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Abstract—This work presents a multi-objective design space
exploration for Graphics Processing Units (GPUs). For any
given GPGPU application, a Pareto front of best suited GPUs
can be calculated. The objectives can be chosen according to the
demands of the system, for example energy efficiency, run time
and real-time capability. The simulated GPUs can be desktop,
high performance or mobile versions. Also GPUs that do not yet
exist can be modeled and simulated. The main application area
for the presented approach is the identification of suitable GPU
hardware for given medical or industrial applications, e.g. for
real-time process control or in healthcare sensor environments.
As use case a real-time capable medical biosensor program for
an automatic detection of pathogens and a wide variety of
industrial, biological and physical applications were evaluated.

Keywords-GPGPU; energy-awareness; design space explo-
ration; medical image processing; biosensor; simulation;

I. INTRODUCTION

In the field of medical and industrial applications the

use of Graphics Processing Units (GPUs) has become more

and more important in the recent years. Rofouei et al. [1]

have shown that the use of GPUs can result in less energy

consumption for some tasks and concluded that there is “a

huge potential of research in the field of energy-aware high

performance computing with GPUs”.

When a system for a specific medical or industrial applica-

tion is to be equipped with GPUs to increase the processing

power of the system and/or to keep the energy consumption

low, it is beneficial to know in advance which GPUs meet the

requirements of the system. Just choosing the most powerful

or energy-efficient GPUs is often not sufficient as various

conflicting requirements have to be met.

This work presents a novel multi-objective design space

exploration method for GPUs. For a selected set of objec-

tives, a selected set of programs and a selected set of desired

GPUs, an automatic design space exploration is conducted.

GPUs or entire GPU architectures are simulated using a

parametric GPU model. In conclusion a Pareto front of best

suited GPUs is identified. For this set of GPUs the tradeoff

between the selected objectives like energy consumption,

Figure 1. PAMONO biosensor. A blood or saliva sample with viruses is
inserted into a flow cell. A gold layer with antibodies on top is illuminated
by a laser. The reflected light is recorded by a camera. Individual viruses can
be made visible indirectly as they influence the reflected light in micrometer
scale, as soon as they attach to the antibodies.

number of core cycles, run time or cycles per Watt, is shown.

It is possible to identify GPUs that fulfill the requirements

of a system without the need to switch hardware and before

the GPUs are bought or even exist.

The method is evaluated with a wide variety of indus-

trial, biological and physical applications. As a real-world

application the medical biosensor GPU program virusDetec-

tionCL [2] was chosen. This application detects biological

viruses in real-time, while they are pumped through a sensor

and interact with the antibodies on the sensor surface. The

PAMONO (Plasmon-Assisted Microscopy of Nano-Objects)

biosensor is shown in Figure 1 and works as follows. A

blood or saliva sample are pumped into a flow cell, which

contains a gold layer that is coated with antibodies. As soon

as the viruses in the sample interact with the antibodies the

reflectivity properties of the laser light on the bottom side

change and a small increase in intensity can be detected in

real-time on the recorded images. Detailed information about

the PAMONO sensor, which is a modified surface plasmon

resonance sensor, can be found in [3].

The PAMONO sensor will be used for a rapid detection of

pathogens. The scope of use will be a fast virus detector at
c©2014 IEEE doi:10.1109/SITIS.2014.11

Original IEEE publication [4] available at IEEE Xplore:

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=7081609

http://dx.doi.org/10.1109/SITIS.2014.11
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=7081609


Cloud Node 2

Cloud Node 1

Cloud Node n

Master PC

Genetic

Algorithm

Cloud Node 3

Figure 2. Distributed evaluation process.

places with a high passenger volume (e.g. airports), a system

for the development of new drugs and an epidemic early

warning system. The presented multi-objective design space

exploration can be used to automatically identify suitable

GPUs for each of the systems.

The structure of the paper is as follows: Section II gives

an overview of the related work. Section III presents the

methods for design space exploration of GPUs. In Section IV

the experimental setup and the results are described. Finally,

the Sections V and VI provide discussion and future work.

