
T E C H N I C A L R E P O RT S I N C O M P U T E R S C I E N C E

Technische Universität Dortmund

Passing error handling information
from a compiler to runtime components

Florian Schmoll, Andreas Heinig, Peter Marwedel, Michael Engel

Computer Science 12 – Design Automation of Embedded Systems Group

Number: 844

May 2014

Technische Universität Dortmund — Fakultät für Informatik
Otto-Hahn-Str. 14, 44227 Dortmund

http://ls12-www.cs.tu-dortmund.de

Florian Schmoll, Andreas Heinig, Peter Marwedel, Michael Engel: Passing er-
ror handling information from a compiler to runtime components, Technical Report,
Department of Computer Science, Dortmund University of Technology. © May
2014

http://ls12-www.cs.tu-dortmund.de

A B S T R A C T

For the handling of faults in embedded systems, software implemented fault
tolerance seems to be more appropriate than hardware based approaches. Us-
ing software based techniques, runtime conditions only known to software can
be considered. Also, the error handling can be application specific and there
are more alternatives for decisions during error handling resulting in a more
flexible approach. By adapting the error handling to the requirements of the
software resources can be saved.

A recent publication [1] showed that a compiler that evaluates source-code
annotations and applies static analyses can determine which errors require er-
ror handling, and which errors can be ignored safely. This error handling infor-
mation can improve the efficiency of software implemented error handling. Ad-
ditional information about how erroneous data can be handled is also provided
by source code annotations. However, error handling information is needed at
runtime, when error handling actually takes place. Unfortunately, the compu-
tation is too complex for embedded systems so that it cannot be computed on
demand. Hence, the relevant information has to be precomputed at compile
time, but must be retrievable at runtime.

In this report we present how compiler generated information about the error
handling of data objects can be made available to runtime components that
apply error correction.

A C K N O W L E D G M E N T S

This work is supported by the German Research Foundation (DFG) as part of
the priority program “Dependable Embedded Systems” (SPP 1500) under grant
no. MA-943/10.
http://spp1500.itec.kit.edu

iii

http://spp1500.itec.kit.edu

iv

C O N T E N T S

1 introduction 1

2 fehler approach 5

3 use cases 7

3.1 Data object identification 7

3.2 Retrieval of error handling information 8

3.3 Retrieval of error correction method properties 9

4 implementation 11

4.1 Requirements 11

4.2 Data object representation 12

4.3 Data structures and algorithms 14

5 workflow 17

6 related work 21

7 conclusions 23

v

vi contents

1I N T R O D U C T I O N

Embedded systems often have to be cost-efficient [2]. By continuous minia-
turization of the structure sizes in information processing devices, more cost
efficient systems can be produced. Other properties of the system, like energy-
efficiency, can be improved in this way as well. In contrast, the inherent re-
siliency of the hardware against memory faults is reduced. Therefore, increased
rates of faults are expected [3] that require countermeasures.

A memory fault is a violation of the premise that a read of a memory cell
always returns exactly the value that has previously written to it1. Typically,
permanent and transient faults are distinguished. Permanent faults are hard-
ware defects that result from an incorrect structure of the hardware due to
production faults, aging, or wear out. Hence, permanent faults mainly occur in
new or old systems. Their distribution over time can often be characterized by a
bathtub curve. Examples for permanent faults are stuck-at-zero or stuck-at-one
faults.

In contrast, transient faults, also referred to as Single Event Upsets, do not
affect the operability of components. They are reversible, accidental changes of
the states of components that are triggered by disturbances that impact on the
system from the exterior, like radiation, or emanate from the system itself, like
heat. Hence, transient faults can affect a system during its whole lifetime and
cannot be ruled out by post-production tests. An example for a transient fault
is a spontaneous bit-flip in memory. In the following we will consider only this
kind of fault.

A memory fault that can influence the operations of a system, because it af-
fects data that may be used in the future, is also referred to as error. The effects
of an error can be diverse depending on the semantics of the data that has been
affected. If the error changed the value of a memory address, it may lead to
an invalid memory access that results in a termination of the application soft-
ware. Also, errors can change the control flow of an application, thus changing
the stream of operations executed by the system and its timing behavior. Ad-
ditionally, the error can affect the precision of the outputs computed by the
application to different extents.

The occurrence of transient faults can hardly be avoided. E. g., to avoid faults
that are caused by radiation, an expensive shielding would be required. Hence,
systems are not protected against errors, but against their effects. Therefore,
error detection and correction techniques have to be applied. Error detection
techniques have to determine erroneous states, before they are processed by
the system and can evolve their unwanted effects. To enable checks for errors,
along with the actual memory value, redundant information, like a checksum
or a copy of the value, has to be stored. Error correction techniques permanently
avert the danger of the error effects by eliminating the error. Errors resulting
from transient faults only manifest as erroneous states. Hence, they can be
eliminated by replacing the erroneous states. Obviously, a system with Error

1 The write need not originate from the application software, but may be performed by I/O-devices.

1

2 introduction

Detection and Correction (EDAC) requires more hardware resources than a
system without. Since additional hardware increases the production costs of
the system, EDAC techniques for embedded systems are not only assessed
based on how good they can eliminate the effects of errors, but also based on
their resource consumption.

For the detection and correction of errors both hardware and software ap-
proaches are feasible. Hardware approaches have the advantage that they are
transparent to the application software. Hence, the software need not fulfill
special requirements nor has to be modified. This is favorable for error detec-
tion, where checksums have to be computed and compared at every memory
(read) access. In software, several instructions are required to implement these
operations resulting in undesired processor load and an increase of code size.
However, hardware approaches are unaware of the resource usage of the ap-
plication and the semantics of data. Consequently, they have to provide EDAC
for the whole memory, leading to a permanent overhead. Nevertheless, the cor-
rection capabilities are often limited to a single or small number of bit-flips
per memory word. Furthermore, special hardware components are required
increasing the costs of the system.

