
Parallelism Analysis: Precise WCET Values for
Complex Multi-Core Systems

Timon Kelter and Peter Marwedel

Department of Computer Science, TU Dortmund
Otto-Hahn-Straße 16, 44227 Dortmund, Germany
{timon.kelter,peter.marwedel}@tu-dortmund.de

Abstract. In the verification of safety-critical real-time systems, the
problem of determining the worst-case execution time (WCET) of a task
is of utmost importance. Safe formal methods have been established for
solving the single-task, single-core WCET problem. The de-facto stan-
dard approach uses abstract interpretation to derive basic block execu-
tion times and a combinatorial path analysis which derives the longest
path through the program. WCET analyses for multi-core computers
have extended this methodology by assuming that shared resources are
partitioned in either time or space and that therefore each core can still
be analyzed separately. For real-world multi-cores this assumption is of-
ten not true, making the classic WCET analysis approach either inappli-
cable or highly pessimistic. To overcome this, we present a new technique
to explore the interleavings of a parallel task system as well as an exclu-
sion criterion to prove that certain interleavings can never occur. We
show how this technique can be integrated into existing WCET anal-
ysis approaches and finally provide results for the application of this
new analysis type to a collection of real-time benchmarks, where average
WCET reductions of 32% were observed.

Keywords: WCET, Multi-Core, Parallelism, Shared Resources

1 Introduction

WCET analysis is an important prerequisite for schedulability analysis and for
overall system validation of safety-critical real-time systems, i.e. systems in which
tasks must complete within a given deadline. The runtime of any task τ depends
on its inputs, on the system state at the start of τ and on the interference imposed
on τ by preempting tasks on the same core or by parallel tasks running on other
cores. To compute the WCET, first an abstract interpretation on the domain
of abstract system hardware states is run. With the resulting hardware state
overestimations a safe bound on the runtime of each basic block can be derived.
This procedure is called microarchitectural analysis (MA). As the last step, the
path analysis determines the longest path through the program with the help of
the basic block runtimes determined by the MA [19]. In this paper we propose
an abstract interpretation of the system hardware state that is able to efficiently
explore all possible interactions between multiple concurrently running tasks.

2 Timon Kelter and Peter Marwedel

As soon as multiple cores may access a shared hardware resource in parallel,
the runtimes of parallel tasks are no longer independent but they depend on

1. the order in which the requests arrive at the shared resource and
2. the policy with which requests to the shared resource are arbitrated.

Previous work has eliminated the first dependency by choosing a state-parti-
tioned arbitration strategy which guarantees that the actions of any core C
cannot modify the state of the shared resource as seen by cores Co ≠ C. This
implies, that the delay for any access from C is independent of the potential
concurrent accesses from all Co ≠ C. Therefore, we can still perform a per-core
analysis and the state space does not become much bigger than for the single-core
case. An example for such a state-partitioned strategy is time-division multiple
access (TDMA) [5]. However, state-partitioned arbitration increases the average
access delay compared to state-permeable strategies like fair arbitration (FAIR)
and fixed-priority arbitration (PRIO) [6]. WCET analysis for these types of ar-
bitration has been nonexistent or pessimistic at best. Therefore our main goal
in this paper is to make a first step towards a precise WCET analysis for shared
state-permeable resources, since they are often found in real-world systems.

2 Related Work

WCET analysis There is an extensive body of work on single-core WCET
analysis as summarized in [19], which led to the standard approach of separating
the microarchitectural analysis from the path analysis. Our techniques also build
upon this concept by extending the former analysis to multi-cores.

The first known approach to multi-core WCET analysis is based on the Real-
Time Calculus (RTC) [14,15]. It uses “access curves” to strongly abstract from
the concrete system, which introduces strong pessimism in the results and is
restricted to timing-compositional architectures [4]. The only known, non-RTC-
based approach to the analysis of shared state-permeable resources is based
on parallel summaries [10]. For a shared cache, it precomputes worst-case in-
terference summaries for each core which contain the effects that all program
points in all possibly concurrently running tasks can have on the state of the
shared resource, which also introduces considerable pessimism. The authors of [1]
combined the summary-based shared cache approach from [10] with a safe ab-
straction for the analysis of TDMA buses [5], which results in a scalable but
pessimistic WCET analysis for multi-core WCET estimation. Finally, model-
checkers have been used to determine multi-core WCETs [3] and these could
potentially also handle state-permeable resources. Unfortunately the approach
does not scale to bigger programs or realistic systems, since the generic model
checker has few possibilities of pruning the huge search space.

Parallel program analysis Static analysis of the synchronization structure
of concurrent programs was first considered by [17] where the analysis of the

Parallelism Analysis: Precise WCET Values for Complex Multi-Core Systems 3

“concurrency state” of the system and the notion of a parallel execution graph
was first established. We build our work on this, though the analysis in [17]
worked at a far more coarse-grained level. A reference approach to bit-vector-
based abstract interpretation on programs with explicit fork-join parallelism is
given in [9]. Unfortunately, the microarchitectural analysis that we are examin-
ing here is not a bit-vector problem. In reachability analysis for parallel programs
“stubborn sets” [18] can be used to prune the search space, but again the mi-
croarchitectural analysis differs significantly from reachability analysis. Finally,
a recent publication [12] examines the computation of feasible synchronization-
aware parallel interleavings. Their approach focuses on path analysis and is thus
orthogonal to ours.

3 System and Task Model

We assume a task set T containing only strictly periodic tasks, as often found in
hard real-time systems. In the following sections, we will need a common refer-
ence point in time for all running tasks, where times are measured in multiples
of the shortest clock cycle. Therefore we first require that all τi ∈ T are sharing
the same period pi = pT and that each task is executed non-preemptively on a
separate core. We will discuss how to lift these restrictions in Section 5. Each
task τi may have a different release time ri within the common period.

