Computation Offloading by Using Timing Unreliable
Components in Real-Time Systems

Wei Liu * 2, Jian-Jia Chen 2, Anas Toma 2, Tei-Wei Kuo *, Qingxu Deng !
! Northeastern University, China, 2 Karlsruhe Institute of Technology (KIT), Germany
3 TU Dortmund University, Germany, ¢ National Taiwan University, ‘Academia Sinca, Taiwan

ABSTRACT

There are many timing unreliable computing components in
modern computer systems, which are typically forbidden in
hard real-time systems due to the timing uncertainty. In
this paper, we propose a computation offloading mechanism
to utilise these timing unreliable components in a hard real-
time system, by providing local compensations. The key of
the mechanism is to decide (1) how the unreliable compo-
nents are utilized and (2) how to set the worst-case estimated
response time. The local compensation has to start when the
unreliable components do not deliver the results in the es-
timated response time. We propose a scheduling algorithm
and its schedulability test to analyze the feasibility of the
compensation mechanism. To validate the proposed mech-
anism, we perform a case study based on image-processing
applications in a robot system and simulations. By adopt-
ing the timing unreliable components, the system can handle
higher-quality images and with better performance.

1. INTRODUCTION

Nowadays, embedded systems are commonly used in med-
ical devices, robots, transportation vehicles, etc. In these
critical systems, the system correctness depends not only
on the function reliability, but also on the timing correct-
ness. That is, the response time of an application must be
within a specific relative deadline. Especially in hard real-
time systems, missing deadlines may lead to catastrophic
consequences.

However, modern embedded systems are increasingly in-
tegrated with complicated applications. The limited re-
sources, such as the battery capacity, the memory sizes, and
the processor speed, cannot satisfy the demand for such com-
plex applications. Due to the stringent resource availability
and computation power in embedded systems, the tasks typ-
ically cannot process high volumes of data. To resolve these
issues, offloading heavy computation to some powerful com-
ponents has been shown as an attractive solution, including
optimizations for system performance [12] and energy sav-
ing [7].

If the components that are used to serve the offloaded
tasks as well as the communication channel are timing pre-

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

DAC’14 June 01-05 2014, San Francisco, CA, USA

Copyright is held by the owner/author(s). Publication rights licensed to
ACM..

dictable, these components can be adopted and used well in
hard real-time embedded systems. However, there are many
computing components in modern computer systems, which
are difficult for the system designers to analyze the tight
and useful worst-case execution time or worst-case response
time. For example, the modern commercial Graphics Pro-
cessing Units (GPUs) and Commercial off-the-shelf (COTS)
computing components are often not very easy to character-
ize the worst-case timing behavior since the implementation
details are not revealed. Without the details, the system de-
signers usually have no possibility to analyze the useful and
tight worst-case execution time or response time. Therefore,
such components are usually considered as timing unreliable
components and forbidden in hard real-time systems.

Motivation Example: However, adopting GPUs or COTS
components has many benefits, as they are typically faster
for some applications and can process higher volumes of
data. For example, a mobile robot commonly uses the Scale-
Invariant Feature Transform (SIFT) algorithm for object
recognition in a dynamic environment. If we consider a
Nvidia GeForce GT 630M GPU as the component for ex-
ecuting the offloaded tasks. By an image size of 300 x 200,
the average execution time on GT 630M is about 7ms with-
out any interference by other tasks. Its average execution
time on Intel Core i3-2310M CPU is about 278ms. There-
fore, if the relative deadline is 100ms, we can either reduce
the image size by executing SIFT on the CPU or we can use
the GPU, as it has a high potential to return the results in
the desired relative deadline. It is clear that GPU is a high
performance device, but running simultaneous tasks on the
GPU may result in much worse response time. Therefore, it
is also possible that the results are not returned before the
desired deadline.