Software approaches also require additional hardware resources, e. g., for the
storage of redundant information that is needed for the detection of errors and
the recovery of correct states, or the compensation of the additional proces-
sor load. However, no special hardware is needed and more powerful general
purpose hardware can be used. Hence, there is no strict separation between
components for EDAC and for the actual tasks of the system. Memory and
processor time reserved for error correction can be used otherwise reasonably
in case no error shows up. Additionally, software approaches can be more flex-
ible than hardware approaches. There are approaches that can correct multi-bit
errors and that restrict EDAC to those parts of an application that are most
sensitive to errors. Hence, for the implementation of a resource efficient EDAC,
a combination of error detection in hardware and a correction of errors by a
software approach seems promising.

For extra efficient error correction the FEHLER approach has been developed.
It only considers the correction of data, since it assumes that errors affecting
instructions can be corrected by reloading the corrupted instructions from the
software image that is stored in a fault-free ROM. The software approach al-
lows for a flexible correction of errors, i. e., the appropriate correction method
for an error is selected at runtime, when the error has been detected. In this
way, the possible effects of an error and runtime conditions like the available
resources can be taken into account and the effort for the correction of the error
can be adapted to these factors. This is a feature that is neither achieved by
hardware approaches nor by existing software approaches. To determine the
possible effects of an error, the source code of the applications executed on the
system has to be analyzed. Also, information about how errors can be corrected
and the properties of correction methods are determined at compile-time. This
error handling information has to be passed to the components that select and
execute the error correction methods at runtime.

In this report, we show how this passing of information can be implemented
efficiently. We start with a more detailed presentation of the FEHLER approach
in the next chapter. There, the library for runtime error classification librecon is

introduction 3

introduced that is the central component that implements the passing of error
handling information. Also, the components that interact with the library are
presented. The way in which the runtime components interact with librecon is
defined by uses cases. They will be described in chapter 3. The implementation
of the runtime error classification including the encoding of the error handling
information is topic of chapter 4. The creation of the librecon by an automated
workflow is presented in chapter 5. In chapter 6, the similarities and differences
between the problem of passing error handling information and the problem
of passing debug information are pointed out. Finally, a conclusion and an
outlook are given in chapter 7.

4 introduction

2F E H L E R A P P R O A C H

The FEHLER approach is motivated by the observation [4] that errors have dif-
ferent effects. Some errors can cause malfunctions that influence the availability
of the services provided by a system, e. g., lead to a termination of an applica-
tion. Some errors can reduce the quality of service of the system, e. g., they lead
to jitter in the output stream. Other errors have only negligible effects, e. g., they
lead to minor deviations in the computed outputs. The complete elimination
of the effects of an error is typically effortful. Multiple copies of data values or
correction codes have to be maintained, so that a fault-free version for the cor-
rection exists, or data values have to be backed up regularly so that a previous
fault-free state of the system can be restored. These options are both memory-
and time-consuming.

The idea of the FEHLER approach is to have several correction options avail-
able. Some errors may be correctable more efficiently with special correction
methods than with general methods. Correction methods may not completely
eliminate the effects of errors, but mitigate them and at least ensure that the
remaining consequences are not hazardous. Additionally, the effects of an er-
ror may be within a tolerable extent, so that the presence of the error can be
accepted and a correction can be completely ignored. Such correction methods
can help to save a scarce resource budget, although compared to a complete
elimination of an error, a degradation of the quality of service is possible.

The several correction options allow for a flexible handling of errors and en-
able a trade-off between correction quality and resource consumption. The way
an error is corrected can take its presumed effects and the amount of available
resources into account. Consequently, errors affecting the same memory loca-
tion at different points in time can trigger different correction methods. E. g.,
whether the effects of an error are eliminated completely with a complex cor-
rection method or are only sufficiently mitigated with a skeleton correction, can
depend on the available processor time for the correction that remains in the
schedule of the system.

An implementation of the FEHLER approach consists of three major compo-
nents: A compiler, runtime components, and a runtime error classification. The
compiler determines the feasible correction options for an error using a data
centric approach. The possible effects of an error are computed starting from
the data objects the error affects. A data object is any piece of memory that
is represented by a symbol in the source code. Hence, a data object can be a
simple scalar variable, an array, or struct, but also a variable that is defined as
part of a struct. For these objects different correction options exist, depending
on their use and semantics. Thus, an error affecting a struct can be corrected
either by one of the options for the whole struct, or by one of the options for the
nested object to which the error is limited. Additionally, whenever an erroneous
memory range has to be corrected, a complete data object that is allocated to
that range has to be considered. A correction that is unaware of the objects that
cover the range can lead to a partial modification of the objects and itself can

5

6 fehler approach

result in inconsistent states. Therefore, error correction methods are related to
objects.

The use of data objects is specified in the source code of an application.
Hence, the computation of possible error effects resulting from the use of erro-
neous data objects requires source code analysis [1], which necessitates the use
of the compiler. However, the semantics of data objects and correction methods
can hardly be understood by a tool. Therefore, we assume that this informa-
tion, like applicable correction methods for data objects, are specified in source
code annotations. The compiler evaluates these annotations again. Based on an
initial set of annotations the compiler can add annotations by itself using auto-
mated reasoning, so that the effort for inserting annotation into the source code
can be reduced. All the information computed and collected by the compiler
makes up the error handling information. It includes the information about the
correction options, but also features of the available correction methods, like
their capability to eliminate error effects and their resource usage.

The runtime components implement the error correction. To enable a flexi-
ble error correction a detection of an error does not automatically trigger its
correction. Instead, the runtime components are signaled that begin with the
identification of the affected data object. The available correction options can
be retrieved from the error handling information. The runtime components are
aware of the resource scheduling in the system, so that they can assess the
options regarding the current runtime conditions in the system, like the execu-
tion time available for correction and the count of errors whose effects have not
been eliminated completely. Finally, the runtime components select and exe-
cute the appropriate error handling action. Precautions ensure that the runtime
components continue operable, even in case they are affected by faults.

