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Abstract—The applications of the mobile devices are increas-
ingly being improved. They include computation-intensive tasks,
such as video and audio processing. However, the mobile devices
have limited resources, which may make it difficult to finish
these tasks in time. Computation offloading can be used to boost
the capabilities of these resource-constrained devices, where the
computation-intensive tasks are moved to a powerful remote
processing unit. This paper considers the computation offloading
problem for sporadic real-time tasks. The total bandwidth server
(TBS) is adopted on the remote processing unit (the server
side) for resource reservation. On the client side, a dynamic
programming algorithm is proposed to determine the offloading
decision of the tasks such that their schedule is feasible (i.e., all
the tasks meet their deadlines). The algorithm is evaluated using
a case study of surveillance system and synthesized benchmarks.

I. INTRODUCTION

With the recent advances in mobile and wireless tech-
nologies, the mobile computing devices have become very
important in our daily life. They include smart phones, mo-
bile robots and wearable computers. For example, the smart
phones are used nowadays for different purposes, such as
Internet access and multimedia applications, in addition to
the traditional phone calls [6, 33]. Also, the mobile robots
are increasingly used for surveillance [14, 32], security [17]
and cleaning [5, 15]. Furthermore, the wearable computers
such as Google glass [2] and the smart watches are the next-
generation ubiquitous technologies. These mobile devices run
multiple tasks simultaneously, which include voice and image
recognition, navigation, video processing, etc. For instance, the
mobile robots that used for exploration collect the data from
different sensors and process it periodically, in order to analyze
the surrounding environment. Also, they process the captured
images periodically to perform object recognition and motion
planning. In addition, the robot may perform further tasks such
as self control of different components and analysis of stereo
vision. These tasks are executed periodically and must finish
within specific time, i.e., the deadline.

However, the mobile devices have limited resources such
as computation capabilities, memory capacity and battery life.
Therefore, they may not be able to finish the execution of all
the tasks in time, specially the computation-intensive tasks.
In this case, the results may become useless or even harmful
to the system if the deadlines are missed. One solution is to
use the computation offloading, where the mobile device (i.e.,
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Fig. 1: Example of the offloading Mechanism.

the resource-constrained device) offloads the computation-
intensive tasks to a powerful remote processing unit. The
remote processing unit executes the offloaded tasks and returns
the results back to the mobile device. Figure 1 illustrates the
computation offloading mechanism, where the blue tasks are
executed on the mobile device and the green ones are offloaded
to the remote processing unit. We denote the mobile device as
the client and the remote processing unit as the server.

Several studies have adopted the computation offloading
technique. The offloading decision in [13, 25, 34] is based on
the comparison between the time consumed during the local
execution and the time consumed during the offloading for
each task. The approaches in [12, 20, 21, 26, 36] use the
graph partitioning method to solve the computation offload-
ing problem. The approaches above focus on the offloading
decision without considering task scheduling or the server
model. Also, most of them either do not consider the timing
satisfaction requirement for real-time properties, or use pes-
simistic offloading mechanism for deciding whether a task can
be offloaded or not [19]. In our previous study in [29], the total
bandwidth server (TBS) [27, 28] is used on the server side to
provide resource reservation for the offloaded tasks. The server
assigns a TBS with a specific utilization (i.e., bandwidth) for
each client. On the client side, two algorithms are proposed to
minimize the finishing time of the tasks (i.e., makespan) based
on the given utilization. But for some clients, the tasks may be
scheduled using less utilization than the given from the server,
without violating the real-time constraints. Therefore, in our
work in [30] the client finds a feasible schedule for the tasks
such that the required utilization from the server is minimized,
in order to avoid wasting the resources of the server. The tasks
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in our two approaches above are frame-based real-time tasks,
where all of the tasks have the same arrival time, relative
deadline and period.

