
Computing Maximum Blocking Times with Explicit Path
Analysis under Non-local Flow Bounds

∗

Jan C. Kleinsorge
TU Dortmund

jan.kleinsorge@tu-dortmund.de

Peter Marwedel
TU Dortmund

peter.marwedel@tu-dortmund.de

ABSTRACT

Worst-case time (WCET) analyses for single tasks are well
established and their results ultimately serve the purpose
of providing execution time parameters for schedulability
analyses. Besides WCET analysis, an important problem is
maximum blocking time (MBT) analysis which is essential in
deferred preemption schedules for the selection of preemption
points. Among the most pressing problems in this context is
the need for good path analyses, which are a fundamental
bottleneck for selecting these points. Current state of the
art relies on ILP-based or severely constrained explicit path
analyses, both of which are unsatisfactory in general.

In this paper, we propose a general explicit path analysis to
compute maximum blocking times, specifically for scheduling
policies with deferred preemption. The proposal improves
the current state of the art significantly for both WCET and
MBT analysis, as it is efficient, accurate, easily extensible and
computes path lengths between all program points, without
imposing any artificial constraints, and under a general flow
bound model, unmatched by other existing explicit path
analyses, while significantly outperforming the ILP-based
approach. To the best of the authors’ knowledge, no explicit
path analysis for MBT has been proposed yet.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal methods; D.2.8 [Software Engineering]:
Metrics—Performance measures

General Terms

Reliability, Verification, Performance

Keywords

Worst-case Execution Time, Path Analysis, Static Analysis

∗
This work was partially supported by EU COST Action IC1202: Timing Anal-

ysis on Code-Level (TACLe) and by the German Research Foundation (DFG)
within the Collaborative Research Center SFB 876 “Providing Information by
Resource-Constrained Analysis”, project A3.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’14 October 12 - 17 2014, New Delhi, India
Copyright 2014 ACM 978-1-4503-3052-7/14/10...$15.00.
http://dx.doi.org/10.1145/2656045.2656051

1. INTRODUCTION
In embedded software systems, timing analysis and feasi-

bility analysis of multi-task scheduling are key elements to
reason about its timing behavior. For hard real-time systems,
static worst-case execution time (WCET) analysis can pro-
vide safe upper time bounds for the uninterrupted execution
of separate tasks. Schedulability analysis in turn asserts the
applicability of a scheduling policy under given processing
resources that are reflected by WCET.
Task preemptions cause task interruptions that are not

reflected by the WCET of an isolated task alone. Direct and
indirect context switch costs have to be taken into account.
Direct costs are ones that result, for example, from saving and
restoring execution context and from disruption of pipelined
execution. The latter are caused by content changes to
system caches due to execution of other tasks. These cache-

related preemption delays (CRPD) are indirect because they
do not necessarily occur right at the preemption point, after a
task is resumed, but have a potential effect on the execution
time at a later program point, when cache contents are
actually requested. They are highly variable and potentially
vastly dominate overall preemptions costs. Direct costs, on
the other hand, are comparably small and can often be safely
bounded with a constant.

CRPD can be bounded by statically analyzing access pat-
terns of the cache by the preempting tasks and the reuse
pattern by the preempted task. However, in fully preemp-

tive scheduling, neither points in control flow nor points in
time can be accurately determined at which preemptions
occur. This means only worst-case assumptions can be made
about the number of preemptions and the CRPD, which
leads to significant overestimations. Overall, static timing
predictability is low. The most important advantage is that
fully preemptible tasks yield low average response times for
higher priority tasks.
Non-preemptive scheduling represents the other extreme.

On the one hand, timing predictability is very high, since
the CRPD, as a major source of inaccuracy, does not have
to be taken into account. On the other hand, some task sets
that have been schedulable under fully preemptive scheduling
potentially have no feasible schedule under this policy. The
reason for this is the blocking time that lower priority tasks
now impose on tasks of higher priority ready to execute.
The compromise is to employ scheduling policies with

only limited preemption — so called deferred preemption

scheduling — which either feature floating or fixed non-
preemptive regions. If preemptions are time-triggered, then
it is in general not possible to know the exact execution

context in which a preemption occurs. Hence the name
floating region. Since strict timing guarantees can be given
on the length of such a region, existing schedulability tests
can directly be applied. The downside is, again, the lack
of accuracy for the CRPD. Fixed regions are established
by adding explicit preemption points to the program code.
Although program context can now be determined much
more accurately at the point of preemption, it is hard to
determine the point in time of the preemption, and thus, the
length of these regions. Moreover, to significantly reduce
the actual and estimated costs of fixed regions, preemption
points have to be chosen carefully.
To support fixed preemptive regions, maximum blocking

time (MBT) analysis is required which computes the longest
paths between potential preemption points. The goal is not
to find any longest path between two program points, but the
longest path to a specific program point, such that it only oc-
curs once on this path — the most distant preemption points.
In general, the lack of tools to tighten the relation between
execution time and program context is a major obstacle in
enhancing the accuracy of static multi-task analyses. In this
context, WCET analysis and MBT analysis allow to map
program points onto execution time and vice versa. Improv-
ing the accuracy of either potentially enhances worst-case
analysis of all three kinds of preemption policies mentioned.

In this paper, we propose a general and efficient algorithm
for MBT analysis, which advances the state of the art in
explicit path analysis to facilitate deferred preemption sched-
ules. It is designed not only to serve the mere theoretic
purpose to enable such analyses at all, it is also technically
simple. We extend an existing framework and provide a
formal basis previously missing in its original proposal. Our
analysis can be carried out on general control flow graphs,
or subgraphs thereof, without any structural restrictions.
Therefore, it enables not only the analysis of MBT from
dedicated program points, such as task entries and exits,
but supports the analysis from and to arbitrary program
points. This is required for the selection of appropriate fixed
preemption points in the first place, and it enables the con-
sideration of execution modes and local reevaluation which
directly supports computational modularity. It features an
expressive flow bound model, and has specifically been de-
signed to perform its computations by means of a simple
data flow model, which simplifies extension and allows to
interleave path computations with other analyses — such as
static cache analysis — to achieve a higher degree of accuracy
than it is currently possible with existing methods. To the
best of the authors’ knowledge, we are the first to propose
a flow bound model for explicit path analysis that supports
exact global bounds and the first to propose an algorithm
for explicit MBT analysis.

In the following, related work is addressed in Sec. 2. The
main body of the paper consists of Sec. 3, which addresses
the foundations of path analysis, defines our computational
model, proposes an implementation, introduces a general
flow bound model and proposes an efficient encoding for
MBT computations. An evaluation is provided in Sec. 4. We
conclude the paper in Sec. 5 and provide an outlook.