Our Contributions: In this paper, we propose a com-
putation offloading mechanism to utilise timing unreliable
components in a hard real-time system, by providing local
compensations to handle the exceptional cases if the results
are not returned in time. Therefore, to design a sound com-
putation offloading mechanism by using timing unreliable
components, we have to deal with two issues: (1) how the
timing unreliable components are utilized and (2) how to set
the worst-case estimated response time, in which the local
compensation has to start as soon as the unreliable compo-
nents do not deliver the results in the estimated response
time. To evaluate the benefit for offloading a certain task to
a timing unreliable component, the benefit function for of-
floading is characterized as a discrete function with respect
to the estimated response time. Towards these two issues,
based on the benefit functions for offloading, we have the
following concrete technical contributions in this paper:

e One important technical issue in the mechanism is to

Published in Proceedings of the 51st Annual Design Automation Conference (DAC '14). ACM, New York, USA, Article 39,
6 pages. DOI=10.1145/2593069.2593109 http://doi.acm.org/10.1145/2593069.2593109

schedule the set of real-time tasks after the targeted es-
timated response times are specified. Towards this, we
propose a scheduling algorithm based on the earliest-
deadline-first (EDF) scheduling policy, and its schedu-
lability test to analyze the feasibility of the compen-
sation mechanism. The scheduling algorithm assigns
different deadlines to the subtasks, one for preparing
the offloading and one for handling the local compen-
sation, proportionally to their computation times.
e Moreover, to maximize the system performance, we re-
duce the studied optimization problem to the multiple-
choice knapsack problem based on the proposed schedu-
lability test, and adopt existing solutions of the multiple-
choice knapsack problem.
To validate the proposed mechanism, we perform a
case study based on image-processing applications in
a robot system and estimate the benefit functions with
respect to the image qualities under an unreliable net-
working environment and GPU servers. Moreover, to
understand the impacts of inaccurate response time
estimations in the timing unreliable components, we
also provide simulations to show the effectiveness of
the mechanism.

2. RELATED WORKS

The restrictions of limited resources on embedded systems
can be alleviated by computation offloading mechanism. For
example, in the literature, computation offloading has been
utilized for improving system performance, saving the en-
ergy consumption and improving quality of service on em-
bedded systems [3,7,12]. However, these results do not con-
sider to satisfy the timing constraints for real-time applica-
tions.

Computation offloading for real-time systems has been re-
cently studied [8,10,11]. Nimmagadda et al. in [8] develop
a system for real-time moving object recognition and track-
ing by computation offloading. In their system, a task is
offloaded to the server once the execution time on the server
together with the required data transfer time (called offload-
ing response time here) is shorter than the local execution
time on the client. Toma and Chen [11] propose a pseudo-
polynomial-time algorithm to decide when and what to of-
fload without violating timing constraints even when the
local execution time may be shorter than the offloading re-
sponse time. As computation offloading also requires the
server to be timing predictable, Toma and Chen [10] further
adopt resource reservations in the server site for ensuring
the offloading latency.

The above results [8,10,11] can work only when the servers
(components) to serve the offloaded tasks and the communi-
cation channel are timing reliable. When a task is greedily
offloaded but the results do not return in the estimated re-
sponse time, their approaches cannot be applied for ensuring
hard real-time properties.

3. TIMING RELIABLE OFFLOADING

This section presents the software architecture for reliable
computation offloading to be executed on timing unreliable
components. We consider the flexibility to either execute a
task locally or to execute a task on a server by computation
offloading. Here, a task is an active entity of a program in
an embedded system, and a server is an abstraction of any
components that can be used for executing the offloaded
tasks. We emphasize that the server may be timing unreli-
able. To characterize the execution behavior of a task 7; on

WCRT for EDF-based
Offfoading Resukts Scheduling | | 1 | Local Compensation
|! R N \ Manager
Cin Gia | T Timing Unreliable
——— — [[« | ‘ ‘ st
-_,::I > Offloading Decision ‘:)I ® Network Server
Manager ALt ® Cluster
Real Time c‘:‘ E <:-| ® Powerful Device
Operating System ®
‘ Our System

Benefit/WCRT ‘
Components a

Benefit Function

® Energy |
® Pperformance 1
® WCRT |

Existing
Components

LEGEND

Embedded

System

Figure 1: Software Architecture

an embedded system, we consider the following properties:

e (;, as the local execution time, is the worst-case exe-
cution time to execute task 7; locally on the embedded
system.

e (1, as the setup time for offloading task 7;, is the
worst-case execution time on the embedded system to
prepare the local preprocessing for offloading task ;.
It involves some local operations such as data compres-
sion, initialization, data transmission, etc.

e (2, as the local compensation, is the worst-case ex-
ecution time on the embedded system to handle the
local compensations when the results are not delivered
in the estimated time to ensure the timing and baseline
quality satisfactions. For example, to make sure that
the quality is at least as good as the one with local
execution, we can simply use the version for the local
execution time, in which C; 2 is C; under such a case.

e (; 3, as the post-processing time for offloading task 7,
is the worst-case execution time on the embedded sys-
tem to process the results from the server to ensure the
execution correctness. We assume that C; 3 < C; 2.