In this paper, we adopt the idea of computation offloading
to schedule the tasks in the resource-constraints mobile devices
such that all of them meet their real-time constraints (i.e.,
their deadlines). We consider the sporadic real-time tasks,
which also include the periodic tasks, where each task consists
of an infinite sequence of identical instances (called jobs)
separated by at least Ti period of time (i.e., the minimum
inter-arrival time). Each task should be executed within its
relative deadline Di. To perform computation offloading in
real-time systems, the server should provide response time
guarantee for the offloaded tasks to be executed and returned
back to the client before their deadlines. Therefore, we use the
total bandwidth server on the server side. Two decision-making
points should be addressed in this paper: (1) task scheduling
and (2) offloading decision.

Our Contribution: Our contribution can be summa-
rized as follows:

• In our model, the server can serve more than one client
and provides response time guarantee to the offloaded
tasks.

• We present schedulability test analysis for sporadic real-
time tasks that can be executed locally or offloaded.

• We propose a computation offloading algorithm based
on dynamic programming. The algorithm schedules the
sporadic real-time tasks and decides which of them to be
offloaded, based on the given utilization from the server,
such that the real-time constraints are satisfied.

• We evaluate our algorithm using a case study of surveil-
lance system and synthesized benchmarks.

II. LITERATURE REVIEW

Different techniques have been proposed to perform com-
putation offloading in order to improve performance [12, 13,
16, 18, 26, 34, 36], save energy [16, 18, 20, 21, 35] and satisfy
real-time requirements [11, 25].

The computation offloading is adopted in [13, 34] to
improve the performance for computational grid settings. The
system predicts the local execution time, the remote execution
time and the transmission time of the tasks. Then, the offload-
ing problem is represented as a statistical decision problem.
The task is considered beneficial for offloading if the expected
cost of the remote execution is less than the expected cost of
the local execution.

Without loss of generality, the main idea in [12, 20, 21,
26, 36] is to represent the computation offloading problem
as a graph partitioning problem, where the first partition
represents the client side and the other one represents the
server side. Each vertex in the graph is combined with a
cost and represents a task in a program as in [20, 21], or
a computational component as in [12, 26, 36]. The edges
between the vertices are combined with the communication
costs. The costs of the vertices and the edges could be either
energy costs, performance costs or a combination between
them. Different algorithms are proposed to partition the graph
into two parts in order to minimize the communication cost or
the total cost on one side.

Khairy et al. [16] propose a “Smartphone Energizer”
technique for context-aware computation offloading in order
to extend the battery life of the smart phone. The proposed
technique predicts the energy consumption and the execution
time costs of a computation on both client and server sides, and
combines them into one cost. The computation is considered
to be beneficial for offloading if the expected combined cost
on the server is less than the one on the client. The prediction
is performed based on supervised learning with the contextual
information such as network, service, device and user charac-
teristics.

The offloading decision in [18] is represented as an opti-
mization problem based on different parameters such as CPU
load, available memory, remaining battery, and the bandwidth.
The Integer linear Programming (ILP) is used to solve the
problem on the mobile device. Then, the computation-intensive
tasks are offloaded to a remote cloud.

Nimmagadda et al. [25] propose an offloading framework
for mobile robots to perform the tasks of object recognition
and tracking without violating the real-time constraints. A task
is assigned for offloading, if the summation of its expected
remote execution time on the server and its data transfer time
is less than its local execution time on the robot. Ferreira et al.
[11] explore the computation offloading to improve the quality
of service in the adaptive real-time systems. The proposed
mechanism offloads the services from the smart phone to
several surrogate nodes.

In most of the current studies, the offloading decision is
either based on: (1) the comparison between the cost of the
local execution and the cost of the remote execution for each
task alone, or (2) the partitioning of the graph that represents
the tasks combined with their local and remote execution costs
[19]. The cost may include the execution time, the energy
consumption, the memory usage, etc. The first approach may
not be optimal if we consider all of the system tasks together.
Both approaches do not consider the scheduling of the tasks.
Changing the order of the task execution, if it is possible,
may improve the performance of the system. Also, they do
not consider the server model, or how it handles and executes
the offloaded tasks from more than one client. According to
the existing approaches, the server is always ready to execute
the offloaded tasks from the client immediately, which means
that the server is dedicated for one client.

III. SYSTEM MODEL AND PROBLEM DEFINITION

In this section, we present our client-server system model,
and the problem definition.