2. RELATED WORK
Deferred preemption enhances predictability, simplifying

static analysis [7]. In particular, fixed non-preemptive re-
gions simplify CRPD analysis [12, 4]. Therefore, the authors

of [6] address the problem of selecting optimal fixed preemp-
tion points among a set of predefined candidate locations,
however, only on trivial control-flows. In [3], the problem of
computing the MBT, given a set of fixed preemption points
on general control flow graphs, is addressed. This is a pre-
condition for the applicability of schedulability tests in the
first place. Their approach is derived from the implicit path

enumeration technique [13] (IPET), which is an integer linear

programming (ILP) model for the computation of worst-case
execution path lengths in single-task WCET analysis. IPET
is unsuitable for WCET analysis beyond simple single task,
entry-to-exit analysis since its constraint model is based on
defining relations between program points, such that a com-
putation on just subgraphs is in general not possible without
generating tailored models for each case. Worse, problems
are encoded in linear equations which severely hamper its
flexibility and extensibility. These traits specifically impede
improvements in system-level analysis, where a fine-grained
mapping of state and time is of particular interest. The
key advantage of IPET is its simplicity, in particular in the
face of general control flow graphs and complex constraint
models. Explicit path analyses [16] have not evolved signifi-
cantly beyond simple analyses under restrictive assumptions.
Some progress has been made in symbolic path-analysis [2,
5, 8, 10], which did not, however, tackle the fundamental
restrictions that explicit analyses typically share, such as
graph reducibility, context-insensitivity of paths and trivial
constraint models, which make them inferior to IPET. Our
explicit analysis proposed in [11] advances the state of the
art by proposing a basic framework for general control-flow
graphs and fine-grained loop-local flow constraints that al-
lows the computation of worst-case path within arbitrarily
structured tasks. To the best of the authors’ knowledge, the
only MBT analysis is based on IPET [3]. The MBT analysis
is a derivative work of [11].

3. COMPUTING MBT
In this section, we address the problem of computing MBT.

In Sec. 3.1 the formal foundation of worst-case path analysis is
provided, followed by the concrete problem definition of MBT
analysis in Sec. 3.2. We propose a model of computation
for irreducible CFG in Sec. 3.3 and Sec. 3.4. In Sec. 3.5,
we propose a general implementation for worst-case path
analysis and details on the specific requirements of MBT
analysis.

3.1 Environment
We first define the environment in which path analyses

are carried out. A control-flow graph (CFG) G = (V,E) is a
connected digraph where its nodes V represent basic blocks1

of a program and the edges E ⊆ V × V the structurally pos-
sible transfer of control between nodes. For convenience, we
will use the notation G(V) or G(E) to refer to the respective
sets of a specific graph. A CFG has a unique entry node sG
of in-degree 0 and a unique exit node of out-degree 0.

A path π is a sequence of edges and π+ denotes its transitive
closure. Node u reaches node v (u ❀ v) if ∃π : (u, v) ∈ π+.

A node u is said to dominate node v (u dom v), if all paths
from sG to v pass through u. A depth-first search partitions
E into forward edges F and backward edges B such that

1A (maximal) sequence of instructions only entered from the
first and left from the last one.

~G = (V, F) is an directed acyclic graph (DAG).
A CFG is called reducible, if B is unambiguous. In such a

graph, for each maximal set of backward edges {(b0, h), . . . },
a loop Lh ⊆ V contains all nodes that can reach any node bi
without going through node h (∀u ∈ Lh : h dom u). We call
h the head and bi the bottoms of a loop. A loop with header
h is nested within another loop L, if h ∈ L. This partial
order induces a loop-nesting forest — a set of disconnected
trees denoting nesting relations, where every node represents
a loop, uniquely identified by its head.
Reducible graphs are also referred to as “well-structured”

or having “single-entry regions”. As matter of fact, many
concepts and techniques to reason about control- and data-
flow in compilers depend on this particular property for
reasons of simplicity and efficiency: Loops can be identified
unambiguously and every loop without its backward edges
forms a DAG with a unique entry node. In particular path
problems profit from this property, since shortest as well
as longest paths can be easily computed [2, 10, 14, 15]. In
practice, most control-flow graphs are composed of single-
entry regions since they are ultimately derivatives of some
high-level program representation in which all constructs
are single-entry. Moreover, every irreducible graph can be
transformed into a reducible one by node splitting [9].

This is a reasonable justification for the restriction to just
reducible graphs in optimization passes in compilers, whose
purpose is to transform their input anyway. In worst-case
path analyses, it is not. To obtain safe and accurate static
analysis results to reason about program timing behavior, it
is necessary to not only know the program semantics, but
its actual interaction with the execution environment at the
lowest possible level. In practice, control-flow is recovered
from a program binary. The resulting CFG might be irre-
ducible due to the use of “goto”-statements in the high-level
program (state-machines, error-handling, co-routines, etc.),
partial implementation in some low-level language (“inline
assembly”) or optimizations performed by the compiler.

Although node splitting could be performed here as well, it
has severe drawbacks. First, the representation cannot be im-

mutable, which has practical implications for its efficiency as
a representation as well as computations on it (concurrency)
and it is notorious for causing an exponential growth in graph
size [9]. Second, although abstract program semantics do
not change, the structural mapping from the actual program
to the representation for the analysis is invalidated. This is
critical as often manual annotations are required to support
static analysis and different representations (physical and
analysis model) become a source of complexity. Control-flow
reconstruction is beyond the scope of this paper.
We now introduce the data structures to represent irre-

ducible control-flow and assume them given. A scope tree

[11] G̊ = (V̊ , E̊) is a generalization of a loop-nesting forest

and represents the nesting relations E̊ of scopes V̊ — a gener-
alization of loops. If we assume a given classification of edges
in G in forward and backward edges, then a scope represent-
ing a loop denotes the set S ⊆ V (~G) such that for a (not
necessarily maximal2) set of backward edges {(b0, h), . . . },
each node u ∈ S can be reached by its head h and which can
reach its bottoms bi in ~G. A scope with head h is nested

2It is not unusual for originally distinct loops to share the
same head in a low-level representation. Intermediate repre-
sentations in compilers would typically maintain empty head
basic blocks (pre-headers) to facilitate loop identification.

bounds:

b→ 2

costs:

a > b > c > d > e

(a) CFG, bounds and costs

(s, t) WCEP MBP
(a, c) (abcebc) (abdebc)
(c, c) (cebcebc) (cebdebc)
(a, e) (abcebce) (abce)
(c, e) (cebcebce) (ce)

(b) Nodes on path

Figure 1: Examples relating WCEP and MBP

within another scope S with head h′ if h ∈ S ∧ h 6= h′. If
h = h′, nesting relation is only defined by E̊(G̊). The root
of a scope tree denotes an entire program. As such, the
outermost scope never represents a loop.
The function γ(u) ∈ V̊ denotes scope membership of a

CFG node u, such that the function always maps to the
innermost enclosing scope. For a node s̊, let par(̊s) ∈ V̊
denote the parent of node s̊ and par+(̊s) denote the set of all
ancestors. Then for an edge (u, v) ∈ E(G) and γ(u) 6= γ(v),
node v is an entry to a scope, if v /∈ par+(u). Analogously,
node u is an exit, if u /∈ par+(v). Entries and exits of the
root scope coincide with those of the CFG.

The rationale for scopes is that the information which can
be inferred from only the control-flow graph is insufficient
for proper structural reconstruction. Scope trees make them
explicit without imposing any restrictions on the original
control-flow. In the following, we will informally refer to
loops as synonyms for cyclic scopes and not in the formal
sense as defined above.

An iteration of a scope is a path that starts in an entry and
ends in either an exit or a bottom without passing through
any backward edge. An instance of a scope is a path from
an entry to an exit of a scope, composed of iterations.