The analysis can be adapted to any topology, but for our experiments we
will use an example architecture with n = ∣T ∣ ARM7TDMI cores,1 each having a
private cache and a scratchpad. The cores are connected to a shared bus which is
arbitrated under either TDMA, FAIR round-robin or fixed core priorities. Behind
the bus, shared instruction and data caches are located as well as non-cached
memories.

4 Parallelism Analysis

Before starting with the formal part of the framework, we briefly sketch the
intuition behind the analysis procedure. Our goal will be to efficiently explore
all feasible interleavings of multiple tasks running in parallel. As an example,
consider the execution of the tasks from Figure 1 under the assumption that
both tasks start concurrently at time 0. For this assumption we can find all
valid parallel execution scenarios from the parallel execution graph (PEG) shown
in Figure 2. The construction of this graph starts with nodes corresponding to
the initial system states, in this case with only the node AE (the δ-values will
be explained below). From these start nodes, we iteratively simulate cycle steps
of the system. To keep our example PEG from Figure 2 sufficiently small, we
assume that every block will take one cycle to complete. Therefore, our initial
block AE is terminated after the first cycle and the execution must continue in
1 The choice of ARM7TDMI cores is motivated by the fact that we already have an
implementation of the abstract pipeline model for these cores (compare Section 4.4).

4 Timon Kelter and Peter Marwedel

A

B

C

D

LB [2,3]

LB [10,10]

(a) Task τ1

E

F

G

LB [2,2]

LB [3,3]

(b) Task τ2

Fig. 1: Two exam-
ple tasks with given
loop bounds.

AE
δ(1) ∶ [0,2]
δ(2) ∶ [0,1]

BE
δ(1) ∶ [2,3]
δ(2) ∶ [0,1] AF

δ(1) ∶ [0,2]
δ(2) ∶ [2,4]

BF
δ(1) ∶ [2,3]
δ(2) ∶ [2,4] AG

δ(1) ∶ [0,2]
δ(2) ∶ [5,5]

BG
δ(1) ∶ [2,3]
δ(2) ∶ [5,5]CF

δ(1) ∶ [3,13]
δ(2) ∶ [2,4]

CG
δ(1) ∶ [3,13]
δ(2) ∶ [5,5]DF

δ(1) ∶ [13,14]
δ(2) ∶ [2,4]

DG
δ(1) ∶ [13,14]
δ(2) ∶ [5,5] C⊤ δ

(1) ∶ [3,13]
δ(2) ∶ [0,∞]

D⊤ δ
(1) ∶ [13,14]
δ(2) ∶ [0,∞]

⊤⊤ δ
(1) ∶ [0,∞]
δ(2) ∶ [0,∞]

Fig. 2: The final Parallel Execution Graph for tasks τ1
and τ2 from Figure 1, starting synchronously at time 0.

one of the nodes AE, BE, BF and AF. To generate these successors we simply follow
all combinations of successor blocks in the task CFGs. The loop bounds are not
used here. If we continue the graph construction in this manner, we will end up
with a full product graph of the task CFGs. When every core has reached the
end of its task, indicated by the “⊤” sign in Figure 2, we add a back-edge from ⊤⊤
to AE to account for the repeated execution of the tasks in the cyclic schedule.
The purpose of this final PEG is, that it contains each basic block of each task
in all possible parallel execution scenarios. Thus we can derive the WCET of
each basic block from the PEG and use these to compute the task WCETs.

As visible, the PEG in Figure 2 is not a full product graph of the graphs
from Figure 1. The construction of the graph has been stopped at nodes BE, AG,
BG, DF and DG. To explain why this was done, and why it is correct, we need the
δ-values and the loop bounds. We define δ(i) as an interval containing all points
in time, measured from the beginning of the common period pT , at which a node
may be entered on core i. Initially we set δ(1) = δ(2) = [0,0] for node AE, since
core 1 (2) enters node A (E) at time 0. From here on, every time we visit a node
X in the analysis, we recompute its δ intervals with the help of a path analysis
which computes the length of the shortest and longest paths to the basic blocks
in X. As an example, when we visit node AE the second time, we have already
seen, that both block A and E complete within one cycle. Therefore, since A can

Parallelism Analysis: Precise WCET Values for Complex Multi-Core Systems 5

be executed at most three times and E at most two times (see Figure 1), the
path analysis can infer that any execution of block A must begin in the time
frame δ(1) = [0,2] and similarly any execution of block E must begin within
δ(2) = [0,1]. Thus, the path analysis always operates only on the CFGs of the
individual tasks, not on the PEG. The PEG is only used to compute the possible
runtimes of the basic blocks within the tasks.

The path analysis for node BE yields δ(1) = [2,3] (due to the loop at A which
must complete before B) and δ(2) = [0,1]. Here we can see the application of the
computed δ-values: We can exclude this node from the PEG and thus from the
analysis. Through the δ-values we know, that at this point blocks B and E cannot
be executed concurrently because their execution time windows do not overlap.
All blocks for which we can prove this can be removed from the PEG as long as
their δ-values stay unmodified. In Figure 2 these removed blocks are marked by
a dotted border. If accesses to a shared resource, with a duration of one cycle,
would occur in B and E we would still obtain the same PEG which shows that
these accesses can never interfere with each other.

4.1 Framework

The phases of our WCET analysis framework are shown in Figure 3. We are
using the same CFG reconstruction, value analysis and path analysis stages
as the classical WCET analysis [19]. These stages also work for each task in
separation. Only for the microarchitectural analysis, we first construct the initial
PEG states, based on the system schedule. Then we conduct a data-flow analysis
on the PEG until the PEG itself as well as the associated system states have
reached a fix-point. From this converged PEG we extract the basic block runtimes
that are finally used to compute the WCET and BCET in an IPET-based path
analysis.