Although the error handling information is actually needed for the selection
of the error correction at runtime, when errors show up, it cannot be deter-
mined by the runtime components. Because of the complexity of the computa-
tions, for all data objects that can potentially be affected by an error, the error
handling information has to be compiled in advance of its use in the error cor-
rection. Otherwise the timing behavior of the system would be seriously dis-
turbed. Also, for the computations, the source code of the software is needed,
which is typically not accessible at runtime. Hence, the error handling infor-
mation that is computed at compile-time must be retrievable by the runtime
components. This problem is solved by a runtime library, that we denote libre-
con, where RECON is the abbreviation for Runtime Error Classification. It is
created by the compiler and stores the error handling information. The library
also contains interface functions that enable the runtime components to access
the required information without the need of knowing how the information
has been encoded.

3U S E C A S E S

The runtime error classification library, librecon, has to support three use cases.
In the first use case, the runtime components that carry out the error correc-
tion employ the library to determine the data objects that may be affected by
a detected error. Additionally, the runtime components request error handling
information that is required to directly respond to the error. In this way, an un-
controlled propagation of the error to other data objects can be prevented that
may result in a corruption of the system otherwise. In the second use case, the
runtime components retrieve information about the available correction meth-
ods for the individual data objects. The retrieval of information about the error
correction methods is subject of the third use case. In the following, these three
use cases will be described in more detail.

3.1 data object identification

A request for object identification by librecon is preceded by the detection of
an error. The error detection leads to a notification of the runtime components
which, in turn, locate the position of the error in memory. For two reasons, the
runtime components may be unable to determine the exact position of the error.
On the one hand, the error detection itself may be unable to distinguish single
bytes. To reduce the number of redundant bits that are required for detection,
it may operate on larger blocks of memories, to that we refer as error detection
sections. The error detection can determine the existence of an error within the
section, but not its position. Consequently, the extent of these sections directly
impacts the precision of the error localization. On the other hand, operations
that are not directly executed by software, like cache line fetches or DMA, can
consist of a sequence of accesses to several error detection sections. An error
detection unit may signal only that an error was detected during an operation,
but not report the position of the affected section(s). In this case, the runtime
components have to deduce the position of an error from the memory range
that should have been read by the operation that failed. Thus, it remains unclear
in which accessed section an error had been actually detected. Hence, the result
of the localization can be a range of memory addresses.

For an object identification request, this range is then passed to librecon. Al-
though only a single bit within the range might actually be erroneous, in the
absence of more precise information, librecon has to assume that the whole
range is potentially affected by the fault. Hence, the task during object identifi-
cation is now to determine all data objects that are allocated either completely
or partially to the memory range.

Since at compile time only the allocation of global variables is known, libre-
con can identify only this kind of data objects. On the contrary, base addresses
and memory layout of global variables are usually unknown to runtime compo-
nents. Type information is already considered by the assembler code generated
by the compiler and a linker already inserts the address values for the accesses

7

8 use cases

to the variables. Consequently, runtime components are unable to map memory
addresses to global objects. Thus, it is actually necessary that librecon supports
the identification of global variables.

In contrast, the position of dynamically allocated data in memory is set at
runtime and hence, unknown at compile time. Therefore, heap objects have to
be identified by the runtime components that do the dynamic memory manage-
ment. Nevertheless, librecon can provide information about the memory layout
of these objects, but this implies that a type is assigned to heap objects and any
use of the object in the source code complies with this type. In particular, the
type of the allocated object has to be unambiguously determinable.

Even though the structure of the stack frame for each function is known at
compile time, identification of stack data is currently not supported by librecon.
The final memory addresses of stack data at a specific point in time depend
on the initial stack pointer of the application and the functions that have been
called, but have not returned so far. This history of function calls can depend
on input data and hence, is hardly predictable at compile time.

We assume that global variables, heap data, or stack data are allocated to
separate memory ranges and that ranges with different kinds of data are not
part of the same error detection section. Thus, for each memory range it is clear
which component performs the object identification.

The result of the data object identification is a list of datasets about the ob-
jects that are allocated to the error detection section for that an error has been
detected. Each data set contains the start address and the size of the object, a
list of task names, and a unique key. The start address and the size of the object
are required for error correction. They allow correction methods that correct in-
dividual objects the determination of the range that has to be corrected. The list
of task names specifies which tasks might use the data object. By suspending
only these tasks, the runtime components can inhibit accesses to the erroneous
data, while the execution of unaffected tasks can be continued. In this way,
errors cannot influence the computation of other data objects and the propaga-
tion of errors can be prevented effectively. Finally, each object has a unique key
that allows for a faster identification of the object than by its memory address.
It enables an efficient lookup of error handling information for the object, as it
is the subject of the second use case.

3.2 retrieval of error handling information

After the objects affected by an error have been identified, information about
error handling options for these objects can be queried. This takes place in the
separate, second use case that is described in the following. The provided in-
formation should support the runtime components in selecting the correction
methods that are most appropriate for the trade-off between quality of the cor-
rection and the required effort. Therefore, librecon contains information about
the data objects themselves as well as the available correction methods.

librecon distinguishes between application and system objects. For applica-
tion objects, their use in the source code can be analyzed. Also, data annota-
tions in the source code can be evaluated. In contrast, system objects are also
used beyond the scope of the application. These objects are often part of system
components for which no source code is available, or whose source code can

3.3 retrieval of error correction method properties 9

hardly be analyzed statically. Hence, a thorough analysis of these objects is not
possible and pessimistic assumptions are made. Consequently, more precise
information is available for application objects.

For each data object, its impact on the system can be queried. It is an esti-
mation of the degradation of the quality of service provided by the system if
the object is affected by an error and the error is not corrected. It allows for
a prioritization of errors during error handling if insufficient resources for the
correction of all errors are available. Finally, for each data object the set of appli-
cable error correction methods can be retrieved. This is the set from which the
runtime components can choose a method to correct the erroneous data object.