WCET is the length of a worst-case execution path (WCEP)
in a control-flow graph. Its length is determined by node

weights, which is the WCET of individual basic blocks, and
by flow bounds that limit the occurrence of these nodes on
a path, so that its length is bounded. If a path cannot be
realized, either because it is structurally impossible or due
to flow bounds, it is infeasible. A loop bound is a flow bound
that only constrains the head3 of a loop, and is the simplest
but most inaccurate constraint to bound path lengths.

3.2 Problem Statement
WCET and MBT are tightly related. Informally, a WCEP

is a longest feasible and finite path from a source s to a
sink t. A maximally blocking path (MBP) is a WCEP, with
the additional constraint that t is not allowed to be on the
path except as its end. The rationale is that the worst-
case blocking behavior for tasks with explicit preemption
points occurs for the longest path that does not include any
preemption point.
As an example, consider Fig. 1(a) which depicts a CFG

with a single flow bound that restricts the number of occur-
rences of node b on any path to at most twice, and whose
nodes have execution costs in the given order. Accordingly,
Fig. 1(b) lists the respective nodes on the WCEP and MBP,
respectively, given explicit source and sink nodes.

3Alternatively a single bottom.

WCEP and MBP are to be interpreted slightly differently
for a given CFG. A WCEP accounts for the longest path
from the source node including its costs to the sink node
excluding its costs. The rationale is that we are interested in
the longest path until a program point is reached. For MBP,
the source node is the successor of the basic block trigger-
ing the preemption. Technically, a preemption point is an
unconditional transfer of control out of a task. By definition,
it terminates a basic block in a CFG and execution can only
resume in an adjacent basic block. The costs of a sink node
are not accounted for, but can be trivially added after the
analysis. We made this choice to maintain symmetry with
the WCET problem. In the following, we always implicitly
assume a virtual global exit node of zero costs that belongs
to the root scope.

Two problems are of particular interest in MBT analysis:

1. Given a set of preemption points, compute the MBT
(MBT-abs).

2. Given all program points, compute the entire space of
possible MBTs (MBT-rel).

The latter enables the selection of appropriate preemption
point candidates in the first place. Both problems are subject
to this paper.

3.3 Fundamentals
We now define the relation of program structure to path

problems which establishes a sound formal basis previously
missing in [11]. . According to [15], every path in a control-
flow graph G = (V,E) can be interpreted as a string over E.
For nodes u, v ∈ V , a path expression is a regular expression
P of type (u, v) (written as P(u,v)), such that every string π
in the language L(P) is a path from u to v. The type of a
path expression P (u, v) can be recursively defined as follows:

i. If P = P1 ∪ P2, then P1 and P2 are path expressions of
type (u, v)

ii. If P = P1 · P2, then there must be a unique vertex w
such that P1 is of type (u,w) and P2 is of type (w, v)

iii. If P = P ∗
1 , then u = v and P1 is of type (u, u).

These rules define (i) alternative paths, (ii) concatenation
and (iii) repetition, respectively. Path expressions describe
all structurally possible but (yet) unbounded paths in a CFG.
The underlying algebraic structure of regular expressions

is a Kleene algebra 〈E,∪, ∅, ·, ǫ,∗ 〉 where ∪ is addition with
neutral element ∅, · is multiplication with neutral element ǫ
(the empty string), the additional operator ∗, and the order
of operator precedence ∗ > · > ∪.
We can derive a cost model over path expressions. Since

P ∗ yields paths of unbounded length, frequency expressions

[10] are paths expressions with Kleene star ’∗’ replaced by an

interval [l, h] such that P [l,h] now denotes the finite expansion

to {P l∪P l+1∪· · ·∪Ph} with P ∗ = P [0,∞]. Let ω(u) ∈ N0 be
the WCET of a basic block u. Then the function W denotes
the costs of the longest path in L(P (s, t)[l,h]) and is defined
as:

W (P) =



























−∞ if P = ∅
0 if P = ǫ
ω(u) if P = e = (u, v)
max(W (P1),W (P2)) if P = P1 ∪ P2

W (P1) +W (P2) if P = P1 · P2

W (PL) + · · ·+W (PH) if P = P [l,h]

In other words, the underlying algebraic structure of fre-
quency expressions can be replaced by

〈N0 ∪ {−∞},max,−∞,+, 0〉

to obtain maximal path lengths. If P = ∅, then −∞ denotes
infeasibility. Note that the cost of an edge (u, v) is defined
as the cost of node u.
We still need to define how path expressions are con-

structed. In a cyclic and reducible control-flow graph G =
(V,E) with forward edges F ⊆ E, let h denote a loop head.
Then the path expression PR from a source node s to a sink
node t is computed recursively by:

PR(s, t) =







⋃

(u,t)∈F PR(s, u)(u, t) if t 6= h ∧ s 6= t

(
⋃

(u,t)∈F PR(s, u)(u, t))P (t, t) if t = h ∧ s 6= t

ǫ if s = t

P (h, h) = (
⋃

(b,h)∈E\F P (h, b)(b, h))∗

A path expression PR(s, t) in the acyclic (first) case is the
union of all paths leading to the predecessors u of node t and
the edges leading to t. In the cyclic (second) case, if some
node t is a loop head, then PR(s, t) is a prefix of all paths in
the loop body (P (h, h)) from the head to its bottoms, back
to its head.

We call paths from head to bottom (P (h, b)) the kernels of
a loop. Every last iteration is an exit path and is represented
by the expression P (h, t) for a head h and some exit node t.

In irreducible graphs, not all paths pass through the head
and therefore the first iteration need not be a kernel. Let Iv
be the set of entries to a scope, then for all i ∈ Iv, P (i, b)(b, h)
is a prefix of all kernels, representing all first iterations. In
general, first and last iterations need to be “peeled off” from
loops in order to be exact in irreducible graphs.

The corresponding path expression P (s, t) for those graphs
(with P (h, h) being identical to the equation above) is defined
as:

P (s, t) =















⋃

(u,t)∈F P (s, u)(u, t) if t 6= h ∧ s 6= t

(
⋃

(u,t)∈F P (s, u)(u, t))P (t, t)

∪ P ′(s, h)
if t = h ∧ s 6= t

ǫ if s = t

P ′(s, h) =
⋃

i∈Iv\{h}
P (s, i)

⋃

(b,h)∈E\F
∧i❀b

P (i, b)(b, h)P (h, h)

Expressions from node s to node t, where t is a loop head,
alternatively have a prefix P (s, t), which denotes paths that
enter the loop through its head, or prefixes P (s, i) which
denote paths to all other entries. In the first case, the first
iteration coincides with kernels and is therefore modeled by
P (t, t). For all other entries, expressions P ′ are a compo-
sition of paths from entries to bottoms (P (i, b)(b, h)) and
kernels (P (h, b)(b, h)), including the edges back to the head,
respectively. Not all entries can reach all bottoms though:
those paths are excluded. We call the set of paths L(P (i, b))
entry paths.