PEG-Driven
Parallelism Analysis

Value
Analysis

Value
Analysis

CFG
Recon-
struction

CFG
Recon-
struction

Task 1
Object
Code

Task n
Object
Code

...

Basic Block
Runtime
Extraction

Basic Block
Runtime
Extraction

Path
Analysis

Path
Analysis

Task 1
BCET/WCET

Task n
BCET/WCET

...

Fig. 3: The analysis framework. The dashed parts are new contributions com-
pared to [19] and will be discussed in the next sections.

6 Timon Kelter and Peter Marwedel

4.2 Prerequisites

To precisely define our analysis procedure we will need some terminology which
is introduced in the following.

Given a set of tasks T together with CFGs Gτ = (Vτ ,Eτ) for all τ ∈ T , a task
execution position ψτ is a tuple (v, i, c, d), where v ∈ Vτ is a basic block, i ∈ v is
an instruction within that basic block and c is the number of cycles that were
already spent on the processing of this instruction. Finally, d is the number of
cycles that the task must wait until its execution will begin. A system execution
position (SEP) Ψ on n cores is an n-tuple with Ψ ∈ Ψ̂ = ⨉

n
i=1 ψ̂τi ∪ {⊤}, τi being

the task mapped to core i. The special token ⊤ indicates that the respective core
is currently running idle. Here and in the following we use Â to denote the set of
all tuples of type A. The motivation for this definition is, that other than in our
introductory example from Figure 2, real basic blocks will contain more than one
instruction2 each of which may take multiple cycles to complete. Still we need
to be able to split the execution of each basic block into chunks which may be
as small as a single CPU cycle, as we will see in the following. We will use SEPs
to specify the point at which the execution is resumed in a PEG block, therefore
SEPs correspond to the block labels from Figure 2 (e.g. AE, BE, AF, etc).

An abstract parallel system state (APSS) Σ ∈ Σ̂ is a structure which models a
set of concrete states of an entire parallel system, including all cores and memory
hierarchy elements. Again, Σ̂ is the set of all possible APSSs. We give more detail
on how to form proper APSSs at a later point, for now we only require a cycle
step function ξΣ ∶ Σ̂× Ψ̂ ×2{1,...,n} → ({0,1}n×Σ̂). The invocation of ξΣ(Σ,Ψ,α)
must simulate all possible state transfers that may happen when a single clock
cycle is executed at position Ψ in system state Σ. However, only the cores in
the set α ⊆ {1, . . . , ∣T ∣} may perform a cycle step, to be able to account for
different release times. For any instruction completion vector c ∈ {0,1}n which
may occur in this cycle, it must specify the result state, where c defines for each
core, whether it has completed the execution of its current instruction (1) or not
(0). The “current instruction” is always given by the “program counter” register
value.

The APSSs will be subject to a data-flow analysis, therefore we also require
a partial order ⊑ on Σ̂ such that (Σ̂,⊑) is a lattice [7], with a supremum or join
function ⊔ ∶ Σ̂×Σ̂ → Σ̂. Intuitively, since APSSs represent sets of concrete states,
Σ1 ⊑ Σ2 specifies whether Σ2 completely contains Σ1. To ensure the termination
of the data-flow framework ξΣ must also be monotonic with respect to ⊑.

A Parallel Execution Graph GP = (VP ,EP) is a directed graph with node
set VP ⊆ Ψ̂ ∪ {⊥} and edge set EP ⊆ VP × VP . ⊥ is a special PEG node which
is exclusively used to model the situation that the execution of the parallel
system has not yet started. For any PEG we define a block time window function
δ ∶ VP → În, an edge state function λ ∶ EP → Σ̂ and a block length function
ωP ∶ VP → N. Î = {[x, y] ⊂ 2N∣x ≤ y} is the set of all execution time intervals,
measured in cycles from the last point where all cores were synchronized. The

2 In the example we have not even differentiated between basic blocks and instructions.

Parallelism Analysis: Precise WCET Values for Complex Multi-Core Systems 7

Algorithm 1 PEG-driven parallelism analysis
1 function ParallelismAnalysis(Σstart, Gτ1 , ..., Gτn)
2 ∀τ ∶ ∀v ∈ Vτ ∶ ωC(v) = ∅ ▷ Initialize all context block runtimes to ∅
3 Q← (vstart

τ1 ,0,0, r1) × ⋅ ⋅ ⋅ × (vstart
τn ,0,0, rn) ▷ Initialize start block

4 GP ← (Q ∪ {⊥},∅)
5 δ(⊥)← [0,0]n, ωP (⊥)←∞ ▷ Initialize pre-execution state ⊥
6 ∀v ∈ Q ∶ δ(v)← ∅n, λ((⊥, v))← Σstart, ωP (v) =∞ ▷ Initialize start state
7 while Q ≠ ∅ do
8 v = PopFront(Q) ▷ Analyze next block
9 ωC ←GatherNewBBTraces(ψ,GP , ωP , ωC) ▷ Update ωC

10 for i ∈ {1, . . . , n} do ▷ Update δ-window for all cores
11 δ(v)(i) ← ⋃(u,v)∈EP δ(u)

(i) + ω(u)
12 if IsLoopHeadOrExit(v(i)) then
13 δ(v)(i) = ri +PathAnalysis(v(i),Gτi , ωC)
14 if ∀i∈{1,...,n}δ(v)(i) ≠ ∅ ∧⋂ni=1 δ(v)(i) = ∅ then ▷ If BEC holds ...
15 continue ▷ ... skip the current block v ...
16 else ▷ ... else analyze v
17 λprev ← λ, GP,prev ← GP
18 (GP , λ, ωP)← AnalyzeBlock(v,GP , λ, ωP)
19 if λprev ≠ λ ∨GP,prev ≠ GP then ▷ If graph or states were altered ...
20 ∀(v, z) ∈ EP ∶ PushBack(Q,z) ▷ ... propagate the changes.
21 if EP,prev ≠ EP then ▷ If edges were added ...
22 ∀v ↝GP z ∶ PushBack(Q,z) ▷ ... propagate δ-changes
23 return ωC

time window function will be used to rule out infeasible SEPs as indicated in
Figure 2, the edge state function is used to propagate the possible hardware
states from one PEG node to the other and the block length function specifies
how many cycles were spend on the execution of a PEG node. The three functions
are not defined a priori. They will be computed by the algorithms presented in
the following.

