7. REFERENCES
[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network

flows: Theory, Algorithms, and Applications. Prentice-Hall,
1993.

[2] E. Althaus, S. Altmeyer, and R. Naujoks. Precise and
Efficient Parametric Path Analysis. In Proc. of LCETS,
2011.

[3] S. Altmeyer, C. Hümbert, B. Lisper, and R. Wilhelm.
Parametric Timing Analysis for Complex Architectures. In
Proc. of RTCSA, 2008.

[4] S. Altmeyer, C. Maiza-Burguière, and R. Wilhelm.
Computing the Maximum Blocking Time for Scheduling
with Deferred Preemption. In Proc. of STFSSD, 2009.

[5] A. Colin and G. Bernat. Scope-Tree: A Program
Representation for Symbolic Worst-Case Execution Time
Analysis. In Proc. of ECRTS, 2002.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms (3. ed.). MIT Press, 2009.

[7] D. Eppstein. Finding the K Shortest Paths. In Proc. of
FOCS, 1994.

[8] A. Ermedahl. A Modular Tool Architecture for Worst-Case
Execution Time Analysis. PhD thesis, Uppsala University,
2003.

[9] P. Havlak. Nesting of Reducible and Irreducible Loops.
TOPLAS, 19(4):557–567, 1997.

[10] J. Janssen and H. Corporaal. Making Graphs Reducible with
Controlled Node Splitting. TOPLAS, 19(6):1031–1052, 1997.

[11] D. E. Knuth. The Art of Computer Programming, Vol. 3.
Addison Wesley, 1998.

[12] Y.-T. S. Li and S. Malik. Performance Analysis of
Embedded Software using Implicit Path Enumeration. In
Proc. of DAC, 1995.

[13] S. S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1997.

[14] G. Ramalingam. On Loops, Dominators, and Dominance
Frontiers. TOPLAS, 35(5):233–241, 2002.

[15] F. Stappert, A. Ermedahl, and J. Engblom. Efficient
Longest Executable Path Search for Programs with Complex
Flows and Pipeline Effects. In Proc. of CASES, 2001.

[16] R. E. Tarjan. A Unified Approach to Path Problems. J.
ACM, 28(3):577–593, 1981.

[17] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and
Precise WCET Prediction by Separated Cache and Path
Analyses. RTS, 18(2/3):157–179, 2000.

[18] S. Unger and F. Mueller. Handling Irreducible Loops:
Optimized Node Splitting versus DJ-Graphs. ACM Trans.
Program. Lang. Syst., 24(4):299–333, July 2002.

[19] R. Wilhelm, J. Engblom, et al. The Worst-Case Execution
Time Problem - Overview of Methods and Survey of Tools.
TECS, 7(3):36:1–36:53, 2008.

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryList_V1
 qi2base

