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Abstract—In real-time systems, the WCET (worst-case exe-
cution time) of tasks is of utmost importance. For multi-cores,
the WCET has been shown to be hard to determine due to task
interactions on shared memory and shared buses. This problem
is usually addressed by spatial or temporal partitioning of the
resources, but both lead to lower utilization if the partitioning is
not done optimally. We examine two approaches for optimizing
resource usage in a temporally partitioned multi-core system
and show that these techniques can reduce the WCET by more
than 30% on average, leading to better schedulability and higher
system utilization.

I. INTRODUCTION

Most of today’s high-performance processors are multi-
cores, not only in the desktop and server but also in the
embedded systems market. Though the increased overall com-
putational power is beneficial to the average-case application,
multi-cores pose a fundamental problem for safety-critical real-
time applications. Since some of the hardware components
in a multi-core system are shared between cores, tasks that
execute on different cores may interfere with each other during
accesses to shared components. This breaks the isolation
between tasks and makes their worst-case execution time
(WCET) harder or even impossible to predict. Since the WCET
is needed for schedulability analysis and certification of safety-
critical systems, the current industrial practice is to deactivate
all but a single core to bring the system back into a predictable
state [1].

To overcome this unsatisfactory state, it is necessary to
know how the shared resources are arbitrated among contend-
ing requests from multiple cores. Also, a precise definition of
the timing behavior of this arbiter must be given.

Recent publications have discussed the implications of
different types of arbitration methods on the achievable anal-
ysis precision [2]. Time-triggered arbitration methods were
found to be suited best for tight WCET estimation, but their
performance is highly dependent on their parameterization and
on the structure of the examined programs.

To overcome these problems, we present two novel opti-
mizations that can significantly improve the WCET but also
the average-case execution time (ACET) of programs running
on timing-predictable multi-cores. The first is an evolutionary
optimization of the shared resources’ schedule parameters,
whereas the second is a multi-core WCET-aware instruction
scheduling which re-structures the input programs to increase
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their performance on a given time-predictable multi-core plat-
form. Both optimizations result in lower WCETs, which in
turn leads to improved schedulability and increased resource
utilization for multi-core real-time systems.

In Section II we will given on overview on existing
approaches and related work and Section III introduces the
system model that we use for the experiments. Sections IV
and V present the aforementioned novel optimizations and
Section VI closes the paper with a summary and directions
for future work.

II. RELATED WORK

The standard approach to WCET analysis [3] has recently
been extended towards the analysis of multi-core systems [4],
[5], [2], which makes it possible for us to consider multi-core
WCET as an optimization target.

The optimization of bus schedules has been the topic
of a range of previous publications, but the vast majority
either is restricted to TDMA schedules or uses ad-hoc WCET
computations instead of an analyzer following established
design principles [3]. The optimization in [6] and [7] by
the same authors is based on search heuristics (simulated
annealing) and is similar to our evolutionary optimization in
this respect. It also integrates system-wide task scheduling
with optimization, but on the other hand, it is restricted to
TDMA schedules, whereas we also consider more flexible
schedule variants. TDMA slot length allocation is also done
in [8], but the employed WCET analysis framework is less
precise and it is again restricted to TDMA. Concerning the
employed evolutionary variation operators we use a similar
approach as [9], but [9] is restricted to TDMA and considers
the optimization at a far more coarse-grained level, i.e. the
scheduling of tasks as a whole. Finally, [10] also examines
bus schedule optimization, but only for the special case of
Harmonic Round-Robin schedules and for additive WCET
models.

The majority of previous publications on WCET-aware
instruction scheduling is focused on optimizing the WCET of
a single-core system [11], [12]. As an exception, [13] discusses
several access models for time-predictable multi-cores on an
abstract level, but requires manual restructuring of the tasks.
In contrast, the instruction scheduler, presented in this paper,
can be used to automatically implement these models on a
micro-architectural scale.
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Fig. 1: The employed system model.