We denote by v1 ↝G v2 that there is a path in the directed graph G = (V,E)

from v1 ∈ V to v2 ∈ V , i.e. that v2 is reachable from v1.
Our goal in the parallelism analysis is to compute the CFG block lengths

ωC ∶ Vτ → Î, which are then used by the path analysis. Note this these are not
identical to ωP . The block lengths in Figure 1 are given by ωC , whereas the
block lengths in Figure 2 are given by ωP .

4.3 Analysis Algorithm

The outline of the main analysis is shown in Algorithm 1.It starts with an initial-
ization of the initial context block runtimes ωC in line 2 and of the work-list Q
in line 3. According to the system schedule, the SEP consists of the begin of the
start block of each task (vstart

τi) with a delay of ri cycles. This SEP is assigned a
time window of [0,0]. We also create a virtual edge (⊥, v) pointing to it, which
is assigned the initial APSS Σstart. The start block ⊥ itself has a runtime of zero
cycles and executes in the start window [0,0] to mark that the schedule starts

8 Timon Kelter and Peter Marwedel

here. Then we process items from the queue Q until it gets empty (line 7). In
the main loop, we extract the first block v from the queue and check whether v
models the end of a basic block vτ on any core in the call to GatherNewBB-
Traces in line 9. For any such context block vτ , its runtime ωC(vτ) is updated
in GatherNewBBTraces as shown in Algorithm 2.

In line 11 we infer the block time window for all task positions v(i) ∈ v from
the windows and runtimes of its predecessors.3

If v is part of a sequential block chain, the δ-update in line 11 is sufficient.
On the other hand, if v is a loop head (like A in Figure 1) or a loop exit (like
B in Figure 1), then we have to take the loop bounds into account to determine
the block time window, like we have done in the computation of δ(1) in e.g. AE
and BE in Figure 2. This is done in line 13, where the existing path analysis of
our framework is used to compute the shortest and the longest path from vstart

τi

to v(i). We currently use an adapted IPET analysis based on Integer Linear
Programming [11] here, but advanced single-source all-sinks analyses would be
even better suited [8]. It follows the given loop bounds and uses ωC as the
runtime of individual basic blocks in Gτi . If any block u ∈ Gτi with u ↝Gτi v

(i)

and ωC(u) = ∅ exists, the path analysis will return ∅ for the path length to v(i),
thus keeping δ(ψ)(i) = ∅.

The δ values are used in line 14, where we try to apply the block exclusion
criterion by intersecting all block time windows. However, this test can only be
applied if the time windows for each task could already be determined, i.e., if
they are not empty. If the intersection is empty, this SEP cannot be reached
from its current predecessors and we its analysis in line 15. This is exactly what
we have done with BE in Figure 2. Still, we may need to analyze v in the future
when it becomes accessible via new edges. Then we will re-check whether our
exclusion criterion still holds. Thus, this skipping is effectively either postponing
or avoiding the graph growth at v.

If the exclusion criterion does not hold (line 16), we analyze the parallel
execution block (PEB) beginning at node v (line 18). This analysis will determine
a block runtime ωP (v), an output APPS for all out-edges of v and possibly
alter GP . If the output states or the graph are changed, we push the successors
of v into the work-list at line 20. By doing this, all changes to the block time
windows δ, edge states λ and block runtimes ωP will be propagated through the
graph. Finally, if we have added edges to the PEG, we also push all blocks z
which are reachable from v into Q (line 22), to ensure that a new attempt to
compute δ(z) is started, if z is a loop head or exit. The algorithm terminates
when no more edges are added and all edge states have converged.

All in all Algorithm 1 is a standard data-flow analysis work-list algorithm,
with the difference that we are dynamically expanding (line 18) the underly-
ing graph. When ParallelismAnalysis has finished, all reachable blocks of
all tasks will have been visited in one or more parallel execution blocks and
BBRuntime will therefore yield valid runtimes for all basic blocks.

3 Here and in the following we use ()(i) to access the i-th element of a tuple.

Parallelism Analysis: Precise WCET Values for Complex Multi-Core Systems 9

Algorithm 2 Update of basic block runtimes
1 function GatherNewBBTraces(v,GP , ωP , ωC)
2 for i ∈ {1, . . . , n}, (u, v) ∈ EP do
3 if v(i)(1) ≠ u(i)(1) then ▷ If v is context block start on core k, ...
4 uτ,pred = u(i)(1) ▷ ... collect the length of all paths to starts of uτ,pred ∈ Vτ .
5 ωC(uτ,pred)← ωC(uτ,pred) ∪TraceToStarts(uτ,pred, u, i,GP , ωP)
6 return ωC
7 function TraceToStarts(vτ , v, i,GP , ωP)
8 if v(i) = (vτ , i0,0,0) then ▷ If v(i) is a begin of vτ , ...
9 return ωP (v) ▷ ... finish this trace.

10 else ▷ Else continue with the recursion.
11 return ⋃(u,v)∈EP {ωP (v) +TraceToStarts(vτ , u, i,GP , ωP)}

To complete the view on the analysis, Algorithm 3 shows the function An-
alyzeBlock which is tightly coupled with Algorithm 1. First, the incoming
APSSs are joined in line 2. The current system execution position Ψrun is ini-
tialized to v (remember that VP ⊆ Ψ̂) and the block duration ωP (v) is set to
zero. Then we simulate the effect of successive system cycle steps on Ψrun and
Σrun, until on any core, either a) the end of a basic block is reached or b) the
successor SEP is ambiguous. The latter happens, when it is uncertain in APSS
Σrun whether the current instruction of at least one core will complete or not.
In this case we track all completion combinations in separate successor blocks.