3.3 retrieval of error correction method properties

For error correction methods, the runtime components require information to
assess their correction quality as well as the effort needed to execute the cor-
rection. Therefore, librecon provides data about correction methods’ properties,
like their execution time and their impact on the quality of service. This infor-
mation can be queried in the third use case that is presented in this section.

All correction methods that may be applied within the flexible error correc-
tion approach are marked as correction methods in the source code and an-
notated with information that can be queried in this use case. In doing so, all
error correction methods are registered at compile time. In librecon the correc-
tion methods are enumerated. By passing the index of the correction method
to librecon, the method can be identified and its properties are returned.

As already mentioned, the worst-case execution time (WCET) of a correction
method is one of the properties provided by librecon. The correction quality of
a method is described by its quality of service. Since correction methods do
not necessarily have to restore the state of the data object that it had before
it had been affected by the error, the methods can reduce the degradation of
the quality of service that an uncorrected error may cause to a different extent.
However, the actual impact of the correction on the quality of service is hardly
predictable. Hence, the quality of service of a method has the purpose to enable
a ranking of the correction methods by their capability to mitigate the effects
of an error. Currently, the quality of service can be specified by one of the four
levels: minimum, simple, good, and perfect.

Another property provided for correction methods is the fault factor. It is an
estimator for the probability that the correction itself is affected by an error. The
actual probability depends on the correction method, but also on properties of
the system, so that it cannot be exactly specified. For example, the fault rate ex-
perienced at runtime has an influence on the probability, but can vary over time.
Hence, the fault factor only considers properties of the correction method. This
includes the execution time of the correction method, since a longer execution
time increases the probability for an error, but also the resource usage of the
correction method. Here, we assume that a correction method is more likely to
be affected by an error the more frequently it accesses different resources like
memory locations. As for the quality of service, the purpose of the fault factor
is to enable a weighting of different correction methods.

Finally, for each correction method librecon provides the set of data objects
that are used during its execution. This enables the modeling of dependencies

10 use cases

between the correction of errors. They should ensure that all data objects re-
quired by a correction method are error-free or have been corrected before the
method is executed. At compile-time it is checked that for each global data
object at least one correction method exists that will not result in a circular
dependency between correction methods. This restriction to global variables
results from the fact that besides the data object to be corrected, a correction
method can only access global data.

4I M P L E M E N TAT I O N

The implementation of the runtime error classification as library librecon has to
take some requirements into account that result from its use in an embedded
real-time system. Also, the potential occurrence of errors in memory has to be
considered. The relevant implications for the implementation are described in
Section 4.1. As pointed out in the previous Chapter, any request to librecon de-
mands the successful identification of the data objects that have been affected
by an error. In Section 4.2, the concept for the representation of data objects is
presented. Finally, the data structures and algorithms used to efficiently iden-
tify the data objects and to store and provide the error handling information as
defined by the use cases are described in Section 4.3.

4.1 requirements

One of the constraints of embedded systems that is relevant for the implemen-
tation of librecon is the restricted amount of memory available in these systems.
Hence, the implementation of librecon has to be memory-efficient. It is very
likely that pieces of error handling information for several data objects are the
same, since they have the same memory layout, the same correction methods,
or are used by the same tasks. To reduce the memory space required by librecon,
multiple storage of identical information should be avoided.

Since librecon is used in real-time systems, its response time is also an im-
portant property. It directly correlates with the execution time of the functions
provided by librecon to retrieve the error handling information. Because error
handling includes requests to librecon, the time needed by librecon to determine
the results has a direct impact on the execution time for the whole error han-
dling. Consequently, the faster librecon can process the requests, the more time
remains for the correction of errors, and the likelihood that deadlines can be
kept increases. Thus, the implementation of librecon has to be time-efficient.

librecon is part of a system that can be affected by faults. Nevertheless, a fault
must neither break the service provided by librecon nor make it unavailable,
since it belongs to the error handling system. In this case, the system would
not be able to recover from the fault. Thus, for faults affecting librecon there
must be a simple way to completely eliminate their effects. Also, the future
behavior of librecon must not be affected by faults. However, the correction of
an error should not require the execution of a correction method. Otherwise,
librecon would not be able to process requests until the correction method has
finished. Deadlocks can occur if the determination of the appropriate correc-
tion for librecon results in a request to librecon that cannot be processed because
of the error. Instead, if the runtime components detect an error during the exe-
cution of a function of librecon, they should be able to eliminate this error by a
simple reexecution of the function. This requirement can be ensured by a imple-
mentation of librecon that is stateless, meaning librecon has only one immutable
global state. However, this state has to be protected against errors. Since it does

11

12 implementation

not change, all the data that represents the state can be mapped to read-only
memory, so that accidental write accesses to the data storage of librecon can
be excluded. Also, we assume that read-only memory is not affected by faults.
Nevertheless, if errors occur in the memory itself, the state of librecon, like any
read-only data in the system, can be restored anytime by simply reloading the
data from the system image. Strictly speaking this restore of the state of libre-
con is a correction method, against which we argued before because of possible
deadlocks. However, the risk of a deadlock can be ruled out if librecon is queried
only for the correction of errors that do not affect read-only data.

Finally, the implementation has to cover all the uses cases that have been de-
scribed in the previous chapter. Thereby, librecon should be able to provide error
handling information for each global data object of the applications. Specifically,
composite data objects like structs and arrays and their components should be
distinguished by librecon, so that separate information can be provided for the
composite and the nested data objects. Depending on whether the complete
composite object is affected by a fault or only a part of it, and depending on for
which objects error correction methods have been specified, librecon should be
able to consider different error handling scenarios.

4.2 data object representation

Decisive for the efficiency of librecon is the representation of the data objects.
As described in Section 3.2, error handling information is only provided for
data objects of the application. Each application object should be represented
by a unique key k ∈ N \ {0} that allows for the distinction of data objects and
the efficient retrieval of the error handling information. Since no error handling
information is provided for non-application objects, they all can use the same
key: zero. The base addresses of the data objects in memory are inappropriate
keys. They are known only for global variables and they are not unique. For
example, the base address of a composite object like a struct and the address
of its first nested object are the same. On the one hand, the choice of the object
representation directly influences the object identification (see use case one),
that has to map memory addresses to the object keys.