To the best of our knowledge, previous work has neither
addressed the optimization of real-time bus schedules includ-
ing TDMA and more flexible methods nor the scheduling of
instructions according to the requirements of a time-predictable
multi-core platform. We will see in the following that espe-
cially the consideration of schedule types other than TDMA
is important to achieve the highest WCET and ACET gains.
This aspect has not been considered in previous publications
on real-time system scheduling optimizations.

III. SYSTEM MODEL

Our optimizations are based on a system model as shown in
Figure 1, containing n highly predictable ARM7TDMI cores.
Each of the cores has access to local scratchpad memories
and to shared RAM. The shared memory is accessed via a
shared bus, which is responsible for arbitrating requests of
the cores. Caches can be integrated, but are not considered in
the current work, since they decrease the predictability of the
system. For the experiments, the whole system including the
bus arbiter was implemented in the cycle-accurate simulator
COMET from Synopsys Inc. [14].

An application that runs on the platform is a set of n
parallel tasks with one task executed on each of the cores.
This restriction is due to the limitations of the WCET analysis
framework. Once the WCET analysis can handle additional
scenarios the optimizations will be immediately applicable to
the new scenarios, too. Our results will also at least remain
valid for multiple non-interruptible tasks per core, since this is
a purely technical extension of the current scenario. The exact
WCET of the tasks, denoted WC'ET,..q;, is not computable
in general, therefore whenever we refer to WCETs this is
equivalent to the estimated WCET.sy > WCFET,¢q;, which
is a safe upper bound on the WCET,.,; [3]. The WCET of
the application is the maximum of the task WCETs, whereas
the applications’s ACET is the sum of the task ACETs. We
also measure the total utilization of the shared bus, which is
the number of cycles in which bus transfers were done divided
by the application’s runtime. ACETs and utilization are always
determined by a COMET simulation, whereas WCETs are
computed by static analysis of the application.

The bus schedule dictates the order in which shared mem-
ory accesses from the cores are granted during the execution
of their assigned tasks. This determines the arbitration delay
for individual accesses which in turn contributes to the ACET
and WCET of the tasks. Thus the simulation and the WCET
analysis must be aware of the bus schedule.

The first schedule type that we consider here is fair
arbitration (FAIR), where each of the n cores is cyclically
given the chance to access the bus. Cores which do not want
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Fig. 2: The structure of the evolutionary bus schedule opti-
mization.

to access the bus are skipped. This method is also called
Round-Robin and has no parameters. In static priority-based
arbitration (PRIO) each core ¢ is assigned a unique priority
p; € {1,...,n} and only the request from the core with the
highest priority is granted in case of contending requests.

Time division multiple access (TDMA, also known as time
slicing) is a cyclic schedule type, partitioned into s slots
where each slot ¢ is assigned a slot length /; (measured in
bus clock cycles) and an owner core o; € {0,...,n — 1},
which has exclusive access during the slot. The last option,
Priority division (PD), is a generalization of TDMA, where
each slot has an owner and each core 7 gets a priority value
p; € {0,...,n}. If the owner does not occupy its slot in
the current bus clock cycle, all other cores ¢ with p; > 0
may perform their accesses as in PRIO mode. Details on all
schedule types can be found in [2].

For the WCET analysis, both PRIO and FAIR have the
property that the arbitration delay can only be bounded when
all possible interleavings of all threads from the cores are
considered. This would lead to a combinatorial state space
explosion during the analysis. Therefore, for FAIR we resort
to worst-case assumptions (maximal delay) during the WCET
analysis. For PRIO we cannot determine WCET values for
all cores other than the core with the highest priority. This
means that PRIO will never outperform other schedules in
terms of WCET, nevertheless we consider it here, since it
might still outperform others in terms of ACET. The time-
triggered variants TDMA and PD have the advantage that the
analysis can work locally on a per-core basis and determine
the arbitration delay only with the help of the information
about when the access is made (in which slot) and which slots
belong to the currently analyzed core. Further details on the
analysis framework can be found in [2]. Generally, TDMA
lends itself more to WCET analysis, but has a negative impact
on utilization and ACET due to cores not fully using their
slots. PD produces better utilization values at the cost of less
precise WCET estimates. In both cases, the number of slots,
the slot lengths and the slot priorities have a major influence
on the achieved WCET and ACET performance.