3.4 Path Constraints
The path model so far only reflects the structurally possible

paths and the cost model which denotes its cost. In the
following, we discuss the relation of flow bounds (c.f. Sec. 3.1)
and bounds in frequency expressions.
For worst-case paths, just upper bounds are sufficient to

compute WCEP. (Safe) Upper bounds are typically provided

by means of manual constraint annotation or value analysis
[16]. Accuracy then depends on the expressiveness of con-
straints themselves. Flow bounds denote bounds on node

frequencies4 — the maximal number of occurrences of nodes
on possible worst-case paths. Let the indicator function 1e
be defined as 1e(u) = 1 if (u, ·) = e, then the multiplicity mπ

of a node u on a path π is defined as:

mπ(u) =
∑

(u,·)∈π

1(u,·)(u)

Given a set of frequency constraints (flow bounds) C, the
subset of structurally possible paths L(P, C) ⊆ L(P) that
satisfy the constraints is:

L(P, C) = {π ∈ L(P) | ∀C ∈ C : C(mπ)}

Constraints here are abstract. Later, in Sec. 3.5.3, we will
define the concrete semantics of constraints for our specific
model.

Explicit path analysis techniques typically trade accuracy
for simplicity and performance by approximating constraints.
The set L(P, C) can be approximated by another expression
P ′ such that L(P, C) ⊆ L(P ′) [10]. In practice, approxima-
tion is achieved by limiting constraints to backward edges
(equivalent to loop bounds5), by overestimating frequencies
of nested loops that depend on frequencies of enclosing loops
(e.g. triangle loops) or by ignoring mutual exclusion of struc-
turally possible but not realizable paths (e.g. if x do a;

if not x do b;). IPET, so far, is the only exact approach
that allows an unrestricted bounding of frequencies in all
these cases. The constraint model we propose later solves
the problem of bounding frequencies of individual nodes with
annotation semantics to specifically model MBP.

The (abstract) constraints C restrict all repetitions relative
to the current path expression P . If P specifies an entire pro-
gram, then the constraints denote global bounds. Intuitively,
however, loop bounds, for example, shall limit the repetition
of paths for a single instance of a loop and thus denote lo-

cal bounds. In particular, for the practical computation of
WCEP, we need both kinds of bounds. Just local bounds
as in [11] are not sufficient. Next, we first outline our basic
algorithm. We then address global flow bounds specifically.

3.5 Basic Framework
In the following, we introduce a general algorithm for worst-

case path computations and discuss our flow bound model. It
efficiently solves the problem of computing maximal costs of
paths in a CFG according to the model established in Sec. 3.3.
We formally define the general problem of finding longest
paths within individual scopes in Sec. 3.5.1 and propose a
generalized flow bound model in Sec. 3.5.2, which serves as
a basis for MBT analysis. In Sec. 3.5.3, we specialize this
model and propose solutions to both problems MBT-abs and
MBT-rel (c.f. Sec. 3.2). We generalize the approach in [11]
by adding handling of global flow bounds.
The recursive definition of path expressions suggests a

topological order in which nodes should be visited to instantly
evaluate path expressions to obtain their costs. In acyclic
graphs (such as loop bodies), this is indeed obvious. However,

4Derived from [10], which define edge frequencies to facilitate
loop bounds.
5Edge frequencies are notoriously impractical for fine-grained
constraints, which is why we define node frequencies.

G = (V,E = F ∪B) Control flow graph
~G = (V,E = F) Acyclic control flow graph

G̊ = (V̊ , E̊) Scope tree
Σ Annotation labels
Π ⊆ P(N0 × 2Σ × V (G)) Path states

γ : V (G) 7→ V̊ (G̊) Scope membership
ω : V (G) 7→ N0 Node weight
δ : Π 7→ N0 Path length
σ : Π 7→ 2Σ Path signature
θ : Π 7→ 2Σ Pending paths

o : Π 7→ V̊ (G̊) Path origin
α : V (G) 7→ 2Σ Node annotations

ρ : Σ 7→ P(V̊ (G̊)) Annotation range
β : Σ 7→ N0 Flow bounds

Table 1: Definitions
due to the cyclic recursion in the presence of loops, the
computation of absolute path lengths requires more than a
single pass over all nodes.

Recall that ~G = (V, F) denotes the DAG obtained from the

CFG without backward edges and that G̊ = (V̊ , E̊) denotes
the scope tree. Then scope order [11] is a topological order

over ~G which guarantees that no node v outside a scope is
visited prior to any inner node u with (u, v) ∈ F , before all
nodes of that inner scope have been visited. The rationale
is that general loops have multiple bottoms, exits are not
necessarily bottoms, and we need to know the lengths of
every path in the loop body first, to be able to compute
(cyclic) path lengths from entries to all exits.

We concretize constraints and call them annotations α,
such that for a node u the function α(u) ∈ 2Σ denotes
symbolic labels from the alphabet Σ. A flow bound β is
a numeric value such that for a label l ∈ α(u) the bound
β(l) ∈ N0 represents an upper bound on the frequency of
node u. Since we need to support local as well as global
bounds, we generalize the idea and define an annotation

range ρ, where ρ(l) ∈ { par+(̊s) | s̊ ∈ V̊ (G̊)} denotes the
validity of an annotation with respect to scopes. A local
annotation is one whose range is restricted to the current
scope, a global annotation on the other hand remains valid
in all scopes. For example, given a node u, a scope s̊, its
parent scope t̊, l ∈ α(u), n = β(l) and [̊s, t̊] = ρ(l), then node
u is bounded to at most n repetitions for all iterations of
s̊ and t̊. Intuitively, the lower bound on the range of flow
bounds is the innermost scope a bounded node is mapped to
(i.e. γ(u) = s̊).

Under reducibility and loop bounds, for a single loop, all
paths pass through the loop head and there only exists a
single longest path in the loop body. Thus, for each iteration
of an enclosing scope, a single path is a representative for
all instances of the inner scope. To be exact in general CFG
and under a general flow bound model, multiple instances
as well as different iterations of the same scope need to be
taken into account simultaneously. We represent every path
π ∈ L(P (s, t)) by a path state p = ℓ(π), which is a tuple
(δ, σ, o). For convenience, we define functions δ, σ and o over
path states, such that δ(p) ∈ N0 is a path length, σ(p) ∈ 2Σ

is a set of annotation labels we refer to as signature, and o(p)
is the origin (source node) of a path. The signature of a
path π, represented by path state p, is the set of annotation
labels along π. Formally:

σ(p) = α(o(p)) ∪
⋃

(·,v)∈π

α(v)

Algorithm 1 Outline of explicit path analysis

1 let main u =
2
3 let join u =
4 let local Q = {p ∈ Q | γ(u) = γ(o(p))}
5 let Q = maxσ(

⋃
(u′,u)∈E(~G)

P [u′])

6 I[u]← Q \ local Q
7 P [u]← local P ∪ if I[u] 6= ∅ then {(0, α(u), u)} else ∅
8
9 let transfer u =

10 P [u]← {(δ(p) + ω(p), σ(p) ∪ α(u), o(p)) | p ∈ P [u]}
11 i f ”all nodes of scope s̊ visited” then

12 let ex p q v = σ(q) ∪ {l ∈ σ(p) | par(̊s) ∈ ρ(l) ∧ v ❀ o(p)}
13 let re p v = {(δ(q) + δ(p), ex p q v, o(q)) | q ∈ I[v]}
14 for each w : exit s̊ do