On the other hand, for the retrieval of the error handling information for the
individual objects, as described in use case two, the keys have to be mapped
to the corresponding datasets. If the keys form a range of consecutive numbers
with only few gaps, this mapping can be implemented with an array that is
known to be memory efficient and to allow for fast accesses. The fewer gaps
are in the range formed by the keys, the less unused elements will be contained
in the array. In the following we will present, how the data objects can be
represented by the keys from the range [1 . . . n], where n is the number of
data objects to be distinguished. In the next section we will then show that the
assignment of keys to objects perfectly matches the object identification, i. e.,
the mapping of memory addresses to keys.

We denote objects that are not nested in another object as top-level objects.
Each of the top-level objects requires a unique key by which the global vari-
ables of the applications can be distinguished. The assignment of the keys to
the top-level objects becomes obvious, when the key assignment of nested ob-
jects has been explained. Nested objects represent a part of a composite object

4.2 data object representation 13

Listing 1: Declaration of source objects

struct S1

{

int sub_a;

int sub_b;

};

struct S2

{

struct S1 x;

int y;

struct S1 z[3];

};

struct S2 top_a;

struct S1 top_b; �
(top_a, 24)

(x, 25) (y, 28) (z, 29)

(z[0], 30)(sub_a, 26) (sub_b, 27)

(Object, Key)

... (z[2], 30)

(top_b, 33)

(sub_a, 34) (sub_b, 35)

(sub_a, 31) (sub_b, 32) (sub_a, 31) (sub_b, 32)

Figure 1: Example assignment of keys to objects represented by pairs of object name
and key value

depending on its memory layout. Arrays are composite objects that represent
a sequence of homogeneous objects. Therefore, we assume that error handling
information for these objects is homogeneous as well. Hence, the same key will
be assigned to all these objects. This reflects that we consider the complete
array and the elements within the array as two separate objects. In contrast,
struct-like composite objects contain heterogeneous objects. Here, a different
key should be assigned to each nested object. This is analogous to the declara-
tion of data types in C. Like for the objects shown in Figure 1 that result from
definitions shown in Listing 1, to each object with a different symbol another
key has to be assigned. Also objects in two different instances of objects with
the same composite type, the objects represented by the same symbol, like the
nested object sub_a, require different keys. Hence, the object sub_a in top_a

has another key than object sub_a in top_b.
To ease the reuse of the memory layout information about composite ob-

jects, the assignment of keys to the nested objects should always follow the
same schema. We decided to assign consecutive keys to the objects that are
part of the same composite object in pre-order (compare with Figure 1). This
assignment avoids a fragmentation of the key range. Moreover, with the follow-
ing condition it can be easily checked, whether an object is contained within

14 implementation

memory base address size key reference to nested objects
(position in array compositeObjects)

const TopLevelType globalObjects[] = {

 { 0x10004000ul, 36u, 1u, 2u },

 { 0x10004024ul, 8u, 10u, 1u },

 ...

 { 0x10186A3Cul, 4u, 8273u, 0u },

 { 0x0ul, 0u, 8274u, 0u }

};

terminal entry

Figure 2: Encoding of memory address to object key mapping for top-level objects rep-
resenting global variables

another object if for this object the total number of nested objects is known:
a nested in b ⇐⇒ key(b) < key(a) 6 key(b) + #nested_objects(b).

For the assignment of keys to the top-level objects, the objects are sorted by
their base memory address. Subsequently, the keys are assigned to the objects
in this order. If an object is a composite object, first keys to the object itself and
its nested objects are assigned like described above, before the next top-level
is considered. Hence, if there are two top-level objects a and b and there is
no top-level object that is allocated between the objects, the following equation
holds: key(a) + #nested_objects(a) + 1 = key(b).

4.3 data structures and algorithms

The mapping of memory addresses to the keys of top-level objects is simple. It
can be represented by storing for each object a dataset consisting of its absolute
memory base address, its size, and its key. As for the assignment of keys, the
objects are sorted by their base address. Their attributes are stored in this order
in an array. This is illustrated in Figure 2. For a top-level object the count of
nested objects can be determined by looking up the key of the next application
element in the array and computing the difference. A terminal element in the
array enables this way for the last top-level object. Objects within a memory
range that has been affected by an error can be efficiently found using binary
search. To stop the search early in the case that the affected memory range
is within a section that no application objects are allocated to, librecon stores
the start and the end of each section that contains application data objects
and the array indices of the datasets of the first and last object in this section.
The corresponding data structure is shown in Figure 3. Before the search in
the array with the dataset for the objects is started, the section that contains the
affected memory range is determined. Only if the search is successful, the object
identification is continued. Since for each section the range of the datasets of
objects that belong to the section are stored, the binary search can be limited to
this range.

A more sophisticated approach than for the encoding of top-level objects
is needed for composite objects. Admittedly, for each instance of a composite
object a separate mapping can be used which is similar to a decomposition
of the composite objects. However, this approach becomes impractical if the

4.3 data structures and algorithms 15

start address end address first index last index

const SectionType sections[] = {

 { 0x10004000ul, 0x10006D23ul, 0u, 138u },

 { 0x1000D000ul, 0x1000D81Cul, 139u, 182u },

 ...

 { 0x10100000ul, 0x10186A4Ful, 14813u, 16829u }

};

Figure 3: Encoding of memory sections that are relevant to librecon

composite object is a large array. Also, a decomposition does not support the
distinction between composite and nested objects. Anyhow, to save memory it
will be beneficial if only one mapping for all objects with the same memory
layout or type can be used.