A. Client and Task Model

Given a set T of n independent sporadic real-time tasks.
A task τi ∈ T (for i = 1, 2, . . . , n) represents an execution
unit, and consists of an infinite sequence of identical instances,
called jobs [8, 24]. Each task is characterized by the following
timing parameters:

• Ci: Local execution time on the client side.
• Ri: Remote execution time. The execution time on the

server side.
• Di: Relative deadline.
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Fig. 2: Timing parameters for two tasks.

• Ti: Minimum inter-arrival time. The minimum period
of time between the arrival of two consecutive jobs of the
same task.

• Si: Setup time. The execution time required for the
task on the client side to be ready for offloading. It
includes any preprocessing operations such as encoding
and compression. It also includes the sending time for the
data of the task from the client to the server.

• Ii: Round-trip offloading time. The period of time
starting from the end of setting up the task τi until getting
the result from the server.

We say that a task τi is executed locally if it is executed
with (at most) Ci amount of time on the client. And we say
it is offloaded if it is executed (at most) Si amount of time on
the client for setting up, and then its result returns back from
the server after (at most) Ii amount of time. Each task can be
executed locally or offloaded. Suppose that xi is equal to 1
if the task τi is chosen for offloading; otherwise, xi is equal
to 0. We use the vector ~xn = (x1, x2, . . . , xn) to denote an
offloading decision vector of the tasks.

The relative deadline Di of a task τi can be expressed as
follows:

Di = xiD
o
i + (1− xi)Dl

i. (1)

Where, the setting up of the task τi should be finished within
the offloading relative deadline Do

i in the case of offloading.
In the case of local execution, the task should be executed
within the local relative deadline Dl

i. As the result of the
offloaded task returns after at most Ii amount of time, the
offloading relative deadline can be expressed as Do

i = Dl
i−Ii.

On the client side, we consider the sporadic real-time task
model with implicit local relative deadlines, where the local
relative deadline is equal to the minimum inter-arrival time,
i.e., Dl

i = Ti. This model also includes the periodic tasks, in
which the jobs of the same task are activated at a constant rate.
We assume that the returned result from the server needs very
short post processing time, which is negligible. Figure 2 shows
the timing parameters for an example of two tasks, where the
first task (in blue) is executed locally and the second one (in
green) is offloaded to the server.

B. Server Model

In our system model, the server is able to serve more than
one client. In this case, the server should provide a certain
resource reservation for each client in order to guarantee the
response time of the offloaded tasks. The Total Bandwidth

Server (TBS) [27, 28] is used as a resource reservation server
to mange the sharing of the server processor, and then preserve
the real-time property of the system.

The server assigns a TBS for each requesting client with
a specific utilization (or bandwidth) Us, if it is possible. The
total given utilization for all clients should be less than or
equal to 100%, in order to preserve the system feasibility. For
the client, the speed of the given TBS seems 1

Us
times slower

than the speed of the server.

C. Problem Definition

Given a set T of n sporadic real-time tasks. A schedule of
the tasks is said to be feasible if the timing constraints of all the
tasks are satisfied. As the resources of the client are limited,
it may not be able to schedule the tasks without violating the
timing constraints. Therefore, the client may offload some of
the tasks to the server for faster execution. A task τi can be
offloaded if it is beneficial for offloading (i.e., Si < Ci), and
its result returns back from the server before the deadline. The
problem is to find a schedule and an offloading decision such
that all the tasks meet their real-time constraints.

D. Hardness of the Problem

The problem in this paper is similar to the problem in our
previous work in [31], but with a general task model. A special
case of the sporadic real-time model, called frame-based real-
time task model, is considered in [31]. In the frame-based
real-time task model, all the tasks have the same arrival time,
relative deadline and period. It has been shown in [31] that
this offloading problem is NP-complete even for the special
case of the general task model.

Theorem 1: The computation offloading problem for spo-
radic real-time tasks is NP-hard problem.

Proof: The current offloading problem is a general case
of the offloading problem in [31], which has been proved that
it is an NP-complete problem.