Moreover, as we focus on timing unreliable components,
to prepare for the worst cases, it is clear that we do not
need to consider C;3 under the assumption C;3 < Cj .
However, if the timing unreliable components can still have
some pessimistic upper bound of the worst-case response
time, C; 3 may be used if the expected worst-case response
time R; is set to be longer than the upper bound. The
extension to handle this case is pretty straightforward and
trivial. Due to the space limitation, and for the simplicity
of presentation, we will not consider this case.

3.1 Software Architecture

Based on the timing characteristics of real-time applica-
tions defined above, here, we present the software archi-
tecture for the proposed mechanism, as illustrated in Fig-
ure 1. The important system components in our mechanism
include Benefit and Response Time Estimator, Offloading
Decision Manager, and Local Compensation Manager. The
Benefit and Response Time Estimator evaluates and esti-
mates the corresponding benefit if task 7; is offloaded to be
executed on the unreliable component under an estimated
response time. The benefit depends on the properties re-
quired by the embedded system for exploiting the timing
unreliable component, which will be detailed in Section 3.2.
The Offloading Decision Manager, to be detailed in Sec-
tion 3.3, receives the discretized benefit function (from the
Benefit and Response Time Estimator) and decides which
tasks to be offloaded and the corresponding expected worst-
case response times to start the local compensations. One
important goal in the Offloading Decision Manager is to en-

sure the timing correctness even if the results do not return
in time. That is, the time to start the local compensation
should be further passed to the Local Compensation Man-
ager to handle exceptional cases, which can be implemented
by setting up timer-interrupts.

3.2 Benefit and Response Time Estimator

The benefit for offloading task 7; to a timing unreliable
component is important for the proposed mechanism. With-
out any timing information for the potential response time
from the unreliable components or the benefits for offloading
task 7;, we are not able to make proper offloading decisions.
Even though the timing unreliable component may not pro-
vide worst-case guarantees, typically, the average cases or
the percentile cases can be provided to the embedded sys-
tem. Moreover, if we focus on the performance improve-
ment, we would focus on the improvement of the resulting
quality by exploiting the timing unreliable components.

Even though the estimation for the response time from the
unreliable component may not be fully correct, with a proper
local compensation mechanism, we can still guarantee the
timing correctness. However, it is also noticeable that the
accuracy of the response time estimation is also very impor-
tant for making offloading decisions. If the response time
estimation is too pessimistic, the offloading option will not
be taken. On the other hand, if the response time estima-
tion is too optimistic, the offloading option may be taken,
and the local compensation is frequently adopted.

For the rest of this paper, we denote G;(r;) as the benefit
function of task 7; if the estimated response time is set to
r;. According to the definition, G;(r;) is a non-decreasing
function with respect to r;. The potential benefit values
can be (1) the probability to get computation results within
response time 7;, (2) the performance index improvement of
the results within response time r;, etc.

Specifically, there exist several frameworks and models,
for example probabilistic execution time and queuing theory
when G;(r;) is the probabilistic distribution, to characterize
Gi(r;) when the system is well-defined. Another possibility
is to use statistical analysis to estimate G;(r;). In our paper
and our case study based on image processing applications,
we will consider that G;(r;) is obtained based on statisti-
cal analysis and measurement, which will be explained in
Section 6.1.2.

For the rest of this paper, we will assume that G;(r;) is
a non-decreasing function, and the value changes at only
a fixed number of points. That is, G;(r;) is discretized.
Specifically, G;(0) stores the benefit for local execution. For
brevity, we suppose that there are @Q); points in the dis-
cretized benefit function, including the point at time 0. For
each of the @); discrete points in the benefit function for task
7, suppose that 7;; is the j-th point (from the smallest).
By definition, 7;,1 is 0 and 7;,; > 0 when j > 1.