The first step in each cycle is to invoke the APSS cycle step function ξΣ , which
is done in line 5, but only for those cores with zero delay cycles (set α). The APSS
cycle step function ξΣ returns a mapping κ ⊆ Î × Σ̂, i.e. it associates instruction
completion vectors to successor APSSs. Line 6 checks the two block termination
conditions a) and b) mentioned above. The helper function φαc ∶ Ψ̂ → Ψ̂ generates
the successor SEP for a given SEP Ψ , instruction completion vector c and active
core set α. If neither a basic block end is reached, nor the successor SEP is
ambiguous, we take over the results of the cycle step as our new working SEP
Ψrun and APSS Σrun in line 7 and increment the cycle counter for this block
in line 8. Here, Ψ (i)(1)run is the basic block executed by core i, κ(1)(1) is the first
instruction completion vector and κ(1)(2) is its associated successor APSS.

If the block end is detected, we terminate the current block as shown from
line 9 on. It will be one invariant of our analysis that the length of a block
can only stay the same or be reduced in successive analyses of the same block.
Therefore we only check in line 10, whether the block has been shortened. This
may happen due to a newly joined-in APSS, that triggers an earlier ambiguous
successor SEP. In this case, we remove all previous out-edges of the current
block v (line 11). In any case, we add for each instruction completion vector c
an out-edge to φαc (Σrun) which gets annotated with the respective out-state Σc
(lines 13–16). In the end, the modified graph, edge states and block lengths are
returned in line 18.

10 Timon Kelter and Peter Marwedel

Algorithm 3 PEG block analysis
1 function AnalyzeBlock(v,GP , λ, ωP)
2 Σrun ← ⊔∀e=(u,v)∈EP λ(e) ▷ Join incoming states
3 Ψrun ← v, ωP,prev ← ωP , ωP (v)← 0
4 while true do
5 κ← ξΣ(Σrun, Ψrun, α = {i∣Ψ (i)run = (⋅, ⋅, ⋅,0)}) ▷ Simulate next cycle in block
6 if ∣κ∣ = 1 ∧ ∄i ∶ (φα

κ(1)(1)(Ψrun))(i)(1) ≠ Ψ (i)(1)run then ▷ Split/Basic block end?
7 Σrun ← κ(1)(2), Ψrun ← φα

κ(1)(1)(Ψrun) ▷ If not, prepare next cycle
8 ωP (v)← ωP (v) + 1
9 else ▷ Else terminate the current block

10 if ωP (v) < ωP,prev(v) then ▷ Remove old edges on block shrinking
11 EP ← EP ∖ {(v,w) ∈ EP }
12 for (c→ Σc) ∈ κ do ▷ Add new successors and out-states
13 VP ← VP ∪ {vnew = φαc (Σrun)}
14 δ(vnew)← ∅n, ωP (vnew)←∞
15 EP ← EP ∪ {enew = (v, vnew)}
16 λ(enew)← Σc

17 break
18 return (GP , λ, ωP) ▷ Return all modifications

With Algorithm 3 we completed the macroscopic side of the analysis. In the
next subsection we will examine the microscopic perspective, namely how to
efficiently represent abstract parallel system states.

4.4 Parallel System State Models

An APSS must model the state of all microarchitectural components which are
relevant to the timing of the system, i.e. all cores and their pipelines and all
memory hierarchy elements (MHEs) like private and/or shared caches, buses and
memories. Here, state denotes an approximation of the relevant content of the
component as well as the operation that the component is currently performing.

Therefore we define an APSS Σ as a set of tuples, where each tuple contains
abstract states for each pipeline and memory hierarchy element in the system.
The rationale behind Σ being a set of tuples is, that we may have to split the
state, e.g. when two different paths in the pipeline must be considered. These
different execution paths may have identical instruction completion vectors, but
still we need to maintain them separately in a common Σ set, to trace the
different microarchitectural behaviors.

The driving force behind the microarchitectural simulation are the cores’
pipelines, which are modeled as non-deterministic finite-state machines [19]. In
each cycle, the abstract pipeline states follow all transitions which are enabled
according to their current state which includes the currently executing instruc-
tions. Multiple transitions may be enabled due to uncertainty in the analysis,
e.g. due to statically unknown memory access targets and register values. In such
a case, one successor state is generated for every possible transition. During the
abstract cycle step, the pipeline models issue memory transactions as dictated

Parallelism Analysis: Precise WCET Values for Complex Multi-Core Systems 11

by the machine specification. Completion of such transactions is signaled back
from the abstract MHE states to the affected pipeline state. Finally, the comple-
tion of instructions, known as the commit of an instruction, is communicated to
our framework via an entry in the instruction completion vector as introduced
in Section 4.2.

In every cycle step, i.e. every invocation of ξΣ , we perform the cycle step
independently on each tuple σ ∈ Σ. The results are then sorted by completion
vector and returned to returned to the PEG block analysis (Algorithm 3). Inside
the individual σ tuples we use established abstract domains, namely abstract
finite state machines for pipelines [19], cache block age maps for caches [19] and
TDMA offset sets for TDMA busses [5]. For FAIR and PRIO arbitration no
suitable abstractions were found in the per-core analysis. Since we explicitly
track parallel interleavings in the PEG, we can analyze these protocols for the
first time by providing abstract arbitration functions as shown in the following.