15 O[w]← P [w]
16 P [w]← maxσ(

⋃
v∈entry(̊s)

⋃
p∈unroll(v,w) re p v)

17
18 let finish u =
19 i f ”u is head of scope s̊, not root” then

20 for each v : exit s̊ do

21 P [v]← O[v]
22 for each v : entry s̊ do

23 for each w : entry parent s̊ do

24 offset[v]← max{offset[v], ”longest path w ❀ v”}
25 for each v : entry s̊ do

26 final[u]← max{final[u], offset[v] + ”longest path v ❀ u”}
27
28 v ← ”head of outermost scope u can reach itself”
29 for each w : ”scope order from v” do transfer join w
30 for each w : ”scope order from v” do finish u

A signature induces equivalence classes of path states [p]

through the relation p
Σ
∼ p′ iff σ(p) = σ(p′) such that

[p] = {ℓ(π) | π ∈ L(P (s, t)) ∧ p
Σ
∼ ℓ(π)}

for all paths from origin s to node t. For a set of path states
Q, we can now define the function maxσ such that

maxσ(Q) = {p | [p] ∈ Q/
Σ
∼ ∧∀q ∈ [p] : δ(q) ≤ δ(p)}

is the minimal set of path states of maximal length parti-

tioned by signature, obtained from the quotient set Q/
Σ
∼.

After these definitions, we can now describe the principle
outline of the algorithm. The intuition is that loops are
successively virtually unrolled and inlined into enclosing
scopes in a first pass. This yields maximal path lengths from
entries and to exits of individual scopes. For the root scope,
this yields an absolute path length from the start node. In
other words, we compute one iteration of a scope including
all iterations of subscopes, then compute all iterations of the
scope itself. Thus, if only the longest path of entire tasks is
of interest, we would already be done. A second pass exploits
that besides longest paths to exits, we can now also compute
longest paths from entries of parent scopes to entries of nested
scopes to obtain absolute path lengths to all nodes. In other
words, from the last iteration of the outermost scope, we
compute the longest path to the last iterations of its nested
scopes terminating in individual nodes.

To keep matters terse, we assume that all loops have just
a single bottom, and entries and exits only connect directly
adjacent scopes. Important definitions are summarized in
Tab. 1. Any node can be a start node, which is handled
as just an additional entry into all enclosing scopes [11].

We further assume that for every entry u to scope s̊, there
implicitly exists an annotation l ∈ α(u) such that β(l) =∞
denotes a flow bound of range ρ(σ) = [̊s, s̊].
Alg. 1 is a naive version of the reference implementation

proposed in [11], stripped of all optimizations and unnec-
essary details and extended to meet our requirements. We
use an impurely functional pseudo language, where an ex-
pression A← v denotes assignment and let defines functions.
As usual, function invocation is right-associative, so we can
spare parenthesis. The arrays P , I and O hold path states.
Initially they are empty. The arrays offset and final hold
path lengths, initialized to 0. The function unroll performs
virtual unrolling to compute longest paths from entries to ex-
its and will be subject to detailed discussion in the following
Sec. 3.5.1.
The computation is invoked with the start node u (l. 1)

and starts at the effective start node v (l. 28) instead of the
specified start node u. Starting in v guarantees that all paths
required for virtual unrolling of all enclosing scopes will be
correctly represented by path states. Two passes are then
required to compute the longest paths.
In the first pass (l. 29), the longest path to the CFG exit

is computed. The function join (l. 3) joins path states of
predecessors. From a set of states, local (l. 4) extracts the
ones of the same scope as node u, and Q (l. 5) is the minimal
set of predecessor path states (maxσ). Then I (l. 6) holds the
states of paths that just entered the scope and P [u] (l. 7) is
the set of “local” path states and a new state that represents
the “entering” paths. The function transfer (l. 9) updates
the set of path states (l. 10) by increasing the path length δ
by the cost ω of the basic block and adding new annotations
α to their signature σ, while keeping the path origin o. If
all nodes in a scope are visited, then path states represent
all simple paths from all entries (l. 11) and we can virtually
unroll longest paths from all entries to all exits. The function
ex (l. 12) extends the signature of state q by all labels in the
signature of state p, whose range encompasses the parent
of the current scope and whose origin can be reached from
entry v, which effectively carries annotations over to a parent
scope (non-local flow bounds in our case), but not beyond the
point where the bounded node cannot be reached anymore.
Beyond this point, the information is useless.
The function re (l. 13) restores path states of the parent

scope which have previously been stored in the array I. Path
state p represents a longest path from entry v to the current
exit. The length δ is increased accordingly and annotations
are extended by the non-local ones of state p. For each exit
(l. 14), the original path states are stored in the array O
(l. 15) before they are replaced in l. 16: here, the minimal set
of longest paths that passed through all entries and which
have now been updated by the longest paths through the
scope is computed. The function unroll returns a set of path
states representing the longest paths from entry to exit.
In a second pass (l. 30), function finish (l. 18) is invoked

for each node. In l. 19, if node u is the head of a scope s̊
which is not the root scope, then we can obtain the longest
path to all its entries by adding the maximal length to the
entry of the parent, the maximal length from each parent
entry to each own entry and the maximal length from this
entry to the target node. In l. 21, the original states in all
exits are restored, which have previously been overwritten
(l. 16). The array offset (l. 24) holds maximal path lengths
to each entry v, which is composed of the maximal length to

Figure 2: Flow network for virtual unrolling

a parent entry w and a maximal length to v. Once all offsets
are known, the maximal length to node u can be computed
(l. 26). We deliberately keep l. 24, 26 vague, but it should be
understood that longest paths are also obtained by means of
the unroll function. The exact implementation depends on
the flow bound model and the data representation.

3.5.1 Virtual Unrolling

Alg. 1 performs virtual unrolling of a scope to obtain
longest paths from an entry to any node of a scope: to
exits in the first pass and to all nodes in the second pass.
This is a network flow problem. Specifically, we need to
solve the maximal cost, maximal flow network flow with
demand problem where costs, capacities, flows and demands
are bound to nodes, not edges. Formally, the problem is
defined as: Let N = (V,E) be a weakly connected directed
graph, with a source node s and a sink node t. With each
node, a cost w(u), a capacity c(u), a flow f(u) and a demand
d(u) is associated. The usual properties of flow networks and
the additional invariant that d(u) ≤ f(u) ≤ c(u) must hold.
The problem is to maximize

∑

u∈V f(u)w(u).
We can reduce the virtual unrolling problem as follows:

For a scope, let i be an entry, o be any6 node (of the same
scope), h be its head and, without loss of generality, b be its
bottom. Recall that in Alg. 1, a path state only represents
path lengths (costs) and that subscopes are only accounted
for by increasing this length once a subscope is finished.
Therefore, let G = (V,E) be an acyclic subgraph of the CFG
such that all nodes V belong to the same scope, with its
entry in h and its exit in b. Then let N = (V,E) be the flow
network where V (N) = V (G)∪{s, t, i′, o′}, E(N) = {E(G)∪
(s, i′), (′i, i), (o, o′), (o′, t), (s, h), (b, t)}, c(i′) = d(i′) = c(o′) =
d(o′) = 1, c(s) = c(t) = ∞ and d(s) = d(t) = 0. All
other demands are equal to 0, and all capacities are equal
to ∞, except where flow bounds are given. Fig. 2 depicts
an example network, with the gray components being added
to the original subgraph. Recall that entry, exit paths and
kernel paths must be distinguished in irreducible CFG. The
network reflects this requirement.