II. RELATED WORK

In the field of design space exploration of GPUs and

energy-aware computing, different approaches have been

published. Basically, they divide into simulation and mea-

surement of GPUs. A survey of different simulation-based

and measurement-based approaches can be found in [5].

The presented approach is simulation-based and is hence

compared to this class of related work.

A regression-based GPU design space exploration was

performed in [6]. Randomly selected GPUs from the design

space are sampled, and from these samples a model of

the run time is constructed using stepwise regression. Mir-

soleimani et al. [7] also employ a linear regression model,

which was used to find the most important GPU parameters

affecting the run time of different GPGPU programs, where

GPGPU is the acronym for General Purpose Computation

on Graphics Processing Units. Jooya et al. [8] presented

an approach to find the GPU configuration which delivers

the best run time under a given transistor budget. It uses

the Plackett-Burman scheme to set up the experiments

and solves a knapsack problem. An evaluation of energy

consumption was not in the focus of these three publications.

In [9], the GPGPU-Sim simulator was used to explore

different GPU design parameters but only targeting run time,

not energy consumption and not in an automatic fashion.

In [10] and [11], GPGPU-Sim was extended to also simulate

the energy- and power-consumption of single GPUs. In [12]

an evolutionary algorithm was used to find the most power-

efficient GPUs for given tasks.

In contrast, the presented novel approach uses multi-

objective optimization to automatically find the most ef-

ficient GPUs for given tasks. The objectives include, but

are not limited to, the energy consumption, energy delay

product, number of cycles, cycles per Watt and the run time

of a program. In addition, the computationally expensive

evaluation can be automatically distributed to a cloud of

heterogeneous PCs.

III. DESIGN SPACE EXPLORATION OF GPUS

In this section, a novel approach for the design space

exploration of GPUs is presented. In contrast to existing

approaches, multiple objectives can be optimized and the

design space can easily be pruned to keep the run time of an

evaluation low. Furthermore, this approach is designed for

parallel simulation and optimized for a remote evaluation

with an automatic deployment of all needed files.

To demonstrate the difficulties and solutions on a specific

problem the virusDetectionCL program [2] is employed as

the main use case. As described in Section I, virusDetec-

tionCL is a real-time-capable streaming computer vision

application, which processes sensor images. The streams

of surface plasmon resonance sensor images are inspected

to automatically detect nanometer-sized viruses that are

indirectly made visible as bright spots that appear in the

images.

For different fields of application, the GPU in the system

needs to fulfill different requirements. If the virus detection

should be done at places with a high passenger volume,

a fast and reliable sample analysis is essential, the energy

consumption is of only secondary importance. For the de-

velopment of new drugs, energy and run time are both

negligible as long as the analysis can be performed in a

reasonable time. And if the sensor should be used as an

epidemic early warning system the major objective is the

energy consumption for a long battery lifetime when no

electricity is available. Also the analysis time should be kept

low to analyze as many samples as possible in a short period

of time when necessary.

To clarify the terminology of General Purpose Com-

putation on Graphics Processing Units (GPGPU) a short

introduction should be given: If a graphics card is used

to execute general purpose programs, numerous lightweight

threads are deployed on the streaming processors (SPs)

of a GPU. Groups of streaming processors are organized

in so-called streaming multiprocessors (SMs), which also



Table I
EVALUATED GPU ARCHITECTURES. FOR EACH ARCHITECTURE THE NUMBER OF STREAMING MULTIPROCESSORS (#SMS), NUMBER OF STREAMING

PROCESSORS (#SPS), CLOCK RATES, DRAM TYPE, NUMBER OF TEXTURE MAPPING UNITS (#TMUS) AND RASTER OPERATION PROCESSORS

(#ROPS) ARE LISTED. THE ARCHITECTURE MARKED WITH AN ASTERISK (*) IS DEVISED AND DOES NOT YET EXIST.