Arbitration functions A simplified version of the bus state is illustrated in
Figure 4, where a PEG block Ψ is shown. The state Σrun for this block (see
Algorithm 3) holds two sub-states, of which σ2 is presented in more detail. In this
sub-state the two cores in this example are currently performing a multiplication
and an instruction fetch. Bus B1 is a TDMA bus, from its state we know that we
currently are either at cycle 0 or 4 in the fixed-length, cyclic TDMA schedule.
The state for FAIR-arbitrated buses like B2 holds an overapproximation of the
cores which may have last accessed the bus. In the case of B2 this reveals that
the last access has definitely been carried out by core 2.

σ1 σ2

Σrun

Ψ
Pipeline 1 : MULTIPLY
Pipeline 2 : FETCH
Bus B1 State (TDMA): {0,4}
Bus B2 State (FAIR): {Core 2}

Fig. 4: An example PEG block Ψ with attached APSS Σrun.

With these state definitions we can easily define the abstract arbitration
functions which determine possible arbitration winners:

– TDMA: All cores whose grant window has a non-empty intersection with
the current TDMA offsets may be granted. If we assume a schedule of length
10 cycles, in which cycles [0−4] are assigned to core 1 (grant window of core
1) and cycles [5− 9] are assigned to core 2 (grant window of core 2), then in
the state from Figure 4 a request to B1 would only be granted for core 1.

– FAIR: All cores which are the next in the core list for at least one previously
accessing core cp may be granted. In Figure 4 if both cores request access to
B2, only the request from core 1 will be granted.

– PRIO: All requests with the highest priority may be granted. Thus for
PRIO we do not need to maintain any kind of state, since the arbitration
can be done solely based on the fixed priorities.

12 Timon Kelter and Peter Marwedel

Different arbitration outcomes are then distributed to different result tu-
ples σ. Since the PEG already carries the burden of constructing all possible
interleaving scenarios, we can formulate the arbitration analysis in a rather sim-
ple manner, here. By construction, this has not been possible for the standard
per-core WCET analysis approach.

4.5 Correctness

Formally complete proofs cannot be given here due to space constraints, but we
try to provide some intuition on why the analysis is correct. In the following, we
use GiP , λ

i, ωiP and δi to denote the PEG and the values of the three functions
after i-th iteration of the main loop of Algorithm 1. Also, we denote the PEG
node v that is analyzed in iteration i as vi. The special iteration number 0 is
used to denote the state before the first iteration of the main loop. First of all,
through the monotonicity of ξΣ , we can prove Lemma 1, which states that with
rising analysis iteration count, for each v ∈ VP the block runtime will only shrink,
the incoming APSS will only get more imprecise and the execution time intervals
for each task execution position will only become wider.

Lemma 1. For any iteration j of the main loop of the parallelism analysis
(line 7 in Algorithm 1), any iteration i < j and any SEP v, the following in-
variants hold:

1. ∀u ∈ V iP ∶ u↝Gi
P
v Ô⇒ u↝Gj

P
v,

2. λiin(v) ⊑ λ
j
in(v) where λiin(v) = ⊔e=(u,v)∈EiP λ

i
(e),

3. ωiP (v) ≥ ωjP (v), and
4. ∀k ∈ {1, . . . , n} ∶ δi(v)(k) ⊆ δj(v)(k).

For any possible task set execution, which we model as a sequence S of SEPs,
we can prove with Lemma 1, that the APSSs attached to the converged PEG are
safe over-approximations of the concrete system states with which S is traversed.
This yields Theorem 1.

Theorem 1. The basic block runtimes ωC as returned by Algorithm 1 are safe
over-approximations of the concrete block runtimes in any possible parallel exe-
cution scenario.

5 Analysis Extensions

If the underlying architecture is guaranteed to be free of timing anomalies [4],
then in each block analysis (Algorithm 3, line 5) we can skip all instruction
completion vectors c ∈ κ which are dominated by another vector, i.e. c1 ≺c c2 ⇔
∀i ∈ {1, . . . , n} ∶ c

(i)
2 ⇒ c

(i)
1 . The dominated vectors correspond to an earlier

termination of an instruction and since in a timing-anomaly-free architecture
every local worst-case action is always also the global worst-case action, we can

Parallelism Analysis: Precise WCET Values for Complex Multi-Core Systems 13

assume that they are never part of the worst-case path. This can drastically
reduce the state space and the PEG size.

In task sets with explicit synchronization points we have to consider these
points in the path analysis as shown in [13]. In addition we can also use them
to prune the PEG as we have done in Section 4, since a task which is waiting
for synchronization cannot progress until a partner has arrived to complete the
rendez-vous. This idea has already been used in [17] and similar to there, it can
be used on top of the timing information to further prune the PEG.

The extension of our framework to task sets with non-uniform periods is
also possible. With non-uniform task periods we can still compute the global
hyperperiod, i.e. the smallest common multiple of all task periods and build
a PEG for this hyperperiod. The problem that we face here is, that with the
current framework we cannot determine the absolute point in time at which we
are when a task instance has finished executing, since then we can no longer
compute the block time window on the basis of the local CFG and a task release
time. This means we would have to assume in every successive cycle step, that
the next task instance might start or not, which would drastically increase the
PEG size. However this can be limited if we take into account synchronization
structures or if timing-based approximations of the task instance spawn behavior
can be found.

6 Evaluation

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0%

50%

100%

PEG Block Count Reduction

A
na

ly
si
s
T
im

e
R
ed

uc
ti
on

2|FAIR 2|PRIO 2|TDMA 4|FAIR 4|PRIO 4|TDMA

Fig. 5: Efficiency of the block exclusion criterion on example benchmarks for
varying number of cores and arbitration policies. The solid line is a linear re-
gression of the data points.

We implemented the analysis algorithms inside the WCC compiler frame-
work [2], which was also used in [6]. We ran our evaluations on single-core tasks
from the MRTC and DSPStone real-time benchmark suites. Out of these single-
core tasks we formed packages of 2 to 4 tasks, all of which were assigned a release
time of 0. We analyzed the system topology from Section 3 with 2 or 4 cores, de-
pending on the task set. In the evaluation, we focus on analyzing state-permeable

14 Timon Kelter and Peter Marwedel

Table 1: Average analysis time and
PEG sizes.