Solving this problem is easy since we already computed all
paths in this network while traversing the nodes of a scope.
Notably, we neither need to construct the network, nor do
we need to know the paths explicitly: We know the length of
all longest paths from all origins whose capacity is bounded
by distinct sets of flow bounds. Let s = {l0, . . . } be the
signature of such a path, then it cannot be repeated more
often than min{β(l0), . . .)} times. To account for the costs of
a path to the overall objective value, we reduce the capacities
of all nodes along this path by the minimum flow and repeat
until no feasible path can be found anymore (reminiscent of
the classic Ford-Fulkerson method). To maximize the overall

6In the first pass of Alg. 1, node o denotes exit nodes only.
In the second pass, it denotes all other interior nodes.

Bound Pivot Min Multiple Remainder

4[2,2], 6[1,2], 11[0,2] 2 4[2,2] 1[1,2], 2[0,2] 2[1,2], 3[0,2]

4[2,2], 2[1,2], 3[0,2] 1 2[1,2] 1[0,2] 1[0,2]

4[2,2], 2[1,2], 1[0,2] 0 1[2,2] − −

Table 2: Instantiation of scopes with complex bounds

cost, we first account for the entry and exit paths to satisfy
the demand7 (choose path states of respective origin), then
sort kernels in descending order of length, accounting for
them until all capacities are exceed.

Recall that paths are collectively and implicitly represented
by path states. Every path that passes through the entry
of a scope represents an iteration of a parent scope and
induces a new instance which has to be virtually unrolled.
Each virtually unrolled scope is represented by a path state,
too. In Alg. 1, unroll returns these representatives which
are subsequently virtually inlined by updating lengths and
passing on annotations (l. 16). Unrolling has to be performed
for all pairs of possible entry and exit paths [11].

3.5.2 General Flow Bounds

Virtual unrolling maximizes the path length and the flow
with respect to the given flow bounds for a single instance of
a scope. Such an instance serves as a representative for all
instances due to iterations in the parent scope. Given just
local bounds, each iteration of a parent scope that enters
through a specific entry passes through exactly the same
instance. In this case, we refer to an instance as being
context-free. For example, local bounds model loop counters
that are initialized when a loop is entered.
Bounds with ranges beyond the current scope make such

instances context-dependent. Instances of a scope may be
different for different iterations of a parent scope, despite
entering through the same entry. For example, if loop coun-
ters are not initialized when entering the scope but only in a
parent, then virtual unrolling depends on the iterations of
this parent.

We assume a scope that models a loop consisting of just a

single node (self-loop), and we write β [̊s,̊t] to denote a flow
bound of value β and a range from an outer scope s̊ to an
inner scope t̊. So, for example, 1[0,2] denotes a flow bound
such that the annotated node may only be traversed once in
all instances of scopes 0 to 2, collectively. A bound of 1[2,2]

denotes that a node may be traversed once in every instance
of the innermost scope 2 but is otherwise unbounded (context-

free). Given the annotation 4[2,2], 6[1,2], 11[0,2] as depicted
in Tab. 2, which allows 4 iterations for each instance of the
innermost scope 2, but only if the total number of iterations
does not exceed 6, relative to scope 1, and does not exceed 11
for scope 0. To exactly model these bounds when virtually
unrolling scope 2, we have to create multiple instances to
reflect different iterations of scopes 1 and 0, respectively,
such that flows are maximized. The rows in the table denote
context-dependent instances of scope 2.

The minimal bound of the first instance is 4 (Min). Thus,
in each iteration of the parent scope 1̊, the loop node will
be repeated 4 times. As a consequence, the parent iteration
itself must additionally be bounded by 1[1,2], 2[0,2] (Multiple),

7Virtual unrolling is only feasible for loops that can be
entered and left at all over feasible paths.

since repeating it more often would violate bounds of the
self-loop (4 × 1[1,2] ≤ 6[1,2], 4 × 2[0,2] ≤ 11[0,2]). Obviously,

bounds 6[1,2] and 11[0,2] have not been exceeded yet for this
single instance of scope 2. For a different iteration of the
parent scope, in another instance of scope 2, we would still
be allowed to traverse according to the bounds 2[1,2], 3[0,2]

(Remainder), in addition to the local bound 4[2,2]. Local
bounds must hold only for a single instance of a scope, so
for each instance they are effectively reset. The resulting
set of bounds that apply for the next instance of scope
2̊ is depicted in the second row. With “Pivot” we denote
the current reference scope “below” which bounds are reset,
respectively. Thus, in the second instance we can traverse
the node at most twice locally (Min), only once in the parent
scope (Mul.) on the same path but yet once (Rem.) in
another instance, for another iteration of scope 0. Note that
context-dependent instances model flow bounds exactly and
can be avoided by approximation [10].

In Alg. 1 l. 12, the function ex takes care of passing “Mul-
tiples” to the path states representing paths in parent scopes,
thus effectively creating additional iterations explicitly rep-
resented by path states. In l. 13, each signature of a parent
path state is updated accordingly. The first pass therefore
outlines the logic for WCET under general flow bounds.
Computing context-dependent instances for general flow

bounds in detail are subject to a general technical discussion
of virtual unrolling, which is beyond the scope of this paper.
In the following we will focus on a special case of flow bounds:
For MBT, we need to take global flow bounds into account
whose upper bounds equal 0. No iteration of any scope is
allowed to pass through a specific node. This removes the
demand for context-dependent instances

3.5.3 Maximum Blocking Times

Maximum blocking times can be computed in two ways.
For the sake of simplicity, we ignore context-dependence in
the following.

Since in MBPs a sink node is allowed only as the terminal
node, we can compute the MBT for a given set of preemp-
tion points by annotating each corresponding node with an
additional global flow bound of value 0. Starting the analysis
from each of these nodes then yields the MBP to all other
reachable points. Effectively, adding such global bounds cuts
the CFG in disjoint subgraphs, in each of which we compute
the WCET: No path can traverse a preemption point. The
idea corresponds to the IPET formulation in [3] and Alg. 1
outlines the implementation of an explicit path analysis for
this. This solves MBT-abs as stated in Sec. 3.2.
In a naive implementation, it would be sufficient to com-

pute the MBT for each pair of source and sink nodes. This,
however, is extremely inefficient as redundancy between these
distinct problem instances is significant. Ideally, we would
like to reuse Alg. 1 to compute MBT from a start node to
all reachable nodes.
The central problem in achieving this is that every node

is a potential sink, while it is also just a node on paths to
other sinks. Defining global bounds as proposed above is
impossible. Instead, bounds must be applied conditionally,
relative to each sink.

The intuition for our solution is that a path is a potential
MBP for all nodes that have not been reached yet. Inversely,
it can not be a potential MBP for all nodes already on
this path. In terms of virtual unrolling and inlining, any

(a) Example CFG (b) Path length propagation

Figure 3: Length computations with difference encoding

path becomes infeasible for all nodes already traversed and
therefore must not be used to compose longer paths to these
nodes. Conceptually, flow bounds still include a global bound
for sink nodes. Technically, however, we now distinguish
between bounds that model actual program semantics and
those that bound sink nodes.