Architecture GPU #SMs #SPs Core clock Shader clock DRAM DRAM clock #TMUs #ROPs

Fermi GF-108 1-2 48-96 700-810 MHz 1400-1620 MHz GDDR-3 400-450 MHz 4-8 3-6
Fermi GF-106 3-4 114-192 590-790 MHz 1180-1580 MHz GDDR-5 450-1000 MHz 12-16 9-12
Fermi GF-104 6-7 288-336 650-675 MHz 1300-1350 MHz GDDR-5 850-950 MHz 24-28 18-21
Fermi GF-100 11-15 352-480 610-780 MHz 1220-1560 MHz GDDR-5 800-1000 MHz 44-60 33-45

Mobile Fermi GF-108-M 1-2 48-96 600-740 MHz 1200-1480 MHz GDDR-3 800-900 MHz 8-16 4-8
Mobile Fermi GF-116-M 3-4 144-192 590-775 MHz 1180-1550 MHz GDDR-5 900-1250 MHz 24-32 12-16
Mobile Fermi GF-114-M 7-8 336-384 575-620 MHz 1150-1240 MHz GDDR-5 1500 MHz 56-64 21-32

Pascal* GP-107 4-5 1024-1280 1200 MHz 2400 MHz GDDR-5 1250-1450 MHz 64-80 16-20
Pascal* GP-104 6-8 2304-3072 820-1040 MHz 1640-2080 MHz GDDR-6 1500-1750 MHz 192-256 48-64
Pascal* GP-110-a 12-15 4608-5760 860-880 MHz 1720-1760 MHz GDDR-6 1500-1750 MHz 384-480 96-120
Pascal* GP-110-b 14-15 5376-5760 840-890 MHz 1680-1780 MHz GDDR-6 1500-1750 MHz 448-480 112-120

contain some shared memory used by the threads. Usually,

a relatively large number of streaming multiprocessors is

present on a GPU, so that multiple groups of threads (warps)

can be scheduled to the SMs and executed in parallel. As

a result hundreds or thousands of threads can be run at the

same time on a modern GPU. The flexible scheduling of

threads, the complex thread cooperation and many hard-

and software dependencies make it difficult to predict the

execution behavior of GPUs.

One challenge for every GPU design space exploration is

to evaluate the highly nonlinear influence of GPU parameters

on the run time and energy consumption of programs. The

presented method makes use of a genetic algorithm which

generates different GPU configurations that are inspected.

The individual GPU configurations are used to set up a GPU

simulator, which simulates GPGPU programs in a cycle-

accurate manner.

The evaluation was designed to run on a heterogeneous

compute cloud. A master PC is distributing all program

dependencies to the different nodes in the network, as is

shown in Figure 2. It also generates new individuals in

the genetic algorithm and distributes the work to the avail-

able CPU cores. Every node can evaluate numerous GPU

configurations at the same time using multiple instances

of the GPUSimPow [11] GPU simulator. The presented

genetic algorithm uses SPEA2 [13] for the multi-objective

evaluation and is configured with a vector mutation pipeline

with mutation probability 0.01 and a tournament selection

of size two.

Particularly (but not exclusively) in real-time applications,

run time has to be considered in addition to energy con-

sumption. If deadlines have to be met, the most energy

efficient solution might not be feasible. The run time can

be taken as a constraint to the optimization process or

as a further objective function, naturally leading to multi-

objective optimization. More precisely, the objectives energy

consumption, energy delay product, number of cycles, cycles

per Watt and the run time of a program can be used.

Another challenge is to keep evaluation run time low,

which is closely related to keeping the design space small

without sacrificing accuracy in the objective-function. If sev-

eral types of GPUs or GPU architectures are to be examined,

the number of parameters that need to be varied is large.

More specifically in this paper the following parameters

are varied: The number of streaming multiprocessors (SMs),

the number of streaming processors (SPs), the core-/shader-

/interconnect-/DRAM- and cache-clock-rate, the DRAM bus

width, the number of raster operation processors (ROPs) and

the number of texture mapping units (TMUs). Most of these

parameters heavily depend on each other. For example, the

number of streaming multiprocessors in a GPU affects the

total number of SPs, ROPs and TMUs. Current approaches

do not make use of these dependencies.