To enable the reuse of the memory layout information for composite objects
the position of the nested components must not be encoded by their memory
address, since it will be different for components in two different composite ob-
jects. Instead, for each nested object the relative offset to the start of the directly
enclosing object is stored. This implies that composite objects form a hierarchy
analogous to the nesting relation of their types, as shown in Figure 1. A search
for the identification of the nested object browses this hierarchy starting at the
top-level object. Only the address of this object is an absolute memory address
which is needed to compute the address of nested objects based on the sum of
their relative offsets. Besides, the top-level object need not be a global variable.
The approach for the encoding of the memory layout information can also be
used for objects that are allocated to the heap or stack if the top-level object is
already identified and its attributes are passed to librecon.

For the same reason as for the memory addresses, the keys of the nested
objects cannot be stored explicitly. Depending on the object, to that the nested
object belongs, the key for the object varies. However, since the way in that
keys are assigned to the nested objects is the same for any composite object,
the relative distance of keys to the key of the directly enclosing object is also
the same. Hence, as for the memory addresses, the key of a nested object can
be computed by adding the relative key offset of the object to the key of the
composite object.

The hierarchy of objects has to be encoded as well. All objects that are con-
tained in the same composite object form a group. Their datasets can be stored
consecutively in an array as shown in Figure 4. The hierarchy of objects can
then be represented by a reference in the dataset of the composite object to the
position of the first element of the group in this array. The memory layout is
only relevant for application objects. For all other objects, the reference value is
set to zero. This implies that the first element in the array is just a placeholder
and does not contain information about a nested object.

Objects that represent arrays also have a reference to the group representing
its base type. It can be distinguished from a struct with only one element by
a simple size comparison. If the size of the composite object is a multiple of
the size of the group representing the base type, it is an array. In doing so,

16 implementation

const NestedType nestedObjects[] = {

 { 0u, 0u, 0u, 0u },

 { 2u, 4u, 8u, 0u },

 { 4u, 4u, 2u, 0u },

 { 3u, 8u, 36u, 1u },

 { 8u, 4u, 4u, 0u },

 { 12u, 24u, 5u, 1u },

 ...

};

placeholder entry

first entry of a group
(representing S1)

first entry of group:
 count of elements
 in the group
else:
 offset address

size

first entry of a group: size of group
else: offset key

reference to nested objects

first entry of a group
(representing S2)

Figure 4: Encoding of the memory layout of composite objects

single objects and an array of length one cannot be distinguished. Anyhow, a
distinction is not required, since it does not make any different for the identifi-
cation of either the nested objects or the object itself. However, arrays that differ
only in their size, but not in their base type, can share the mapping to nested
components.

Error handling information for the application objects is assumed to be stored
in an array of datasets. In case that the information contains elements of vari-
able size, like the list of tasks that use an object or the list of applicable er-
ror correction methods, we assume that the dataset is designed to include the
largest element size or these elements are outsourced. However, the size of the
elements will not change at runtime. Also, the type of the elements that can
have different sizes are known at compile time. Hence, they can be stored in an
array as well, where there is an array for each type of variable-sized elements.
E. g., lists can be stored one after the other in an array, where each lists starts
with the count of its elements followed by the sequence of elements. The list
can be simply referenced by the array index of the list head.

If the same error handling information is provided for more than one object,
it should be encoded only once and shared between the objects. To enable the
reuse of error handling information, a mapping of object keys to the array
index of the error handling information is required. Adapting the keys instead,
so that they are identical with the position of the information dataset in the
array, will not work for our approach in general. Since there is a fixed relation
between the keys within composite objects, their assignment must follow the
same schema for each instance of a composite object and cannot be changed.
Nevertheless, the mapping can be encoded efficiently. Since the domain of the
mapping is the gap-less sequence of object keys, here an array can be used
again.

5W O R K F L O W

The error handling information provided by the runtime error classification
librecon is application specific. It refers to the data objects of a particular appli-
cation. Hence, for each differing set of applications another version of librecon
has to be created. Since we consider embedded systems, the set of applications
will not change at runtime. Thus, if the software of the embedded system has to
be updated or replaced, a complete new software image can be created by the
same tool flow that created the initial software image. Beyond that, the creation
of librecon and its integration into the final software image can be fully auto-
mated, so that these tasks do not result in a considerable effort for a software
developer.

The automated workflow can be divided into two parts. In the first part
the required compile-time information is determined by using static analysis.
Here, information from the source code as well as allocation information from
the final binary file have to be combined. This leads to the problem that for
the generation of librecon the allocation in the final binary file has to be known,
but librecon will be part of the final binary file, so that, in turn, for its creation
librecon already has to be generated. To build librecon previous to the binary file,
the allocation that will be made by the linker has to be predicted. Alternatively,
the allocation can be computed, when librecon is generated, and enforced, when
the binary file is created. However, for this workflow neither any assumptions
concerning the used linker should be made nor should the use of a custom
or customized linker be required. The purpose of this restriction is to simplify
the integration of the workflow into the build process for the software of the
system. Following the restriction, the effort for the design and maintenance of
a custom linker can be avoided and the build process concerning the runtime
components can remain unchanged. Changes of the build process for the run-
time components do not affect the workflow for the generation of librecon. The
drawback of the restriction is that no assumptions can be made about how the
allocation will be computed and whether a specific allocation can be enforced.
Hence, it is not possible to determine the allocation that will be made by the
linker in advance. It can only be retrieved by an analysis of the created binary
file.

An approach to circumvent the problem is to build the binary file initially
without librecon, so that it can be analyzed and librecon can be created. Then
the binary file is built once again including librecon. However, even if the linker
is deterministic, we cannot assume that the allocation will be the same is these
two cases. Since the input to the linker changes, the output and thus the alloca-
tion can differ. In this case, the information contained in librecon to identify data
objects and to map memory addresses to objects will be invalid. Consequently,
the linker must be executed only once in the build process. Hence, a way is
needed to build the binary file without librecon and to integrate librecon into the
binary file afterwards without changing the allocation of the data objects.