Schedule Analysis Duration #PEBs

FAIR C|N 4s 0
FAIR P|O|N 1,695s 2,177
FAIR P|B|N 583s 1,223
FAIR C|T 6s 0
FAIR P|O|T 2,065s 9,595
FAIR P|B|T 801s 7,828
PRIO P|O|N 1,438s 1,800
PRIO P|B|N 514s 1,175
PRIO P|O|T 1,971s 6,971
PRIO P|B|T 808s 5,118

P|
O
|T

P|
B
|T

P|
O
|N

P|
B
|N C
|T

C
|N

100%

120%

140%

160%

180%

Configuration

A
vg

.R
el
at
iv
e
W

C
E
T PRIO FAIR

Fig. 6: Relative WCET results.

bus arbitration methods (PRIO and FAIR) which were not analyzable (PRIO) or
not precisely analyzable (FAIR) without the presented parallelism analysis. The
bus which is arbitrated by these methods is the shared memory bus introduced
in Section 3.

In Figure 5 the results of our block exclusion criterion (BEC) from Algo-
rithm 1, line 14 are shown. Each mark represents one analysis run on one task
set. The circle marks indicate runs where the shared bus was configured for FAIR
arbitration, the triangles correspond to fixed priority-based arbitration and the
squares correspond to TDMA. Non-filled (filled) marks are analysis runs with the
2-core (4-core) system. The x-axis value is the number of PEG blocks that are
generated during the analysis, when the BEC is used compared to the case when
it is not used (100%). On the y-axis the required analysis time is shown, also
compared to the case that the BEC was not used (100%). From the data points
and the solid regression curve it is visible that the analysis time scales roughly
linearly with the number of PEG blocks, which was expected, since the runtime
of the main loop in Algorithm 1 depends on the total number of blocks. The
variations stem from the convergence behavior of the individual benchmarks,
i.e. how often loops have to be visited until the attached APSSs converge. More
importantly, we can see from Figure 5 that the BEC is effective, as on average it
rules out 35.6% of all blocks and leads to a reduction in analysis time of 49.7%.

The average resulting analysis time is presented in Figure 1. The column
“Analysis” shows which type of WCET analysis was tested. We compare the
classical multi-core WCET analysis [1] (abbr. “C”) to our new parallelism anal-
ysis with (abbr. “P|B”) and without (abbr. “P|O”) usage of the block exclusion
criterion. As already seen in Figure 5, “P|B” is always superior to “P|O” but both
are slower than the classical approach “C” by a factor of 130 on average. This is
a result of the more complex system state and of the thousands of parallel inter-
leavings that have to be explored, whereas the classical analysis only operates on
the CFG of a single task and the state of a single core. The last element of the
“Analysis” column shows whether the architecture was assumed to have timing

Parallelism Analysis: Precise WCET Values for Complex Multi-Core Systems 15

anomalies (abbr. “T”) or not (abbr. “N”). As presented in Section 5, this can be
used to drastically reduce the PEG size, which is visible in Figure 1 in column
“#PEBs”, which holds the average number of PEG blocks for this analysis sce-
nario. The configurations where absence of timing anomalies was assumed (“N”)
produce far lower PEG sizes and analysis times than their counterparts (“T”).

The benefits we get from the parallelism analysis (“P”-configurations) at the
price of increased analysis times are that we can analyze the PRIO arbitration
for the first time and that we can significantly reduce the arbitration delay esti-
mations for FAIR arbitration.

Details on both aspects are presented in Figure 6, where the average of the
quotient of WCET and measured runtime (MRT) is shown for different analysis
configurations from Figure 1. Remember here, that we can only determine a safe
upper bound WCET est on the real WCET real in all of our analyses. Therefore
the above quotient is a bound on the WCET overestimation, since byWCET est ≥

WCET real ≥MRT we have that WCET est÷MRT ≥WCET est÷WCET real. Each
MRT was determined by simulating the task set execution for the given system
configuration on the cycle-true virtual prototyping IDE CoMET [16].

First of all, we can see in Figure 6 that the PEG-based WCET analyses (all
configurations containing “P”) for a system with PRIO arbitration yield results
that are comparable to those for FAIR arbitration. The remaining overestimation
is mostly due to other unavoidable sources of imprecision, like loose loop bounds
and pipeline and value analysis overestimation. Also, we see that the restriction
to timing-anomaly free architectures (all configurations with “N”) enables not
only reduced analysis times (cf. Figure 1) but also tighter WCET estimations.
The usage of the block exclusion criterion (configurations with “B”) also leads to
slightly decreased overestimation.

Finally, the “C”-configurations show the overestimation for the classical
WCET analysis framework, which can only assume the maximum possible delay
for every access in state-permeable arbitration policies. Our new parallelism-
based analysis is able to clearly outperform this approach, being 32% more
accurate on average, but of course at the expense of increased analysis times.

7 Conclusions

We have presented a new type of WCET analysis which can precisely bound the
runtime of safety-critical tasks running on complex multi-core systems. This is
achieved by exploring all possible execution interleavings of a parallel periodic
task set. A parallel execution graph (PEG) is employed to represent the inter-
leavings in compressed form, a concept that was already used in [17]. What is
genuine to the application of the PEG in WCET analysis is firstly that here we
must work at the granularity of single machine cycles which drastically increases
the graph size. But secondly and more importantly we can also use the timing
information that we are generating for pruning parts of the graph which we prove
to be not reachable in any real execution through the use of a new timing-based
block exclusion criterion.