A way to model these dependencies is to map an in-

valid configuration to the nearest valid configuration in the

parameter space, as done in [12]. The problem with this

method is, that it does not keep the overall design space

small. As simple genes can not model the dependencies of

the values, the genes can express all valid but also some

invalid configurations. This gene expression is then mapped

to a valid configuration. This results in a design space which

is only effectively smaller.

One solution to this problem would be to enhance the

process of creating new individuals in a way that only valid

values are generated in the fitness function. But this would

require that the fitness function needs to be rewritten and

recompiled if the parameter dependencies change. However,

here, a different approach was chosen for search space

pruning. The main objective was to keep the design space

small. Therefore the number of genes was reduced to a

number of necessary genes and the rest of the parameters

was derived from these genes.

For example, if the NVIDIA architectures GF-108 to GF-

100 (as listed in Table I) are to be evaluated, the archi-

tecture is uniquely identified by the number of streaming

multiprocessors (SMs). All other parameters that vary with



Table II
EVALUATED PROGRAMS

Suite Program Language Description

none virusDetectionCL OpenCL Real-time computer vision application on biological sensor data

CUDA-SDK blackScholes OpenCL Price prediction of European options
CUDA-SDK histogram OpenCL Histogram calculation
CUDA-SDK quasiRandomGen OpenCL Random number generator
CUDA-SDK reduction OpenCL Parallel sum reduction on large arrays
CUDA-SDK matrixMul OpenCL Parallel matrix multiplication
CUDA-SDK mersenneTwister OpenCL Random number generator
CUDA-SDK vectorAdd OpenCL Parallel vector addition

GPGPU-Sim AES CUDA AES encryption algorithm
GPGPU-Sim BFS CUDA Breadth first search graph traversal
GPGPU-Sim CP CUDA Calculation of the coulomb potential physics simulation
GPGPU-Sim LPS CUDA Laplace discretization on a 3D structured grid
GPGPU-Sim NN CUDA A Neural Network on GPU
GPGPU-Sim NQU CUDA N-Queens Solver
GPGPU-Sim RAY CUDA Raytracing simulation for rendering of light effects
GPGPU-Sim STO CUDA MD5 hash calculation

Rodinia backProp OpenCL Back propagation algorithm in neural networks
Rodinia hotSpot OpenCL Processor temperature physics simulation
Rodinia gaussian OpenCL Gaussian elimination for solving systems of linear equations
Rodinia nn OpenCL Nearest neighbor location calculation on hurricane data
Rodinia nw OpenCL Needleman-Wunsch nonlinear global optimization on DNA sequences

the selected architecture can be derived from the number

of SMs. As a result the design space and therefore the

evaluation time can be smaller as in [12].

For the simulation of complex GPU programs another

critical problem is the required time to evaluate a single

run of the program, especially if hundreds of runs need to

be evaluated to sample the overall design space. Simply

reducing the size of the input is not permitted or has to

be done very carefully because the utilization of the GPU

streaming multiprocessors heavily depends on the input size.

Utilization is a crucial factor in the simulation: Simulating

unrealistic utilization due to too small input sizes can have

unwanted side effects on the evaluation results.

For example, if a program processes a matrix of size

1024 × 1024 and uses local work group sizes of 16 × 16

threads, the input is partitioned into 4096 sub matrices each

of size 16 × 16. Each sub matrix is then processed by

256 threads on one streaming multiprocessor on the GPU.

If a GPU has e.g. 15 multiprocessors, it will need 273

steps to process 15 sub matrices (4095 in total) with full

utilization of the multiprocessors and then one last step for

the one missing sub matrix with about 6.7% utilization as

14 streaming multiprocessors are idle. In result the overall

utilization of the GPU will be 99.7%.