17

18 workflow

Annotated
Application

Source
Code

GCC

LLVM
Bitcode

(IR)
llvm-link

Fused
LLVM

Bitcode
(IR)llc

Application
Assembler

Code

Placeholder
for

librecon

Preliminary
Binary

File

Final
Binary

File

recon-linker

REPAIR
back-end

Clang

REPAIR
front-end

Object
Code of
Runtime

Components

librecon
Source
Code

librecon
Object
Code

Figure 5: Automated workflow for the creation of librecon and its integration into the
binary file

In the second part of the workflow, the collected information is encoded, and
the code that processes the requests and provides the error handling informa-
tion at runtime is created. Finally, librecon is integrated into the final binary file.
The various tools and processing steps of the workflow will be presented in the
following.

An overview of the complete workflow is shown in Figure 5. It starts with
the processing of the annotated source code of the application. This is done by
the REPAIR front-end which is based on the clang compiler front-end [5]. In the
front-end, the compiler parses the source code, performs a semantic analysis,
and creates an abstract syntax tree (AST), which is a high-level intermediate
representation (IR) of the source code. We extended these steps for the process-
ing of the error correction annotations, so that the syntactical correctness and
semantical validity of the annotations is checked as well. Also, the AST is ex-
tended by new elements for the representation of the annotations. The last step

workflow 19

in the front-end is the conversion of the AST into the mid-level IR of the LLVM
compiler [6]. Since this IR is independent of both source and target language,
after this step no source code information is available any more. Hence, annota-
tions in the source code must be processed before this step. This is the reason,
why the evaluation of the annotations is not postponed until the allocation
information is known.

Normally, a compiler continues the processing of the IR and, in the end, out-
puts object files. The IR is not output. However, we have to keep the IR that
contains the information about the code and data of the application and the
annotations, so that we can combine this information with the allocation infor-
mation that we will retrieve later. Hence, we stop the processing of the compiler
at this point and output the IR as LLVM bit code files. The REPAIR front-end
processes each file separately. Consequently, there is an IR for each source file.
In the next step we use the tool llvm-link [7] to fuse the set of IR to a single
IR that represents the whole application. Despite its name, llvm-link does no
allocation. It mainly replaces references to external declarations by references
to the corresponding definitions if they are part of the application. This has the
advantage, that all data and function definitions are available simultaneously
and the annotations from different source files that refer to the same object can
be checked for consistency.

Using the LLVM static compiler llc [8] assembly code for the target archi-
tecture is created1 for the content of the IR. Together with the object code of
the runtime components this code is input to the linker which is in our case
invoked by gcc [9]. However, the code of the runtime components contains refer-
ences to the interface functions of librecon. Hence, definitions of these functions
are required, or otherwise the binary file cannot be created. Since to that point
in time librecon does not exist, placeholders are defined. These placeholders re-
serve space for the data and code of librecon so that it can be integrated into the
binary file without the need for a change of the allocation.

In the created binary file no relocation information is contained. Hence, it
will be difficult to identify calls to the interface functions of librecon, since func-
tions can be called in various ways. However, these calls have to be adapted
after librecon has been integrated into the binary file, so that a call will trans-
fer control properly to the start of the functions whose position is unknown
when the binary is created. To solve this problem we use a trick. Functions of
librecon can only be called by the runtime components. These are implemented
in such a way that they do not contain a call to a function of librecon. Instead,
they call trampoline functions that only contain a sequence of a few operations
without effect. There is a trampoline function for each interface function of li-
brecon. After librecon has been integrated into the binary file, the operations in
the trampoline functions are replaced by a call to the corresponding function.
Thus, in doing so, no identification of calls to functions of librecon is required.
Only the position of the trampoline functions has to be determined, but these
can be looked up easily in the symbol table of the binary file.

Now that the allocation has been set by the linker, this information can be ex-
tracted from the symbol table of the binary file. This takes place in the REPAIR
back-end. It also reads the IR of the application to determine the memory layout

1 Option -global-merge is set to false, so that the one-to-one relation between global variables in the
assembly code and the IR is preserved.

20 workflow

and the annotations of data objects. Next, it establishes the relation between the
memory address of global variables on the one hand, and the information from
the IR on the other hand. Subsequently, missing information like the relation
between data objects and tasks is computed, before the resulting error handling
information for data objects and the information about error correction meth-
ods is encoded as described in the previous chapter. The output is written to
C source files. It represents the source code of librecon. By compiling the files
with an arbitrary C compiler that supports the target architecture, e. g., clang,
the runtime error classification librecon is created.

Finally, librecon has to be integrated into the binary file that has been previ-
ously created. Therefore, our tool recon-linker copies the content of librecon to
the ranges that had been reserved in the binary file for this purpose. It relocates
the symbols that are unresolved in the object code of librecon and inserts the
calls to the interface function of librecon into the trampoline functions. These
processing steps complete the workflow. Except for the recon-linker, our tools
and modifications at existing tools are target independent. Thus the workflow
can easily be adapted to different target architectures.

6R E L AT E D W O R K

Except for the use case presented in this report, compiler information that
is required at runtime is typically used for debugging. For this purpose, the
DWARF format [10] has become established. The current DWARF version 4

standard is supported by several compilers, linkers and debugging tools. Pro-
viding compile-time information at runtime in this format would follow an
approved approach. The main objective of DWARF is flexibility, so that it is
usable for a variety of source and target languages. By adding new attributes
for data objects and functions that are correction methods, the debug infor-
mation can be extended by the required error handling information. However,
the DWARF format is not efficient for passing error handling information in
resource constrained systems.

On the one hand the extension of debug information would not be memory-
efficient. Most of the information that is useful for debugging is not relevant for
error correction. This includes variable names, type qualifiers, type names, and
references to the source code. Even if all this information would be omitted,
the way information is stored causes unwanted overhead. In DWARF format,
information is stored as a series of key-value pairs. To save memory, recurring
sequences of keys can be stored in a directory like manner. Nevertheless, for
our approach the flexibility given by the attribute keys is not needed at all.
Since the kind of error handling information that is provided for data objects
or for error correction methods is the same for all data objects or all methods,
respectively, the sequence of values can be fixed and need not be encoded by
the use of attribute keys.