IV. MULTI-OBJECTIVE BUS SCHEDULE OPTIMIZATION

The manual selection of an optimal schedule type and its
parameterization for a given application is a hard and error-
prone task. Therefore, in this section we present a multi-
objective evolutionary search algorithm which automatically
determines a range of well-suited schedules for an application
and enables users to choose a solution which balances WCET,
ACET and utilization according to their needs.

The structure of the optimization is depicted in Figure 2.
It starts with a set of initial schedules. In the evolutionary
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Fig. 3: The evolutionary algorithm’s genome.

optimization context these are also called individuals. For
all individuals, the WCET, ACET and bus utilization values
are determined. Then, promising individuals are recombined
and mutated with a certain probability. After these steps, the
optimizer selects those individuals that should survive into the
next generation and the optimization continues with them. The
steps are repeated until a user-definable termination criterion
is met.

Individuals are represented by the genome shown in Fig-
ure 3. It contains the scheduling policy ¢ (one of FAIR, PRIO,
TDMA or PD), the number of slots s anq the vectors of
priorities, slot lengths and slot owners (p, [ and 0). For an
efficient recombination and mutation, the genome needs a fixed
length, therefore each vector is limited to 64 entries, which
limits the solutions space to 64 slots. Since we will examine
systems with up to 8 cores, this is a reasonably large range.

Initialization

The optimization process starts with a set of schedule can-
didates also called the population. It contains a FAIR schedule,
a uniform PRIO schedule, a uniform TDMA schedule and a
uniform PD schedule. “Uniform” here means that all cores get
one slot and all slot lengths are set to the minimum allowed
size, since from our experience this reduces the bus arbitration
delay. Slot priorities are distributed such that the cores get a
priority equal to their core ID.

The rest of the population is filled up with candidates
for which the parameters are randomly chosen according to
a uniform distribution. The randomness is needed to appro-
priately cover the search space and is a standard approach in
evolutionary optimization.

Recombination and Mutation

Similar to [9] we use arithmetic operators which do not
treat the genome as a bit string and flip individual bits, but
which perform arithmetic operations on the contained param-
eter values. This is done to limit the degree of randomness in
the optimization, since otherwise flipping a high-order bit of a
parameter might cause the optimization to unguidedly “jump
around” in the parameter space.

The recombination works piecewise on two genomes, with
a multi-point crossover. That is, during t_he recombination of
A and B, for each segment o € {t, s, p, !, 0} from Figure 3 a
recombination point r € {0,...,[l,} is determined randomly
with uniform distribution, where [,; is the length of o. The new
segment o for the resulting individual C is then given as the
concatenation of the substrings afg:r) and a[’ila). l, always
denotes the effective length of the segment, e.g. we may have
up to 64 slots, but if A and B only use 7 slots at maximum,
then I3 = 7.

The mutation is also only applied for parameters within
the effective lengths and mutates each segment’s values with
probability 0.3. To restrict the step size, we use J-mutation,
where a new value vy, is randomly chosen from [vyq —

8, Vorq + d]. For the llumber of slots s the value of § is 5, for
the slot lengths [ € [ we chose § = 30.

Finally, we perform a randomized “genome repair” step,
which mutates the individual until each core has a unique
priority and each core is the owner of at least one slot. The first
is a requirement of our platform, whereas the latter is needed
to avoid core starvation and thus infinite WCET values. The
intention behind all of these design decisions is to increase the
chances that we find good solutions early, since the objective
evaluation and thus each new generation is costly in our
scenario.

Experimental Results

We implemented the evolutionary optimization with the
PISA framework [15], using the SPEA2 selector [16], which
is used to determine individuals for mutation, recombination
and generation survival. SPEA2 tries to keep individuals in
the population that are not pareto-dominated by others, i.e. for
which no other individual exists which is better in all objective
values. In addition SPEA2 maintains a solution density to
increase the diversity of the generated solutions.

For the WCET analysis we had access to the analyzer from
[2] and the ACET/utilization values were determined with the
CoMET cycle-true virtual platform simulator [14].