In comparison, if the input size in the example is simply

decreased to e.g. 128×128 instead of 1024×1024 to speed

up the evaluation, the GPU can be fully utilized for 4 steps

and in the last step 11 of the 15 multiprocessors are active.

The overall utilization of the GPU will drop to 85.3%. With

the reduced input set it is possible that now, wrongly, a

GPU with only 8 instead of 15 streaming multiprocessors

is identified as the best, as these 8 multiprocessors will be

fully utilized during the entire processing time.

To circumvent this problem, a checkpointing approach

was used to reduce the evaluation time, without a reduction

of the input size. In one single GPU run (either on hardware

or simulated), all memory buffers are stored to the hard

drive at a certain point to create a checkpoint. During the

simulation this pre-calculated memory state is restored. Af-

terward, the remaining data can be processed. The restoring

introduces an overhead to the measurement. By extracting

the unwanted energy portion the evaluation time can be re-

duced without losing accuracy. The checkpointing approach

is a good choice in the presence of data dependencies in the

GPU code, necessitating perfectly initialized buffers.

The checkpointing approach can be used to reduce the

evaluation time for many types of programs. A good

example is the virusDetectionCL program. This program

processes hundreds or thousands of sensor images for the

analysis of one probe. The checkpoint approach can be used,

as the run time and energy consumption of the initialization

phase is of no interest in this context. The initialization is

done only once in the beginning and is insignificant for the

overall energy consumption.

A second example for the checkpointing approach is the

neural network program NN. If the neural network is used

e.g. in an industrial process control this program will be

initialized and then repeatedly be used to classify several

requests. Here also the initialization phase is of no interest

for the overall energy consumption.

To even further reduce the evaluation time the check-

pointing approach was extended to a quick start approach.

If it is known that some parts of the GPU program do not

depend on the actual data in the buffers, these buffers can be
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Figure 3. Single- and multi-objective evaluation for different programs (cf. Table I and III).

just kept uninitialized. The program virusDetectionCL was

modified with the quick start approach to keep some of the

buffers uninitialized. For example, the program filters the

input images to reduce noise. As the run time and energy

consumption of this filter does not depend on the data that is

processed, the calculation can be done on random values in

the memory without losing accuracy. The evaluation time for

the checkpointing step or a full initialization can be saved.

IV. RESULTS

The proposed method has been evaluated for one real-

world biosensor application and a wide field of applications

from three different benchmark suites. In Section IV-A the

experimental setup is described, followed by the evaluation

in Section IV-B.

A. Experimental Setup

The evaluation of the GPUs was done by using a exten-

sively modified version of ECJ (A Java-based Evolutionary

Computation Research System) [14] as a framework for the

evolutionary algorithm. The multi-objective evaluation was

done with SPEA2 [13]. To calculate the number of cycles

and the energy consumption, a modified version of GPU-

SimPow [11] was used, which is based on the well known

cycle-accurate GPGPU simulator GPGPU-Sim [9]. Instead

of using GPUSimPow it is also possible to use GPGPU-Sim

in conjunction with GPUWattch [10] or virtually every other

simulator that can provide the energy and cycles for a given

GPGPU program.

To run the evaluation, a PC with four AMD Opteron 6272

CPUs with 16 cores (64 cores in total) and 256 GB RAM

with Ubuntu 12.10 server Linux as operating system was

used. Each GPGPU program was evaluated in 25 genera-

tions with a population size of 62 individuals. It has been

shown that the number of total samples provides a good

compromise between the evaluation time and the quality of

the results. The evaluation time for a GPU program varied

from 20 minutes to five days, with an average evaluation

time of 19.8 hours.

B. Evaluation

The evaluation of the presented approach has been done

for a variety of GPU architectures and a variety of GPGPU

programs from different benchmark suites, with the main

focus on the evaluation of the virusDetectionCL use case.

The evaluated GPU architectures are listed in Table I.