On the other hand a special format for the encoding of error handling in-
formation can be more runtime efficient than the DWARF format. The fixed
structure of the entries that store the error handling information enables di-
rect accesses on the desired information. In contrast, the encoding as key-value
pairs would require a search for the matching key. Anyway, the efficient evalu-
ation of the information stored in the DWARF format is up to the debugging
tools. E. g., to determine the data object that is allocated to a given memory
address, a search for the debug information entry of the data object is required.
Consequently several debug information entries have to be processed and the
sequence of operations that describe the memory location of a data object has
to be evaluated. Fortunately, for global objects this sequence consists of only
one operation. Nevertheless, there is no mapping of memory addresses to ob-
jects1. Such a mapping has to be created by the debugger, that has to read the
complete debug information for data objects beforehand, or the DWARF in-
formation has to be searched for each request. Our runtime error classification
contains information that is already preprocessed for efficient search operations
and also provides the methods for the efficient evaluation of queries.

1 The table .debug_aranges accelerates the lookup of data objects by address by mapping memory
ranges to compilation units that contain the desired entry. Still the compilation unit has to be
browsed for the debug information entry of the data object.

21

22 related work

Finally, the DWARF format does not efficiently support the encoding of dis-
tinct information for different nested objects that result from the same defini-
tion in the source code. Debug information for nested objects in two different
global variables with the identical type will be the same for the nested objects
with the same offset within the composite objects. But this need not be true for
error handling information, since the use and semantics of the nested objects
can be different. In the DWARF format, information about nested objects is di-
rectly linked to the description of the containing data type. To encode distinct
information for a nested object depending on the enclosing object it belongs
to, a separate description of the data type for each enclosing object would be
needed. Hence, the description of a composite data types cannot be used for
all objects of that type.

7C O N C L U S I O N S

In this report we presented our approach for passing error handling informa-
tion that is computed at compile-time to components that use this informa-
tion at runtime. Central component of the approach is the library for runtime
error classification librecon that contains the error handling information. We
described the possible queries for error handling information by the runtime
components in three use cases and presented an implementation that supports
these use cases efficiently. Moreover, the requirements of embedded systems
are taken into account by avoiding the storage of redundant information and
enabling fast accesses to the information. Finally we showed, how the runtime
error classification can be generated application-specific in an automated work-
flow.

The intention of the presented approach is to prove the feasibility of passing
the information in an efficient way. Still, there is room for improvements. One
option is to reduce the memory footprint needed by librecon. Since the runtime
components access the error handling information without knowledge about
the encoding of the information, this encoding can be replaced. E. g., compres-
sion techniques can be applied. However, the effect of a compression on the
response time has to be considered, since also a decompression of the data has
to take place, before data can be retrieved. A compression can have a negative
impact on the response time, since the decompression requires computation
time, but it can also have a positive effect on the amount of memory transfers
needed to load the desired error handling information. As another side effect,
during decompression the uncompressed data has to be stored which increases
the usage of temporal memory. This increases the likelihood, that an error af-
fects librecon. All in all, a thorough analysis of the trade-offs is required for
designing an improved version of librecon.

23

B I B L I O G R A P H Y

[1] Florian Schmoll, Andreas Heinig, Peter Marwedel, and Michael Engel. Im-
proving the fault resilience of an H.264 decoder using static analysis meth-
ods. ACM Transactions on Embedded Computing Systems (TECS), 13(1s):31:1–
31:27, December 2013.

[2] Peter Marwedel. Embedded Systems Design - Embedded Systems Foundations
of Cyber-Physical Systems. Springer, 2nd edition, 2011. ISBN 978-94-007-
0256-1.

[3] ITRS. International Technology Roadmap for Semiconductors, 2013 Edi-
tion, Process Integration, Devices, and Structures (PIDS). http://www.

itrs.net/Links/2013ITRS/Home2013.htm.

[4] Andreas Heinig, Michael Engel, Florian Schmoll, and Peter Marwedel. Im-
proving transient memory fault resilience of an H.264 decoder. In Proceed-
ings of the Workshop on Embedded Systems for Real-time Multimedia (ESTI-
Media 2010), Scottsdale, AZ, USA, October 2010. IEEE Computer Society
Press.

[5] clang: A C language family frontend for LLVM. http://clang.llvm.org/.

[6] LLVM Language Reference Manual. http://llvm.org/docs/LangRef.

html.

[7] llvm-link - LLVM bitcode linker. http://llvm.org/docs/CommandGuide/

llvm-link.html.

[8] llc - LLVM static compiler. http://llvm.org/docs/CommandGuide/llc.

html.

[9] GCC, the GNU Compiler Collection. http://gcc.gnu.org/.

[10] DWARF Debugging Information Format Committee. DWARF Debug-
ging Information Format, Version 4, 2010. http://www.dwarfstd.org/

Dwarf4Std.php.

24

http://www.itrs.net/Links/2013ITRS/Home2013.htm
http://www.itrs.net/Links/2013ITRS/Home2013.htm
http://clang.llvm.org/
http://llvm.org/docs/LangRef.html
http://llvm.org/docs/LangRef.html
http://llvm.org/docs/CommandGuide/llvm-link.html
http://llvm.org/docs/CommandGuide/llvm-link.html
http://llvm.org/docs/CommandGuide/llc.html
http://llvm.org/docs/CommandGuide/llc.html
http://gcc.gnu.org/
http://www.dwarfstd.org/Dwarf4Std.php
http://www.dwarfstd.org/Dwarf4Std.php

	Abstract
	Acknowledgments
	Contents
	1 Introduction
	2 FEHLER approach
	3 Use cases
	3.1 Data object identification
	3.2 Retrieval of error handling information
	3.3 Retrieval of error correction method properties

	4 Implementation
	4.1 Requirements
	4.2 Data object representation
	4.3 Data structures and algorithms

	5 Workflow
	6 Related work
	7 Conclusions