The tasks we used for the tests come from the publicly
available benchmark suites UTDSP, MRTC, MiBench and
MediaBench, covering application domains such as signal and
image processing, mathematical and control applications. In
total we used 110 applications each consisting of 2 to 8
tasks depending on the analyzed system. The tasks are single-
threaded but their input and output is read from and written to
the shared memory. Thus only the I/O operations issued by the
tasks are subject to bus arbitration, the tasks’ code and local
data are stored in the scratchpads of the cores, denoted I-SPM
and D-SPM in Figure 1.

We used a generation size of 20 individuals and a min-
imum number of 20 generations. After the 20th generation,
optimization is continued if the current generation is at least
0.05% better in any objective than the previous one. This
was added to provide confidence that we do not abort the
optimization prematurely, but we encountered no cases where
the 21st generation was actually reached.

We present relative results in the following, where the first
meaningful baseline is the FAIR individual as this represents
the current practice in many real-world systems. Figure 4a
shows the geometrical mean of the relative WCET (ACET) of
the final-generation individuals with the best WCET, relative to
the WCET (ACET) value of the FAIR individual from the first
generation. Since the FAIR individual has no parameters and
thus never evolves, it does not matter from which generation
it is taken. It can be seen that the reduction in WCET of up to
39% in the case with 4 cores is accompanied by an increase
in ACET. This is plausible, because most of the best-WCET
individuals are using TDMA or PD (see Figure 6), which have
better WCET, but worse ACET performance.

As the second baseline, we chose the uniform TDMA
schedule with minimum slot length, which usually produces
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Fig. 4: Average results for the best-WCET individuals.

good WCET values. Here, the question is whether the op-
timization can still improve upon this baseline. As can be
seen in Figure 4b we can still observe WCET improvements
of 31% (2 cores) to 25% (8 cores) without significant loss
of ACET performance. Also note that Figure 4 contains the
results for the individual with the best WCET. Thus, if we
want to balance ACET and WCET, the evolutionary approach
also delivers matching solutions, some of which are presented
in the following.

Figure 4 also indicates that average-case and worst-case
performance are not necessarily correlated, which motivates
our approach of explicitly considering multi-objective and
WCET-oriented optimizations.

To show the distribution of the results among the bench-
marks, Figure 5 shows the detailed WCET results for all bench-
marks in the 2-core configuration. Each segment in the fig-
ure represents the best-WCET individual for one benchmark,
which is identified by its benchmark ID, shown on the x axis.
All WCETs are relative to the WCET of the uniform-TDMA
individual, which was also taken as the comparison base in
Figure 4b. It is visible, that the average WCET reduction is
achieved by a very even distribution of WCET reductions. The
few benchmarks which experience WCET reductions larger
than 50% are unbalanced examples, where one task with the
biggest WCET needs much more bus bandwidth than the
others, and thus its runtime can be drastically decreased by
assigning more or longer slots to it.

The best-WCET individuals constitute of TDMA sched-
ules with adapted slot lengths, of even more customized PD
schedules and of some FAIR schedules. The distribution of
the schedule types is depicted in Figure 6. Note that in the
worst-case a FAIR access may have to wait for at most one
access from all other cores. A TDMA access that is issued
too late in the issuer’s slot to finish inside that slot may have
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Fig. 6: Distribution of different schedule types among best-
WCET individuals.

to wait for the rest of the slot plus the slots of all other
cores. Due to this, for tasks on which the TDMA WCET
analysis fails to produce precise results, FAIR can be better
than TDMA. Apparently, this mostly happens for the platform
with 8 cores. This platform requires a longer TDMA schedule,
to still provide at least one slot per core and it seems that the
WCET analysis gets more imprecise with growing schedule
length. Nevertheless it works well for most examples, making
TDMA the predominant schedule type among the best-WCET
individuals.

Concerning the precision of the WCET results, for the
example of the best-WCET individuals, our analyzer produces
WCET estimates that are 27% (88%, 181%) higher than the
measured ACET in the configuration with 2 (4, 8) cores, and
thus can be assumed to be reasonably precise.