3.3 Offloading Decision Manager

After the benefit function G;(r;) is established for each
task 7;, Offloading Decision Manager decides whether task
7; should be executed locally or offloaded to maximize the
total system benefit under timing satisfactions. Offloading
Decision Manager builds a wrapper library with communi-
cation methods to send data from the embedded system to
the timing unreliable components. To execute an offloaded
task 7; without sacrificing the timing correctness, the follow-
ing parameters should be properly set in Offloading Decision
Manager:

e The relative deadline of task 7; is set to D; 1 to specify

the timing requirement to finish the setup execution
(i.e., Ci,l)-

e The estimated worst-case response time from the server
R; to specify the expected worst-case response time
to receive the results for starting the post-processing
(i.e., Ci,3). If the offloaded task 7; returns within the
response time R;, we can start the post-processing;
otherwise, the local compensation (i.e., Cj2) will be
started.

The settings of D; 1 and R; are very important for the
proposed mechanism. On one hand, D;; and R; should be
maximized to achieve high benefit for offloading. On the
other hand, R; cannot be set too high, as the local compen-
sation may not be done in time.

4. PROBLEM DEFINITION

As shown in Section 3.3, the proposed mechanism requires
proper settings of several parameters for offloaded tasks to
utilize the timing unreliable components. Here, we consider
the most traditional real-time recurring task model, sporadic
real-time task model. FEach task 7; represents an infinite
sequence of jobs with the same properties, in which 7; is
characterized by its minimum inter-arrival time (also called
period) T; and relative deadline D;. That is, if a task 7;
releases an instance (called job) at time ¢, this job has an
absolute deadline ¢t + D; and the next job released by task
7; cannot be earlier than ¢ + 7;. Moreover, according to
Section 3, each task 7; is also characterized with its ben-
efit function G;(r;) and its execution time properties, i.e.,
Ci,Ci1,Ci 2, and C; 3. For the simplicity of presentation,
we consider implicit-deadline tasks, in which D; is equal to
T; for every task 7;. The approach can be easily extended
for constrained-deadline tasks, in which D; < T;.

We are given a set T of independent and preemptable
real-time tasks {71, 72, ..., T}, defined above. The objective
of the Offloading Decision Manager (ODM) problem is to
select a subset T’of the above n tasks and derive a schedule
to maximize > ., Gi([R;) in which all the jobs released by
all the tasks in T can still meet their deadline constraints.
The ODM problem is a NP-hard problem, which can be
reduced from the knapsack problem.

S. OUR ALGORITHM

To solve the ODM problem, we decompose the problem
into two subproblems. In the first subproblem, a schedul-
ing algorithm and its schedulability test should be provided
to analyze the feasibility of the compensation mechanism
when the estimated response times for offloaded tasks are
given. For this subproblem, we propose a scheduling algo-
rithm based on the earliest-deadline-first (EDF) scheduling
policy and its schedulability test to analyze the feasibility
of the compensation mechanism, which will be presented in
Section 5.1. The second subproblem is to select tasks for
offloading with proper settings of the estimated response
times for maximizing the benefit under feasible schedulabil-
ity. For this subproblem, we reduce to the multiple-choice
knapsack problem based on the proposed schedulability test,
and adopt existing solutions of the multiple-choice knapsack
problem, which will be presented in Section 5.2.

5.1 Scheduling under Given R,

Now, suppose that we are given a task partition, in which
T is the subset of the given task set T for being offloaded
and T is the subset of T for being locally executed on the
embedded system. Moreover, we assume that the estimated

response time R; is given for each task 7; in T°. Clearly,
T°UT"is T and T°NT" = .

The scheduling problem by considering T to meet the
timing constraints can be considered as a task system in
which a job may self-suspend itself during its execution once.
That is, after executing C; 1 on the embedded system, the
task 7; suspends itself by at most R; amount of time (via
offloading) and resumes for post processing or local compen-
sation. The model is the same as the self-suspending task
model, as described in [9]. From [9], it is known that fixed-
priority or earliest-deadline-first (EDF) are not efficient to
schedule self-suspending tasks. Therefore, most of the exist-
ing results for scheduling sporadic real-time tasks cannot be
applied directly to handle T° effectively. For example, the
naive EDF scheduling considers the two execution phases
C;1 and C; 2 as one job with the same absolute deadline,
but this performs poorly.