By definition, the MBP to the CFG exit node corresponds
to its WCEP. It is the only path to a sink node that is
guaranteed to only contain the sink once. And it is entirely
unaffected by relative path infeasibility. We refer to the
WCEP to each program point as a respective reference path.

In general, WCEP and MBP to any sink node share a
common prefix. Differences in the suffix of a path result
from relative infeasibility only (all other flow bounds apply
unconditionally) and can only occur within the same strongly-
connected component (c.f. Fig. 1(a)).
We can exploit these insights in Alg. 1 by only making

minimal changes to the transfer function and changes in the
representation of path lengths. Informally, in each transfer
step, the current node is marked infeasible for all path states
in this node, so that they will never be used to compose an
MBP to it. This implies that all MBP are represented by the
reference path for all nodes that are not already on it. Once
a node is on the reference path, its MBP will have to be
maintained separately. For convenience, we store difference
in length from the reference path only and designate a special
difference value “⊥” to denote relative infeasibility.

Fig. 3 illustrates the proposed difference encoding. For the
CFG to the left, we assume node costs 1 to 5 for nodes a
to e, a loop bound of 1 in the bottom node d. We reduce
the illustration to just the reference path and the MBP to
node c. The tuples to the right denote the proposed length
encoding. Syntactically, in (l, D), l denotes the length of the
reference path, and D encodes deviations from it. In nodes
a and b, both paths coincide. In node c, the path is marked
infeasible (denoted by c 7→ ⊥) for any MBP towards node c.
In node d, since the path through node b is the longest path,
we update the difference information on c: Not all paths are
infeasible regarding node c. We account for this by encoding
the difference from the reference path. We can now virtually
unroll the loop separately for the reference path and for node
c. This would already yield the correct MBT to c ((abdac)).
In node e, information on node c can be discarded, since it
is not reachable anymore, so no longer MBP to node c could
be composed.

Recall the cost model in Sec. 3.3 which denotes an algebra
with operators max and + over N0. According to this, Alg. 1
computes worst-case paths. Now, instead of natural numbers
to represent a single path length, we define L = N0 ∪ {⊥},
where ⊥ denotes infeasibility, and a new algebraic struc-
ture 〈L,maxL,⊥,+L, 0〉 where +L with identity element 0 is

defined as

li +L lj =

{

li + lj iff li 6= ⊥ ∧ lj 6= ⊥
⊥ otherwise

And where maxL with identity element ⊥ is defined as:

maxL(li, lj) =















max(li, lj) iff li 6= ⊥ ∧ lj 6= ⊥
li iff li 6= ⊥ ∧ lj = ⊥
lj iff li = ⊥ ∧ lj 6= ⊥
⊥ otherwise

A path state then encodes the lengths for all MBP simul-
taneously, if we replace N0 to represent length in a path
state with elements from D ⊆ P(N0 × (P(V (G)×L)), whose
algebra is defined by 〈D,maxD, 1max,+D, 1+〉 where D rep-
resents the length of a reference path and the differences
to the length of the reference path. Identity elements and
operators are derivatives of the algebra on L. Addition with
identity element 1+ = (0, {u 7→ 0, . . . }) is defined as:

(ra, {u 7→ li, . . . }) +D (rb, {u 7→ lj , . . . }) =
(ra + rb, {u 7→ li +L lj , . . . })

Maximum with identity element 1max = (⊥, {u 7→ ⊥, . . . })
is defined as:

maxD((rA, {u 7→ li, . . . }), (rb, {u 7→ lj , . . . })) =
(max(ra, rb) = r, {u 7→ (r −maxL(ra − li, rb − lj)), . . . })

Differences only need to be maintained as long as its respec-
tive sink node is reachable. Note that this representation
does not lose information and explicit path states for each
individual node can always be restored. This is indeed nec-
essary for virtual unrolling which now has to be performed
for each explicitly recognized sink separately, since sets of
feasible paths are potentially individual. With this encoding,
we compute the MBP for all reachable nodes with only mini-
mally changes to the base algorithm. This solves MBT-rel

as stated in Sec. 3.2.
Computing WCET or MBT from and to all nodes requires

a run for each source node. However, paths and unroll results
can often be reused between runs from different sources,
reducing the overhead. It is also important to note that
virtual unrolling does not have to be performed as often as
suggested in Alg. 1, but only for flow bounded nodes. Path
lengths to individual nodes can be easily derived from lengths
to bounded nodes on the same path [11].

4. EVALUATION
We evaluate the average performance of our MBT analysis

in the following. The aim is to demonstrate its scalability
characteristics for typical control flow graphs of varying sizes
and topologies. We perform runtime measurements on the
Mälardalen WCET benchmark suite (MRTC [1]) as well
as on control-flow graphs generated from random syntax
trees (AST). For these graphs, sizes vary between 10 and
approximately 12,000 CFG nodes. An AST is composed of
four high-level language constructs if, ifelse, while and
dowhile. Entries, exits as well as node costs and flow bounds
are generated in addition. Probabilities of components can
be specified, such that specific use-cases can be isolated.
We compare results for MBT-rel against IPET [13] and

the WCET analysis proposed in [11], we refer to as PAAN

in the following. Without loss of generality, the latter two
effectively compute MBT-abs for just two preemption points

statemate
cover

petrinet
ndes

st
minver

qurt
edn

lcdnum
matmult

prime
crc

ludcmp
expint
fibcall

fir
jfdctint

0 5 15 20 30 35 45 50 60 65

Time (ms)

N
a

m
e

Method

IPET

MBT−rel

Figure 4: Runtimes on real-time benchmarks

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

0 2500 5000 7500 10000 12500

Nodes (count)

T
im

e
 (

m
s
)

Method

IPET

MBT−rel

PAAN

Regular control flow

Figure 5: Runtimes on non-degenerated graphs

that coincide with the CFG entry and exit, respectively. The
rationale for the restriction to just two dedicated preemption
points is the limitation of IPET: The IPET-based MBT
analysis proposed in [3] is precisely a WCET IPET model,
if no other preemption points but a task’s entry and exit
are specified. A larger set of preemption points cuts the
graph into subgraphs, such that the ILP objective value
only yields the length of the longest WCEP among these
subgraphs. It is not possible to obtain the results for each
subgraph separately unless a single ILP model per subgraph
is generated, which then would yield just another problem
for two dedicated program points of a single CFG. Note
that IPET does not yield any result for intermediate nodes.
PAAN, in addition, computes the WCET to all nodes and
MBT-rel computes the MBT to all nodes from the entry
node, respectively.

The experiments are carried out on a single core of an Intel

Xeon E5630 (2.53GHz) CPU. We measure the accumulated
CPU time of all computing steps for MBT-rel and PAAN,
including all preprocessing (e.g. scope tree construction). For
IPET, the generation of linear equations is included. The
IPET ILP is solved using CPLEX (v. 12.4) with default
arguments. All analyses are carried out in succession on the
very same CFG.