Three major types of NVIDIA architectures were modeled:

The Fermi architecture with the GPUs GF-108, GF-106, GF-

104 and GF-100, the mobile Fermi architecture with GF-

108-M, GF-116-M and GF-114-M and the high performance

Pascal architecture with GP-107, GP-104 and GP-110-a/b,

that currently does not exist yet. The Pascal architecture

shows what a new high performance architecture might

look like in the near future. It is assumed that the number

of available streaming processors (SPs), raster operation

processors (ROPs) and texture mapping units (TMUs) will

double, compared to todays GM-107, GK-104 and GK-110

architectures. And it is also assumed that the current GDDR-

5 RAM will be replaced by a GDDR-6 RAM with doubled

memory bandwidth.

In Table II the evaluated programs are shown. The real-

world application virusDetectionCL [2] and programs of

the following three benchmark suites were evaluated, to

show that the method generalizes: The NVIDIA CUDA

SDK [15], GPGPU-Sim [9] and Rodinia [16]. The programs

make use of both OpenCL [17] and NVIDIA CUDA [15] as

programming languages and cover a wide variety of indus-

trial, physical or biological applications like AES encryption,

denoising of radar data, solving systems of linear equations,

simulation of temperature distributions on processors or ray

tracing simulations.

The results for the virusDetectionCL use case are shown

in Figure 3a and in Table III. The virusDetectionCL program

was evaluated with a reduced pipeline configuration against
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Figure 4. Multi-objective evaluation for different programs

all architectures (indicated by (1) to (3) in the table) and

also in the most complex pipeline configuration against

the high performance architecture (indicated by (4) in the

table). The result shows that for each GPU architecture the

most powerful GPU (GF-100, GF-114-M and GP-110) was

chosen. This indicates that the program can utilize a large

number of processors, even the 5376 streaming processors of

the GP-110. Figure 3a shows a comparison between different

GPU architectures for the virusDetectionCL program. The

GF-1xx Fermi architecture (indicated by (1) in the figure)

is the best choice with respect to energy consumption. The

GP-1xx high performance architecture (indicated by (3) in

the figure) is the best choice with respect to the run time,

as expected. A result which may be surprising is that the

mobile Fermi architecture (indicated by (2) in the figure) is

dominated in both objectives by the Fermi architecture.

The GF-100 Fermi architecture could be identified as a

good compromise between energy consumption and run-

time. In detail the Geforce GTX 465, 470 and 480 were

identified for the virusDetectionCL program, with the GTX

465 as the most energy efficient GPU. Only if the fastest

run-time is needed a high performance architecture has to

be chosen.

The results for the benchmark programs are shown as bar

plot with the configurations of the single-objective evalua-

tion in Figure 3b, as Pareto fronts for the multi-objective

evaluation in Figure 4a and as configurations for the multi-

objective evaluation in Figure 4b. In Table III the architec-

tures from the Pareto fronts are listed in detail. A single-

objective optimization was done for energy-consumption

as objective to identify the most energy efficient Fermi

architecture. The GF-100 architecture with eleven to fifteen

streaming multiprocessors shows to be the best for all but

one inspected program, as shown in Figure 3b. For the

gaussian program the GF-108 with only one streaming

multiprocessor and a low core clock of 700 MHz was the

most energy-efficient GPU.

For the multi-objective evaluation, the programs (black-

Scholes to vectorAdd ) were evaluated for the architectures

GF-108, GF-106, GF-104 and GF-100. Although different

GPUs were chosen, the GF-100 architecture is dominating

all other inspected GPUs. Only the configurations of the GF-

100 architecture, like the number of streaming processors,

differs depending on which program was evaluated.

The next eight programs (AES to STO ) in the table were

evaluated for the mobile Fermi architecture. For seven out

of eight the GF-114-M or GF-116-M architecture was best.

For BFS the GF-108-M was the dominating architecture,

indicating that this program does not benefit much from an

increased number of streaming multiprocessors.

Finally, the programs (backProp to nw) in the table,

were evaluated for the high performance architecture. An

interesting result is that the GP-110 GPU with the most

streaming processors was only for the nw program part of

the Pareto front, whereas the GP-107 was part of every

Pareto front. This result contrasts to the evaluation of the

Fermi architecture, where the most powerful GPU was

dominating all the other GPUs.