To satisfy the feasibility on the real-time embedded sys-
tem, in this section, we propose an EDF-based scheduling
algorithm by setting different absolute deadlines for the two
executions of C; 1 and C} 2, as follows:

For a job of task 7; in T (that is offloaded), arriving at
time ¢, we split this job into two sub-jobs:

e The first sub-job is triggered immediately at time t, its
relative deadline is D; ;1 = %, i.e., absolute
deadline is t 4+ D; 1, and has worst-case execution time
Cin.

e The second sub-job is triggered immediately when the
result returns from the server or R; expires and the job
of generated by this subtask has an absolute deadline
t + D; with worst-case execution time Cj .

Note that the sub-jobs generated by C; 1 for task 7; in task
set T? is also periodic with period T;, but the sub-jobs gen-
erated by Cj 2 may not be periodic.

Moreover, for a job of task 7; in T* (that is executed
locally), arriving at time ¢, the relative deadline is set to D;,
i.e., absolute deadline is t+ D;. After the absolute deadlines
are assigned, the scheduling policy will strictly follow the
original earliest-deadline-first scheduling by giving the job
in the ready queue with the earliest absolute deadline the
highest priority.

In order to analyze the feasibility of our algorithm, we de-
fine the demand bound function dbf(7;,t) for each task 7,
which is the maximum execution time of the sub-jobs gen-
erated by task 7; that must be finished within any interval
length equal to t. Suppose that the window of interest is an
interval (A, A 4+ t]. The demand that must to be finished in
this interval includes the jobs (of task 7;) that arrive no ear-
lier than A and have absolute deadline no later than A + t.
The definition is similar to the original demand bound func-
tion definition from Baruah et al. [2].

THEOREM 1. For task 7, € T°, the demand bound func-
tion dbf(7,t) can be upper bounded by
Ci1 + Ci2

dbf (i 1) < g xt. (1)

ProoOF. The proof is omitted. [

THEOREM 2. For task 1; € Tz, the demand bound func-
tion dbf(7,t) can be upper bounded by
C;
T.

dbf (i, t) < *1 (2)

ProoF. This comes directly from the definition of the
demand bound function for sporadic real-time tasks [2]. [J

THEOREM 3. For a given task partition, T° and T and
the estimated response time R; for each task T; in T°, the
EDF-based scheduling algorithm in Section 5.1 can feasibly
schedule T° if

Ciai+Cip2 g
D; — R; T;

T,eTe T, €T

<1 (3)

PRrOOF. Due to the space limitation, we only sketch the
proof by using the contrapositive argument. That is, assum-
ing the task set is not schedulable, which will lead to the
violation of Equation (3). There must be a sub-job which
will misses its absolute deadline. Suppose that the first time
that a sub-job misses the deadline is time t. Let to be the
time before ¢ when the system is idle. Therefore, the neces-
sary condition to have deadline misses is that the demand
received from to to t with absolute deadline less than or
equal to ¢ is larger than ¢ — to [4]. Therefore,

t—to< > dbf(ri,t—to)

T, €T

Czl+012
<
<1 D.—R, + Z

T, €T° T, €T

% (t —to),

Z

where <; comes from Theorems 1 and 2. Therefore, the
deadline miss enforces

1<Z 11+012+ZT (4)

T, €T° T, €Tt ¢

which proves this theorem due to the contrapositive argu-
ment. []

5.2 Selection of Offloaded Tasks

Under the scheduling scheme and its schedulability test
in Section 5.1, we still have to determine and set the esti-
mated worst-case response time R; from the server if task
7; is offloaded. We have to identify their contribution when
using the schedulability test in Theorem 3. There are two
cases: (1) when r;; is 0 (i.e., the first point among the Q;
discrete points), the contrlbutlon is denoted by w;1 = %,
and (2) when r; ; > 0, the contribution is denoted by w; ; =
Ci1+Ci 2

Di—rij °

For each of the above choice, we define a decision variable
xi,5. If &; ; = 1, it means the estimated worst-case response
time r; ; is selected. On the other hand, if x;; = 0, 74 ;
is not selected. Then the problem to maximize the total
benefits of our system can be formulated as follows:

n Q
maXZZIi,j * Gi(ri;) (5a)

i=1 j=1
n Q
s.t.: szi,j * Wi, 4 S 1 (5b)
i=1 j=1
Qi
> wiy =1, Vi (5¢)
j=1
x5 € {0,1}, Vi, j (5d)