Fig. 4 shows the results for a random subset of MRTC
benchmarks at a resolution of 1ms. MBT-rel significantly
outperforms IPET in all use cases. We solve the MBT
problem from the source to all reachable nodes below 1ms in
some cases. These hard real-time benchmarks are comparably
small in size (ca. 50 to 1200 LOC). Thus, scalability for very
large problem instances is not obvious. Large non-real time
benchmarks lack the mandatory annotations. Therefore, we
chose to synthesize benchmarks.
Fig. 5 depicts the average performance for CFGs that

we consider “typical”. The graphs are reducible and are
generated with probabilities p(if) = 0.1, p(ifelse) = 0.2,
p(while) = 0.3, p(dowhile) = 0.4, a probability for addi-

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

0 2500 5000 7500 10000 12500

Nodes (count)

T
im

e
 (

m
s
)

Method

IPET

MBT−rel

PAAN

Ayclic control flow

Figure 6: Runtimes on acyclic graphs

tional flow bounds of 0.1, a maximal loop depth of 3 and a
single flow bound per loop. The chart illustrates the signif-
icant performance advantage of both MBT-rel and PAAN

over the ILP solution. We improve over IPET by about a
factor of 10, while computing MBTs to all sink nodes at once.
The scalability is excellent in all three approaches (practically
linear). This shows that extremely large problem instances
can be practically solved quickly. All three yield identical
results here (except for the fact that PAAN and MBT-rel

solve the problem for all nodes, IPET does not — it would
require n runs or a very large ILP model). Even though com-
putations and the state space are potentially more complex,
the difference of PAAN to MBT-rel is practically negligible.

Fig. 6 illustrates results for acyclic graphs. Probabilities are
proportional to the standard case above, with the exception
of p(while) = p(dowhile) = 0. The lack of loops means
that the only MBPs are direct paths to each node. No virtual
unrolling for individual nodes is ever performed. Thus, the
chart depicts the baseline for all MBT analyses. As can be
seen from this, loops have practically no effect.

The scalability of PAAN and MBT-rel is highly correlated
and substantiate our claim that, either in the WCET or
in the MBT case, IPET is not competitive. In [11], the
authors have thoroughly studied PAAN for other “degener-
ated” (irreducible) graph topologies. In those cases, we found
scalability characteristics of PAAN compared to MBT-rel

similar to those presented here. The primary reason for the
“resiliency” of MBT-rel and PAAN against complex graph
topologies is that the state space grows exponentially only
with the complexity of the annotations, not with the graph
size. Since no algorithmic recursion is involved, the number
of loops and the complexity of their nesting are practically
irrelevant. Note that in these experiments, MBT-rel, PAAN

and IPET yield identical path lengths, where comparable.

5. CONCLUSION AND FUTURE WORK
We proposed a general, accurate and fast analysis tech-

nique for the computation of maximum blocking times. Its
framework significantly improves upon the state of the art
in explicit path analysis by introducing a general flow bound
model for exact explicit analyses and a specialization to global
infeasibility bounds that allows for the efficient computation
of MBT. We showed that IPET can be outperformed sig-
nificantly, even for problems with global flow bounds like
MBT, despite computing paths from a single source to all
sink nodes at once, not to a specific one. To this end, we
proposed an efficient compression for path representations.
Specifically, for deferred preemption schedules, this now al-
lows the practical exploration of design spaces in terms of
MBT and explicit preemption points.

Our approach dominates alternative approaches in terms of
generality and accuracy. MBT now allow for precise preemp-
tion point placement in general CFG. To completely replace
IPET in practice for MBT as well as for WCET analysis, an
efficient way to model mutual exclusion of paths is required,
and generalized flow bounds must be further discussed in
all detail. We will address these limitations specifically and
propose an analysis framework that has the potential to yield
significant gains in performance and accuracy for static multi-
task timing analysis. A generally open problem is modeling
of dependent loop counters (e.g. triangle loops) which can be
solved by supporting lazy evaluation by means of symbolic
path expressions.

6. REFERENCES
[1] Mälardalen WCET benchmark suite. http://www.

mrtc.mdh.se/projects/wcet/benchmarks.html.
[2] E. Althaus, S. Altmeyer, and R. Naujoks. Precise and

Efficient Parametric Path Analysis. In Proc. of LCETS,
2011.

[3] S. Altmeyer, C. Burguiere, and R. Wilhelm. Computing
the Maximum Blocking Time for Scheduling with
Deferred Preemption. In Proc. of STFSSD, 2009.

[4] S. Altmeyer, R. I. Davis, and C. Maiza. Improved
Cache Related Pre-emption Delay Aware Response
Time Analysis for Fixed Priority Pre-emptive Systems.
RTS, 48(5):499–526, 2012.

[5] S. Altmeyer, C. Hümbert, B. Lisper, and R. Wilhelm.
Parametric Timing Analysis for Complex Architectures.
In Proc. of RTCSA, 2008.

[6] M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, and
G. C. Buttazzo. Optimal Selection of Preemption
Points to Minimize Preemption Overhead. In Proc. of
ECRTS, 2011.

[7] G. C. Buttazzo, M. Bertogna, and G. Yao. Limited
Preemptive Scheduling for Real-Time Systems. A
Survey. IEEE TII, 9(1):3–15, 2013.

[8] S. Bygde, A. Ermedahl, and B. Lisper. An Efficient
Algorithm for Parametric WCET Calculation. In
RTCSA, pages 13–21. IEEE Computer Society, 2009.

[9] L. Carter, J. Ferrante, and C. D. Thomborson. Folklore
Confirmed: Reducible Flow Graphs are Exponentially
Larger. In A. Aiken and G. Morrisett, editors, POPL,
pages 106–114. ACM, 2003. ACM SIGPLAN Notices
38(1), January 2003.

[10] B. Huber, D. Prokesch, and P. Puschner. A Formal
Framework for Precise Parametric WCET Formulas. In
T. Vardanega, editor, WCET, volume 23 of OASIcs,
pages 91–102, 2012.

[11] J. Kleinsorge, H. Falk, and P. Marwedel. Simple
Analysis of Partial Worst-case Execution Paths on
General Control Flow Graphs. In Proc. of EMSOFT,
2013.

[12] C.-G. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha,
S. Hong, C. Y. Park, M. Lee, and C. S. Kim. Analysis
of Cache-Related Preemption Delay in Fixed-Priority
Preemptive Scheduling. IEEE TC, 47(6):700–713, June
1998.

[13] Y.-T. S. Li and S. Malik. Performance Analysis of
Embedded Software using Implicit Path Enumeration.
In Proc. of DAC, 1995.

[14] F. Stappert, A. Ermedahl, and J. Engblom. Efficient
Longest Executable Path Search for Programs with
Complex Flows and Pipeline Effects. In Proc. of
CASES, pages 132–140, 2001.

[15] R. E. Tarjan. A Unified Approach to Path Problems. J.
ACM, 28(3):577–593, 1981.

[16] R. Wilhelm, J. Engblom, et al. The Worst-Case
Execution Time Problem - Overview of Methods and
Survey of Tools. TECS, 7(3):36:1–36:53, 2008.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move right by 1.80 points
 Normalise (advanced option): 'original'

 32

 D:20140815132822
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Right
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 1.8000
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 14.40 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 14.4000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryList_V1
 qi2base