The fact that the optimization performs better for systems
with fewer cores can also be explained when examining
the baseline utilization of the shared bus. For 2 cores, the
applications have an average bus load of 21%, which rises to
41% for 4 cores and 64% for 8 cores, measured under FAIR
scheduling. Thus, all attempts to increase the utilization are
ultimately limited by the amount of unused bus time, which is
decreasing as the number of cores increases.

The development of the individuals during a single opti-
mization run is illustrated in Figure 7 which shows the WCET,
ACET and utilization for all individuals that were evaluated
in the course of the optimization of an 8-core benchmark
containing mixed multimedia and control tasks (ADPCM en-
/decoder, Huffman encoder, FFT, FIR filter, edge detection,
sorting algorithms). WCET and ACET are shown on the x
and y axis, whereas the color of the marks indicates their
utilization, as shown in the color bar under the Figure. The
axes are scaled logarithmically, to accommodate the spread of
the results.

The PD individuals all show a good ACET performance,
but vary in their WCET by more than one order of magnitude
depending on the configuration. In contrast, the TDMA indi-
viduals stringently have a worse ACET performance which is
compensated by a bigger span of WCET values - they provide
both the best and the worst WCET values. The utilization
is directly proportional to the ACET, which confirms our
expectations that higher utilization implies lower average bus
access delays.

The pareto-optimal points are represented by the blank
symbols on the left side of the figure and are also listed in
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Fig. 7: Exemplary population with marked Pareto-Front for a
benchmark with 8 cores.

detail in Table I together with their slot length, owner and
priority vectors [, ¢ and p. As can be seen, FAIR produces the
best utilization and ACET values (the triangle in Figure 7)
and TDMA has the best WCET value (the blank squares in
Figure 7). In between we find TDMA and PD configurations,
where, in this case, PD provides a significantly enhanced
ACET without loss of precision at the WCET side (blank circle
in Figure 7). This distribution of results is typical and could
be observed for most benchmarks.

The evolutionary optimization of a single application takes
3 to 4 hours on average, depending on the number of analyzed
cores. Taking into account that even the evaluation of a single
configuration takes minutes on average, and that almost all
of the time is spent on the WCET analysis (59%) and the
CoMET simulation (36%), this is still reasonable for e.g.
nightly builds of a software. Also, the optimization itself is
trivially parallelizable, which we have not done here. The

WCET determination is time-consuming since we use an
abstract interpretation based analysis [2] which is also used in
commercial WCET analyzers like aiT [3]. Usage of analysis
techniques of lower runtime complexity [13] would result in a
reduced precision. The WCET analysis and simulation runtime
will scale linearly with the number of cores, but the total
runtime of the optimization until “good” solutions are found
might grow faster than linear since more parameters will have
to be explored.

All in all, we have seen that FAIR arbitration is strong on
producing good ACET values, and that it can even outperform
more predictable arbitration schemes especially when the min-
imum schedule length increases as e.g. for systems with rising
core numbers. TDMA has proven to be the best choice for
WCET. Still, for TDMA as well as for PD an optimization of
the schedule parameters is highly desirable and may lead to
WCET improvements of more than 30%. PD can be used to
balance ACET and WCET which again is easier to do in an
automated way.

V. WCET-AWARE INSTRUCTION SCHEDULING

In Section IV we have examined the possibilities of ad-
justing the bus schedule parameters to the given task set.
Of course, in practice, we have another degree of freedom,
namely to reorder the instructions inside the tasks to match the
bus schedule. Since both optimizations are interdependent we
perform the instruction reordering for every single individual
that is generated during the algorithm from Section IV. Thus
we will also find solutions in which the bus schedule only
excels when combined with a custom instruction schedule. The
instruction reordering can also be invoked separately, for any
user-defined schedule.

We build upon a classical list scheduler [17], which divides
the task into sequential regions and schedules each of those
separately. The simplest choice for such regions are basic
blocks, i.e. maximal sequences of instructions which can only
be entered at the first and only be exited at the last one. The
instructions of these regions are re-ordered by our scheduler,
which maintains a list of dependencies and a set of instructions
which are ready for execution, i.e. whose dependencies have
been fulfilled. Our task is to assign a priority to them, and
the scheduler will then select one of the instructions with
highest priority and append it to the result order. This process
continues in the same manner until all instructions of the
region have been scheduled. Note that this is a compile-time
optimization, there is no runtime scheduling involved.