The problem described in Equation (5) is the well-known
multiple choice knapsack problem. We adopt the dynamic
programming algorithm in [5] with pseudo-polynomial time

and the HEU-OE heuristic algorithm from [6] to find the
near optimal results. After applying these two algorithms,
we can decide for each task to offload or not to offload. In
addition, the estimated worst-case response time for each
task 7; can be decided. Moreover, based on Theorem 3, the
feasibility of the timing satisfactions of these decisions is also
guaranteed with local compensations.

For the brevity of notations, we assume that the setup
time Cj,1 and the local compensation C; 2 remain the same
regardless of the expected estimated response time R;. With
the presentation in this Section, it has also become clear
now that the proposed approach can also be used when the
benefit to achieve with r;; estimated response time only
needs C7, for setup time and C7, for local compensation.
We will evaluate our case study based on this extension.

6. EXPERIMENTS AND EVALUATIONS
6.1 Case Study
6.1.1 Experimental Setup

We consider a system equipped with cameras, in which
the cameras can capture the images from the environment.
Based on the captured images, some image processing al-
gorithms can help the embedded system to make decisions.
This is a typical use case when considering mobile robots for
making dynamic decisions during the navigation. We con-
sider 4 sporadic real-time tasks (1) Stereo Vision, (2) Edge
Detection, (3) Object recognition, and (4) Motion Detec-
tion.

When the cameras capture the images from the environ-
ment, to satisfy the timing constraint, the four tasks can
only handle these images with smaller sizes. We assume that
the camera is more powerful than the local computation ca-
pability. That is, the camera can provide higher-resolution
images, but the local computation capability can only pro-
cess smaller sizes by scaling the images to satisfy the timing
constraints. When the images are scaled, some important
informations on the pixels are lost. Sometimes, with the
lost information, these image processing applications can
not achieve good performance, which will affect the nor-
mal execution of the embedded system. However, offloading
the complicated computations to the powerful components
can reduce the task’s execution time. In our system, with
the saved execution time, we try to improve the total image
qualities for these applications.

In the case study, the client can be any mobile embedded
system. The client is connect with a GPU server by the lo-
cal wireless network. The GPU server has two Telsa M2050
GPUs, which can provide the remote GPU acceleration. De-
rived from the framework of rCUDA [1], we implement a
software proxy application running on the server side. To
offer the remote GPU acceleration, the proxy application
can generate multiple parallel threads to collect computa-
tions from the client and dispatch these computations on
GPUs. The proxy application is mainly implemented based
on OpenMP 4.0 and CUDA 5.0.

6.1.2 Benefit and Response Time Estimation

In our system, for each task 7;, in the stage of image scal-
ing, we divide the scaled images into @; levels. For the
different levels, the lost information and image sizes are also
different. The scaling level will directly affect the task exe-
cution time, the transfer time and the performance. So for
each level j, 03,1 contains data initialization, image scaling
time and data transfer time. In our system, the GPU server

in the network environment is a timing unreliable compo-
nent.

For the given images of level j, the response time for task
7; from the GPU server depends on many factors. We can
estimate the worst-case response time r; ; by using coarse-
grained statistic estimation of r; ; under the considerations
of the network transfer time, receiving time, processing time
on the server host (which handles the GPU boards), and the
response time on the GPU.

Moreover, to construct the benefit function G;(r;), we
need to define the benefits of different levels for each task ;.
The benefits of the four tasks in our case study are different.
Specifically, these benefits are related with the scaling lev-
els and image qualities. In this case study, we use the peak
signal-to-noise ratio (PSNR) as a quantitative benefit value,
which represents the image quality of each scaling level.

Then we can establish G;(r;) for the four tasks as Table
1 with statistic data.

6.1.3 Experimental Results

We evaluate the following setting of periodic tasks. In or-
der to satisfy the feasibility of all tasks on the CPU, we set
the relative deadline of 71 and 7 as 1.8s. The relative dead-
line of 73 and 74 are 2s. Then according to the importance
of each task, we define the weight value of each task 7; as
1,2,3,4.