16 Timon Kelter and Peter Marwedel

We tested this analysis on a prototype implementation. For a shared bus
scheduled under a fair round-robin policy we observed WCET reductions of 32%
on average, compared to previous analysis approaches. For fixed priority-based
scheduling no previous individual-access analysis methods exist. Here we could
derive WCET values with a tightly bounded maximum overestimation of only
30–50% on average, which is comparable to the single-core WCET overestimation
ratio of our analyzer. In the future we plan to explore combinations of the block
exclusion criterion and synchronization-aware analysis to further reduce the PEG
size and lift the restriction that all tasks must have a uniform period. We also
seek to evaluate the performance of the PEG-based analysis for systems with
shared caches, for which up to now only pessimistic analyses existed.

8 Acknowledgments

This work was partially supported by EU COST Action IC1202: Timing Analysis
On Code-Level (TACLe). The authors would also like to thank Synopsys for the
provision of the virtual prototyping IDE CoMET.

References

1. Chattopadhyay, S., Kee, C., Roychoudhury, A., Kelter, T., Marwedel, P., Falk, H.:
A Unified WCET Analysis Framework for Multi-Core Platforms. In: Real-Time
and Embedded Technology and Applications Symposium (2012)

2. Falk, H., Lokuciejewski, P.: A Compiler Framework for the Reduction of Worst-
Case Execution Times. Journal on Real-Time Systems 46(2), 251–300 (October
2010)

3. Gustavsson, A.: Worst-Case Execution Time Analysis of Parallel Systems. In: Nys-
tröm, D., Nolte, T. (eds.) Real Time in Sweden 2011. pp. 104–107. Dag Nyström
and Thomas Nolte (June 2011)

4. Hahn, S., Reineke, J., Wilhelm, R.: Towards Compositionality in Execution Time
Analysis – Definition and Challenges. In: International Workshop on Compositional
Theory and Technology for Real-Time Embedded Systems (December 2013)

5. Kelter, T., Falk, H., Marwedel, P., Chattopadhyay, S., Roychoudhury, A.: Bus-
Aware Multicore WCET Analysis through TDMA Offset Bounds. In: Euromicro
Conference on Real-Time Systems. pp. 3–12. Porto, Portugal (July 2011)

6. Kelter, T., Harde, T., Marwedel, P., Falk, H.: Evaluation of Resource Arbitration
Methods for Multi-Core Real-Time Systems. In: International Workshop on Worst-
Case Execution Time Analysis (July 2013)

7. Kildall, G.A.: A Unified Approach to Global Program Optimization. In: Sympo-
sium on Principles of Programming Languages. pp. 194–206. ACM, New York,
USA (1973)

8. Kleinsorge, J.C., Falk, H., Marwedel, P.: Simple Analysis of Partial Worst-Case
Execution Paths on General Control Flow Graphs. In: Proceedings of the Interna-
tional Conference on Embedded Software. pp. 1–10 (September 2013)

9. Knoop, J., Steffen, B., Vollmer, J.: Parallelism for Free: Efficient and Optimal
Bitvector Analyses for Parallel Programs. ACM Trans. Program. Lang. Syst. 18(3),
268–299 (May 1996)

Parallelism Analysis: Precise WCET Values for Complex Multi-Core Systems 17

10. Li, Y., Suhendra, V., Liang, Y., Mitra, T., Roychoudhury, A.: Timing Analysis of
Concurrent Programs Running on Shared Cache Multi-Cores. In: IEEE Real-Time
Systems Symposium. pp. 57–67. IEEE Computer Society, Washington, USA (2009)

11. Li, Y.T.S., Malik, S.: Performance Analysis of Embedded Software Using Implicit
Path Enumeration. In: Proceedings of the Annual ACM/IEEE Design Automation
Conference. pp. 456–461. ACM, New York, USA (1995)

12. Mittermayr, R., Blieberger, J.: Timing Analysis of Concurrent Programs. In: In-
ternational Workshop on Worst-Case Execution Time Analysis. pp. 59–68 (2012)

13. Potop-Butucaru, D., Puaut, I.: Integrated Worst-Case Execution Time Estimation
of Multicore Applications. In: Maiza, C. (ed.) International Workshop on Worst-
Case Execution Time Analysis. pp. 21–31. Dagstuhl, Germany (2013)

14. Schliecker, S., Negrean, M., Nicolescu, G., Paulin, P., Ernst, R.: Reliable Perfor-
mance Analysis of a Multicore Multithreaded System-on-chip. In: International
Conference on Hardware/Software Codesign and System Synthesis. pp. 161–166.
ACM, New York, USA (2008)

15. Schranzhofer, A., Pellizzoni, R., Chen, J.J., Thiele, L., Caccamo, M.: Worst-Case
Response Time Analysis of Resource Access Models in Multi-Core Systems. In:
Design Automation Conference (2010)

16. Synopsys Inc.: CoMET System Engineering IDE. http://www.synopsys.com
17. Taylor, R.N.: A General-purpose Algorithm for Analyzing Concurrent Programs.

Communications of the ACM 26(5), 361–376 (May 1983)
18. Valmari, A.: Eliminating redundant interleavings during concurrent program ver-

ification. In: Odijk, E., Rem, M., Syre, J.C. (eds.) Parallel Architectures and Lan-
guages Europe, Lecture Notes in Computer Science, vol. 366, pp. 89–103. Springer
Berlin Heidelberg (1989)

19. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P., Staschulat, J., Stenström, P.: The Worst-Case Execution Time Prob-
lem - Overview of Methods and Survey of Tools. ACM Trans. Embed. Comput.
Syst. 7(3) (2008)

http://www.synopsys.com

	Parallelism Analysis: Precise WCET Values for Complex Multi-Core Systems
	Introduction
	Related Work
	System and Task Model
	Parallelism Analysis
	Framework
	Prerequisites
	Analysis Algorithm
	Parallel System State Models
	Correctness

	Analysis Extensions
	Evaluation
	Conclusions
	Acknowledgments