Bus Mode | s WCET ACET | Utilization T F I
FAIR ~ [ 95076900 | 5752270 | 0.659636 - - -
PD 8 | 85379400 | 7085960 0.54958 | (3, 3,3,3,3,3) | (2,1,7,5,4,0,6,3) | (7,3,1,4,5,6,8,2)
TDMA 8 | 61227900 | 10725600 | 0387001 | (10, 3,3,3,3,3) | (2,3,1,0,4,5,6,7) -
TDMA 8 | 85379400 | 9383380 | 0442147 | (3, 3,3,3,3,3) | (0,1,2,3,4,5,6,7) -

TABLE I: Details on the pareto-optimal individuals from Figure 7.

Scheduling Heuristics

In the following we present two novel priority assignment
heuristics that are tailored towards the optimization of the
WCET of tasks running on time-predictable multi-cores.

For the optimization of task ¢ running on core c, the slot
length heuristic (SL) first determines the length [*** of the
longest slot which is assigned to c. During the scheduling of
a region, it maintains a counter [$*" which is set to O at the
start of the region. With the help of the maximum bus access
duration ¢™4* the priority! of instruction i € I is given by the
priority function pgy, as

L1 if bac(i) A (I8 tmar) < e
psi (i) = { (&) A ( )

0 else
where bac : I — {true, false} determines whether an instruc-
tion will possibly access the shared bus. After an instruction
¢ with bac(i) = true was scheduled, IS*" is incremented by
tmer otherwise {S"" = 0. The intention is to bundle bus-
accesses to packages which fit into the slots of the core.

e))

The second heuristic, called offset heuristic (OF), is based
on the same idea, but uses detailed information that is extracted
directly from the WCET analysis results. For each basic block
b the WCET analysis computes an incoming set of offsets O;",
which specify that whenever b is entered during the execution
of the task, the position within the periodic TDMA schedule
is guaranteed to be contained in O};" [4].

This is illustrated in Figure 8 which shows an example of
a task’s control-flow graph in the upper half. For this example,
we assume a system with 2 cores, where the presented task
is executed on core 0. The TDMA bus schedule consists of 4
slots, whose length and owner cores are depicted in the bottom
of the Figure. Below the graph, the set O;" for block L4 is
shown, which is a subset of the full TDMA offset span, marked
in gray. Thus, in this example the analysis has determined
that the load instruction 1dr at the head of block 1.4, which
accesses the bus, will always start its execution from one of
the offsets contained in the white rectangle marked in the
schedule. Considering the schedule, we know that this area
is contained in slot 2, which is owned by core 0 and thus the
access will be granted immediately. After the 1dr instruction
was analyzed, the analysis will compute new offsets which
reflect the positions in the schedule at which the execution of
the next instruction will start. This step is called the transfer
step of the analysis and will also be used by our optimization
to dynamically update the current offsets. The striped areas in
Figure 8 represent the results of two applications of the transfer
function. The dotted arrows indicate which offset information
belongs to which instruction. In this case, the optimization can
decide that after the execution of the first add, the following
str has to wait for the bus in slot 3 and thus can prefer to
schedule the second add and cmp first.

Higher values indicate higher priority.

main:
mov ip, #0
mov r2, ip
cmp r0, #0

ldr r3, [r2, rl]. .L2:
add r3, r3, #23-|=3 mov r0, #0
. bx 1r

L .L4: J

str r3, [r2, ril]{%
add ip, ip, #1

ble .L2 .
cmp ip, rO0 : 1 -
bne .L4 B :
Block ‘ oin transfer‘ U —‘ ‘
offsets L4 —
0 Z?:u li-1
TDMA l I I |
=0 =1 =0 3 =1
schedule o0 o ” %

lo ll 12 l3

Fig. 8: An example for offset results as computed during the
multi-core WCET analysis.