In order to investigate the validity of the quick start

approach in estimating the run time and energy consumption

of complex programs, three different OpenCL kernels from

the virusDetectionCL program were inspected for different

numbers of frames (1, 5, 10, 20 and 40 frames). On the basis

of each of these runs, energy consumption was predicted for

a run with 80 frames and compared to the actual simulated

result. For the Gauss filter, the actual simulated energy

consumption is 14.28 Joule for 80 frames. The average

predicted energy consumption is 14.28 Joule with a relative

error of 0.019%. For the preprocessing that converts the

raw input to an internally used format, the simulated energy

consumption is 0.159 Joule and the average predicted energy

consumption is 0.157 a relative error of 1.37%. Even if only

one instead of 80 frames is processed, the relative errors

are merely 0.02% for the Gauss filter and 3.6% for the



Table III
RESULTS FOR THE MULTI-OBJECTIVE EVALUATION WITH THE OBJECTIVES ENERGY CONSUMPTION AND RUN TIME. COMMA SEPARATED BEST GPU
CONFIGURATIONS FOR EVERY PROGRAM. SEE TABLE I AND II FOR A DESCRIPTION OF THE ARCHITECTURES AND THE PROGRAMS. ARCHITECTURES

MARKED WITH AN ASTERISK (*) ARE DEVISED AND DO NOT YET EXIST.

Program Architecture(s) #SMs #SPs Core clock DRAM

virusDetectionCL (1) GF-110 11,14,15 352,448,480 780,780,780 GDDR-5
virusDetectionCL (2) GF-114-M 4,7 192,336 760,590 GDDR-5
virusDetectionCL (3) GP-107*/104*/110* 5,6,12,15 1280,2304,4608,5760 1020,1040,870,890 GDDR-5/6
virusDetectionCL (4) GP-107*/104*/110* 4,8,13,14 1024,3072,4992,5376 1020,870,870,890 GDDR-5/6

blackScholes GF-100 11 352 630 GDDR-5
histogram GF-100 13,14,15 416,448,480 780,780,780 GDDR-5
quasiRandomGen GF-100 13 416 780 GDDR-5
reduction GF-100 11,14,15 352,448,480 780,780,770 GDDR-5
matrixMul GF-100 15 480 780 GDDR-5
mersenneTwister GF-100 11,13 352,416 780,780 GDDR-5
vectorAdd GF-100 11 352 780 GDDR-5

AES GF-114-M 7,8 336,384 615,615 GDDR-5
BFS GF-108-M 1 48 740 GDDR-4
CP GF-116/114-M 4,7,8 192,336,384 770,615,615 GDDR-5
LPS GF-116/114-M 4,8 192,384 770,615 GDDR-5
NN GF-114-M 8 384 615 GDDR-5
NQU GF-108/116-M 1,2,4 48,96,192 740,740,740 GDDR-4/5
RAY GF-116/114-M 4,7,8 192,336,384 760,615,615 GDDR-5
STO GF-116-M 4 192 770 GDDR-5

backProp GP-107*/104* 5,7,8 1280,2688,3072 1020,1040,1040 GDDR-5/6
gaussian GP-107* 5 1280 1020 GDDR-5
hotSpot GP-107*/104* 4,6,8 1024,2304,3072 1020,1030,1020 GDDR-5/6
nn GP-107*/104* 4,6 1024,2304 1020,1040 GDDR-5/6
nw GP-107*/110* 4,15 1024,5760 1020,890 GDDR-5/6

preprocessing. Errors can be reduced further by processing

more frames. The third GPU program was a sliding median

calculation with heavy data dependencies and therefore not

well suited for the quick start approach. The simulated

energy consumption was 2.37 Joule and the predicted energy

0.88 Joule with a relative error of 62.8%.

The checkpointing approach was validated by predicting

the energy consumption for 50 frames based on simulating

the processing of 1, 5, 10 and 20 processed frames. For the

Gauss filter the the simulated energy consumption was 14.26

Joule and the prediction was 14.26 Joule with 0.0006% rela-

tive error. For the preprocessing 0.159 Joule was simulated

and 0.162 was predicted with an relative error of 1.37%.