We consider the three scenarios as follows: the first sce-
nario is that the GPU server in the network condition is
busy to process other applications. Only a small number of
offloaded tasks can get computation results. The second sce-
nario is that the GPU server in the network condition is not
busy, but it still processes some other applications. a part
of offloaded tasks can get computation results successfully.
The third scenario is that the GPU server is idle and it only
process these offloaded tasks. A large number of offloaded
tasks can get computation results. We measure the total
image quality values of the three scenarios for 10s.

There are 24 different combinations for the four tasks with
four different weight values. We can use dynamic program-
ming algorithm in Section 5.2 to get the offloading decisions
for each task, that is optimal for the integer linear program-
ming in Equation (5). As Figure 2, the total weighted image
qualities of the three scenarios are normalized to that of the
worst case, when no offloaded task get computation results
respectively.

From the Figure 2, we can see that when the number of
tasks is small, the dynamic programming can always find the
optimal results for the integer linear programming in Equa-
tion (5). When the timing unreliable component can not
deliver computation results, the local compensation mecha-
nism can effectively guarantee the feasibility of the real-time
embedded system. For the average case, the image process-
ing applications in our mechanism can achieve better image
qualities improvement, which is beneficial to the system.

6.2 Simulation setup and results

In this section, we evaluate the effectiveness of the pro-
posed mechanism when the benefit function G;(r;) for task
T; is erroneous, which aligns with our assumptions. We sim-
ulate the dynamic programming algorithm [5] and the HEU-
OE algorithm [6] under different estimation errors. The sim-
ulated case is to evaluate a system by offloading tasks to a
timing unreliable component for higher-performance output,
in which G;(r;) is the probability to obtain the successful re-
sults of task 7; within response time r;. The system objective
for >, Gi(R;) is the expected number of higher-performance

Table 1: The construction of G;(r;)

Task Description G;(0) ri2 Gi(ri2)

Gi(ris) Ti4 Gi(ria) Ti5 Gi(ris)

T1 Stereo Vision 22.4897 | 195.2814 ms | 30.5918

207.4508 ms | 33.2853 | 222.2878 ms | 36.6047 | 236.502 ms 99

T2 Edge Detection 28.1574 | 253.3242 ms | 35.0431

312.4523 ms | 37.7277 | 362.4235 ms | 41.4977 | 420.341 ms 99

T3 Object recognition | 23.9059 | 148.2351 ms | 28.5648

161.4224 ms | 31.9884 | 174.3242 ms | 35.3082 | 188.803 ms 99

Ta Motion Detection | 21.0324 | 343.637 ms | 28.3015

485.459 ms | 32.957 | 622.091 ms | 36.1414 | 891.36 ms 99

—=— Scenario 1 (GPU server busy)
—e— Scenario 2 (GPU server not busy)
—a— Scenario 3 (GPU server idle)

3.0 "\.A'/(.“w'ﬁ"”'.
e A A

10
T T T T T T
[5 10 15 20 25

Work Set

Normalized Total Weighted Benefits

Figure 2: Case study results

tasks returned in time in the schedule.

A set of 30 real-time tasks are randomly generated. In the
simulation, each task 7; is generated as follows:

e (;1 and C; are random values from 0 to 20ms, C; 2
is equal to C;. D;, which is equal to T;, is a random
integer value from 600ms to 700ms.

e In benefit function G,(r;), the benefit values are prob-
ability values to get computation results 10%, 20%,
..., 100%. The associated estimated response time is
randomly generated from 100ms to 200ms with an in-
creasing order.

Since the Benefit and Response Time Estimator does not
require perfect information of the G;(r;), we simulate the al-
gorithms under different estimation accuracy ratios. Specif-
ically, when the estimate accuracy ratio is x, the Benefit
and Response Time Estimator uses G((1 + z) - 7;). The
negative estimation accuracy ratio (i.e., x < 0) means an
under-estimation of the response time. Therefore, the prob-
ability function to get the result within response time r;
is over-estimated. The positive estimation accuracy ratio
(i.e., x > 0) means an over-estimation of the response time.
Therefore, the probability function to get the result within
response time r; is under-estimated.