In the worst case the analysis can not infer any useful
information which means Oj" = {0,...,% 7 ,l; — 1}. The
computation of the O}™ results is interwoven with the modeling
of the pipeline and the rest of the memory hierarchy, since all
of these components influence the timing behavior of the task
and the offsets are just a compressed representation of time
after all. The construction of the analysis framework is out of
the scope of this paper, we merely use the results here, but
further details can be found in [2].

Our optimization has direct access to the sets O{" for
all blocks b and uses those to position the instructions in
the region to schedule. For this purpose, it creates a copy
0%ePY of the offsets Oé’hlead where bpcqq 1s the head block
of the current scheduling region r. Each time that a new
instruction ¢ is scheduled, O7°PY is updated to reflect the time
that passes until the processing of ¢ has finished. For this
purpose we use the transfer function from the WCET analysis
itself, which includes a detailed pipeline and value analysis
and thus maintains a high degree of precision. Therefore, at
each instant OS°PY contains exactly those offsets at which the
next instruction z will be executed. With this information, we
can determine whether ¢ is guaranteed to be granted the bus
or not, and define the priority function por as

2 if bac(i) A OPY C w,
por(i) =< 1 if —bac(i) 2)
0 else

we is the set of offsets at which core ¢ owns the bus, e.g. in
Figure 8 for core O these would be the offsets in slots 0 and
2. The idea is to force the immediate scheduling of a bus-
accessing instruction when we know for sure that the access
will be granted (case 1), and to delay them if possible when
the access will not be granted (case 3). All instructions which
do not require the bus use a default priority (case 2).
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(b) Average WCET reductions for uniform TDMA with slot
length of 12 cycles.

Fig. 9: Average results per platform for scheduling with the
slot length heuristic (psr.) and offset heuristic (por).

Experimental Results

To evaluate the effectiveness of the heuristics, we tested
the scheduler on the same benchmarks already presented in
Section IV. We first evaluated scheduling at the basic block
level, thus “regions” are “basic blocks” in the following. The
basic blocks consisted of 1 to 661 instructions (average: 5.25),
and 11.42% of those were accessing the bus on average. In
total, the benchmarks contained 82,133 instructions.

To give an impression on the distribution of task sizes
used in the evaluation, Table II lists the the lines of code
(LOC) counted without comments, the number of loops and the
average loop iteration bound. Some of the tasks are available
for different input formats and the multimedia tasks have a
separated encoder / decoder part, which are not contained
in Table II. Taking these variations into account we used
110 different tasks in total. To form parallel applications,
these tasks were grouped together in bundles with similar task
runtimes.

In Figure 9a the average results for the scheduling are
shown for a uniform TDMA schedule, where each core has
one slot of length 3 cycles. Both heuristics perform equally
well in this setting. This may be due to the fact that in this
setting, only one bus access fits into each TDMA slot since the
maximum bus access duration is also 3 cycles. Therefore, the
schedule is short and it is sufficient to keep the bus accesses
isolated, which both heuristics are capable of.

To test the sensitivity of the optimization w.r.t. different
schedule configurations we also tested it on a uniform TDMA
schedule with a slot length of 12 cycles for which the results
are shown in Figure 9b. Here, the WCET reduction achieved
by por is up to 4 times higher than the reduction for pg..

Benchmark LOC Loops @ LB
adpcm 890 14 305
adpecm_g721 1336 22 9
anagram 440 23 341
basicmath_small 1001 11 164
binarysearch 35 1 4
bitcount 202 4 14
bsort100 54 3 99
cjpeg_jpegbb_transupp 1571 56 9
cjpeg_jpegbb_wrbmp 1246 5 262
codecs_codrlel 110 4 69
codecs_dcodhuff 221 11 164
compress 603 12 11
convolution 27 2 16
countnegative 73 4 20
cre 68 3 102
dijkstra 119 5 292
dot_product 22 1 2
duff 44 1 100
edge_detect 110 10 77
edn 204 12 53
epic 994 44 296
fdct 143 2 8
fft 311 9 686
fir 225 2 18
fir2dim 81 13 5
g721.marcuslee 106 1 2407
g721_encode 899 9 33
g723_encode 897 9 33
gsm 2394 58 66
gsm_encode 1951 46 53
h263 926 7 205
h264dec_ldecode_block 1567 28 8
hamming_window 62 3 153
histogram 36 6 128
iir 73 3 44
insertsort 61 2 9
jfdetint 218 3 26
latnrm 73 3 42
lednum 62 1 10
Ims 292 16 50
Ipc 328 23 80
ludemp 86 11 5
matmult 57 5 30
minver 158 17 2
mult 32 3 10
n_updates 38 2 16
ndes 407 12 19
petrinet 500 1 2
pm 558 28 55
qmf 72 2 2005
qurt 88 1 19
real_update 24 0 0
rijndael 1999 30 3126
searchmultiarray 484 4 5
select 62 4 8
selection_sort 67 2 299
spectral 623 12 38
sqrt 45 2 12
st 106 5 803
startup_fixed 99 6 28
statemate 1047 1 100
test3 3985 121 4
v32.modem 1469 16 127