Finally the sliding median took 3.188 Joule in the simulation

while 3.187 Joule were predicted. In result the relative error

is 0.047% instead of the 62.8% for the quick start approach.

V. DISCUSSION

As more and more medical or industrial applications are

using GPUs for processing, it is necessary to identify real-

time capable and/or energy-efficient GPUs for these systems.

Several questions can arise if a new GPU system should

be designed: Which is the most energy efficient GPU for

a mobile device? Which is the fastest GPU for a high

performance system? Is the chosen system capable of real-

time processing?

The proposed framework can be used to determine effi-

cient GPUs for various given problems and under various ob-

jectives. It has been shown that the design space can be kept

small by making use of parameter dependencies, leading to

a reduced evaluation time without losing accuracy in the

objective functions. By reducing the input size of complex

GPGPU programs, the evaluation times was reduced further.

The energy prediction results show that for programs

which have no data dependencies, the quick start approach

is a promising method to reduce the evaluation time. The

energy consumption was predicted accurately for the Gauss

filter and the preprocessing with good error rates of 0.019%

and 1.37%. As the sliding median calculation exhibits

heavy data dependencies, realistic input data is needed.

An initialization with random data is not sufficient which

is also reflected in the error rate of 62% with the quick

start approach. For this type of programs, the checkpointing

approach is perfectly suited. The computation can be done

on initialized buffers which are loaded from the hard disk,

without the initialization overhead. In result the relative error

dropped from 62% to 0.047%. The evaluation time was

reduced by the checkpointing approach from one day and

seven hours to six hours with a very low error.

The multi-objective evaluation has shown that although

different programs are evaluated, some architectures tend

to be more energy and run time efficient than others. For

the Fermi architecture surprisingly the GF-100 dominated

all other GPUs. For the mobile Fermi architecture, the GF-

116-M or GF-114-M is best for most of the programs.

And for the Pascal architecture the GP-107 was always one



solution in the Pareto fronts. The huge amount of cores

of the GP-110 architecture could only be fully utilized by

the programs nw and virusDetectionCL. Fully utilizing the

streaming processors of upcoming GPU architectures seems

to be a challenge for the developers, which needs to be

solved to keep the energy consumption on a reasonable level.

In conclusion, it has been shown that the presented

GPGPU design space exploration can be used to identify

the best GPU architectures for a large variety of programs.

Also GPUs that do not yet exist can be evaluated, which is

beneficial for choosing the right hardware and also to opti-

mize software for upcoming GPUs and identify bottlenecks

early. The design space can be efficiently pruned to keep the

evaluation time low, even for complex programs.

VI. FUTURE WORK

The presented approach will be extended towards a hard-

ware/software co-design. As software parameters, e.g. the

size of the work groups of an OpenCL/CUDA program,

significantly influence the run time on the GPU, it is rec-

ommendable to optimize software and hardware parameters

at the same time.

Moreover a quality of service prediction will be conducted

for different software parameters: As some software does

not need to produce 100% accurate results, a tradeoff can

be calculated between the accuracy and the required energy

for the calculation. This can be used to automatically adapt

the software or hardware settings in order to save energy

when there is no need for fully accurate results.

In addition, it will be examined how distributed embedded

systems can make use of compute servers to offload parts

of a computational task in order to improve objectives

like energy consumption or run time. The software on the

distributed embedded system will predict the saved energy

based on environmental information, like the available band-

width in the mobile network. Besides the energy and transfer

costs on the embedded system, the costs to calculate the

results on the server and the current server system load can

be taken into account. This enables taking the decision of

whether it is beneficial to offload the complete processing

task, to offload only parts of it, or to process it locally.
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