Figure 3 presents the normalized total benefit derived
from the dynamic programming algorithm and the HEU-
OE algorithm under different estimation accuracy ratio, by
normalizing to the perfect estimation (i.e., x = 0) with dy-
namic programming. From the Figure 3, we can see that
the accurate benefit function G;(r;) is important for the
system improvement. Under-estimating or over-estimating
the response time from the timing unreliable component
will introduce wrong decisions for offloading tasks. If the
response time estimation is over-estimated, the offloading
option will not be taken. On the other hand, if the re-
sponse time estimation is under-estimated, the offloading
option may be taken, and the local compensation is more
frequently adopted than expectations.

7. CONCLUSIONS

In this paper, we propose a computation ofloading mech-
anism to utilise some powerful timing unreliable compo-
nents in a hard real-time system. We propose an Earliest-
Deadline-First based algorithm to schedule offloaded tasks
with estimated response time and analyse the feasibility of
the compensation mechanism. By establishing a benefit
function for each task, we adopt two algorithms from the
multiple choice knapsack problem to decide the estimated

—=—HEU-OE

—=e— Dynamic Programming

1.04

0.94

0.8

0.7

0.6

Normalized Total Benefits

05 T T T T T T T T T
-40 -30 -20 -10 0 10 20 30 40

Estimation Accuracy Ratio (%)

Figure 3: Simulation Results

worst-case response time for each task. Then, from a case
study, we can see that our mechanism can effectively improve
the system performance. In addition, from the simulations,
we can see the effectiveness of the algorithms from multiple
choice knapsack problem with different estimation accuracy.

Acknowledgement This work was partially sponsored by
the German Research Foundation (DFG) as part of the priority
program "Dependable Embedded Systems”, Deutscher Akademis-
cher Austauschdienst (DAAD), Taiwan MOST under Grant No.
100-2221-E-002-120-MY 3, the National Key Technology Research
and Development Program of China Grant No. 2012BAF13B08
and Grant No. 2012BAK24B0104, Research Fund for the Doc-
toral Program of China Grant No. 20110042110021.

References
[1] The rCUDA website. http://www.rcuda.net/.

[2] S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively
scheduling hard-real-time sporadic tasks on one processor. In
IEEE Real-Time Systems Symposium, pages 182-190, 1990.

[3] G. Chen, B.-T. Kang, M. Kandemir, N. Vijaykrishnan, M. J.
Irwin, and R. Chandramouli. Studying energy trade offs in
offloading computation/compilation in java-enabled mobile
devices. Parallel and Distributed Systems, IEEE Transactions
on, 15(9):795-809, 2004.

[4] H. Chetto and M. Silly-Chetto. Scheduling periodic and
sporadic tasks in a real-time system. Inf. Process. Lett.,
30(4):177-184, 1989.

[5] K. Dudzinski and S. Walukiewicz. Exact methods for the
knapsack problem and its generalizations. European Journal of
Operational Research, 28(1):3-21, 1987.

[6] S. Khan. Quality adaptation in a multi-session adaptive
multimedia system: model and architecture. Canada:
Department of Electronical and Computer Engineering,
University of Victoria. Thesis (PhD), 1998.

[7] Z. Li, C. Wang, and R. Xu. Computation offloading to save
energy on handheld devices: a partition scheme. In CASES,
pages 238-246, 2001.

[8] Y. Nimmagadda, K. Kumar, Y.-H. Lu, and C. G. Lee.
Real-time moving object recognition and tracking using
computation offloading. In Intelligent Robots and Systems
(IROS), pages 2449-2455. IEEE, 2010.

[9] F. Ridouard, P. Richard, and F. Cottet. Negative results for
scheduling independent hard real-time tasks with
self-suspensions. In Real-Time Systems Symposium, pages
47-56, 2004.

[10] A. Toma and J.-J. Chen. Computation offloading for
frame-based real-time tasks with resource reservation servers.
In Euromicro Conference on Real-Time Systems (ECRTS),
pages 103-112, 2013.

[11] A. Toma and J.-J. Chen. Computation offloading for real-time
systems. In Proceedings of the 28th Annual ACM Symposium
on Applied Computing, pages 1650-1651, 2013.

[12] R. Wolski, S. Gurun, C. Krintz, and D. Nurmi. Using
bandwidth data to make computation offloading decisions. In
IEEE International Symposium on Parallel and Distributed
Processing (IPDPS), pages 1-8, 2008.