TABLE II: Task details.

The drawback is, that the absolute WCET values for the 12-
cycle configuration are 25% (2 cores) to 158% (8 cores) worse
than those for the 3-cycle one. It is a general observation in
our experiments, that bigger TDMA slots lead to worse WCET
and utilization values, which defeats the value of the increased
optimization potential in these configurations.

Since the scheduler works on the micro-architectural level,
it cannot be expected to have as much impact as the macro-
scopic schedule parameter optimization, presented in Sec-
tion IV. To illustrate the results for the individual benchmarks,
Figure 10 lists the 20 highest WCET reductions from the
results shown in Figure 9a. In this range we observe an



: —m— por - Offset
2 15% |- —o—pgy, - Slotlength
2
B 10% |
H
3 5%
=
0% (= \ \ \ \

0 5 10 15 20

Fig. 10: Relative WCET results for the best 20 benchmarks
from Figure 9a per scheduling method.

increased average bus utilization of 14% and 4.4 instructions
per region. The WCET reductions for the individual bench-
marks range from 13.2% to 2.5% (por) or 15.8% to 7.2%
(psr), respectively. Therefore, though the results are lower
on average, we still have many benchmarks for which the
scheduler achieves significant gains with both heuristics.

The compilation times have tripled compared to the com-
pilation without the WCET-aware scheduling, but again, this
is mostly due to the runtime of the WCET analyses.

We also extended the optimization to work on trace and
superblock regions. Both are well-known methods to increase
the scheduling flexibility, but they come at the cost of inserting
compensation code which can adversely affect the WCET. In
our experiments, the average gains obtained with both trace
and superblock scheduling were lower than those with pure
basic block scheduling. This also follows from the observation
that the I/O operations which access the shared bus often have
data dependencies to their neighbors and thus can rarely make
use of the increased trace and superblock region size.

Finally, we also tested the combination of the evolutionary
bus optimization from Section IV and the instruction sched-
uler. As stated, the instruction scheduler was invoked for
every generated individual to also find solutions which are
only accessible through a combination of bus and instruction
scheduling. Apparently, such cases are very rare, since the
additional WCET gain over the best-WCET results from
Figure 4 is almost identical to the results shown in Figure 9a.
This suggests the conclusion, that optimizing the bus schedule
first and performing the instruction scheduling afterwards is
sufficient in practice, leading to a combined average WCET
reduction of to up to 33%.

VI. CONCLUSIONS

We have presented the first WCET-aware multi-core sched-
ule optimization which takes into account fair, TDMA and
priority-division schedules. Our results on a state-of-the-art
multi-core WCET analyzer show, that we can reduce the
WCET of real-world benchmarks by more than 30% on
average. We have shown how ACET, WCET and bus uti-
lization evolve under different parameterizations of the three
schedule types. In addition, we have seen that TDMA is
not always the best choice for minimizing the WCET, which
was a basic assumption in previous publications. We have
complemented this macroscopic approach with a new type
of instruction scheduling heuristic tailored towards multi-core
WCET reduction, which can further reduce the WCET by up to

15.8%. In summary, both optimizations significantly increase
the precision of the estimated WCETs and thus the usability
of multi-core WCET analysis.
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