IV. TASK SCHEDULING AND FEASIBILITY TEST

In this section, we present how the tasks are scheduled
and how the the feasibility of a schedule can be verified. For
the task scheduling, this paper considers the Earliest Deadline
First (EDF) algorithm, which is a preemptive scheduling algo-
rithm with a dynamic priority policy. It is an optimal algorithm
for dynamic-priority scheduling on preemptive uniprocessors
[22]. According to EDF, the job with the earliest absolute
deadline, among of the ready jobs, is assigned with the highest
priority [23].

The processor demand analysis is used to verify the feasi-
bility of a schedule under EDF [7]. The demand bound function
dbf(τi, t) of a task τi within the time interval of length t can
be defined as follows:

dbf(τi, t) = max

{
0,

⌊
t−Di

Ti

⌋
+ 1

}
× Ci. (2)

The task set T = {τ1, τ2, . . . , τn} can be feasibly sched-
uled by EDF if and only if the total demand of all the tasks
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within any interval of time t is no greater than the available
processing time [7]; that is, if and only if

∀t > 0,

n∑
i=1

dbf(τi, t) ≤ t. (3)

Several approximations on the demand bound function
have been proposed by Chakraborty et al. [9], and Albers and
Slomka [3, 4] to reduce the time complexity of the feasibility
analysis. The main idea of the approximation algorithms is
to limit the number of test points by considering only a
constant number of points for each task, and then use the linear
approximation for the rest of the test interval. According to the
approximation in [3], the approximate demand bound function
can be defined as follows:

dbf∗(τi, t) =
{

0 if t < Di(
t−Di

Ti
+ 1
)
Ci otherwise. (4)

It represents an upper bound of the Equation (2). In this
case, there exists a feasible schedule if:

∀t > 0,

n∑
i=1

dbf∗(τi, t) ≤ t. (5)

According to the approximation approach, only the first job
of each task is considered in the schedulability analysis. The
relative deadline Di of each task τi represents its maximum
test interval, supposing that the first jobs of all the tasks are
released simultaneously at the beginning of the interval time
t [4]. Therefore, the following conditions represent sufficient
schedulability test:

n∑
j=1

uj =

n∑
j=1

Cj
Tj
≤ 1 (6a)

∀τi ∈ T ,
i∑

j=1

dbf∗(τj , Di) ≤ Di, (6b)

where uj is the utilization of task τj .

The analysis in [3, 4] shows that the above schedulability
test in (6) has a 2 resource augmentation factor. Moreover, the
recent result in [10] gives a tighter analysis to show that the
test by (6) gives a 1.6322 resource augmentation factor. If a
given algorithm has an ε resource augmentation factor to solve
a scheduling problem, it guarantees that the solution (i.e., the
derived schedule) is feasible on a processor by speeding it up to
ε times as fast as the original speed, provided that there exists
a feasible schedule for the original speed. If the condition
in (6b) does not hold, we can not say there is no feasible
solution. According the the resource augmentation technique,
if the algorithm fails to find a solution, there is no feasible
schedule by slowing down the processor to 1

ε of the original
speed.

Ti = Dl
i 2Ti 3Ti

Ci

2Ci

3Ci

4Ci

dbf∗l(
τi,
t)

dbfl(τi, t)

t

(a) dbfl(τi, t) and dbf∗l (τi, t)
functions.

Do
i

Do
i + Ti Do

i + 2Ti Do
i + 3Ti

Si

2Si

3Si

4Si
dbf∗o(τi

, t)

dbfo(τi, t)

t

(b) dbfo(τi, t) and dbf∗o(τi, t)
functions.

Fig. 3: Illustration for the demand bound function and its
approximation.

V. OUR APPROACH

In our offloading problem, two decision-making points
should be considered: the offloading decision ~xn and the task
scheduling. EDF is used to schedule the tasks as shown in
Section IV. Subsection V-A defines the feasibility test for
our system model. The offloading decision of the tasks ~xn
is determined using the dynamic programming algorithm in
Subsection V-B. In Subsection V-C, an iterative algorithm is
proposed to estimate the value of Ii.

A. Feasibility Test and Analysis

The conditions in (6) can not be used to test the schedu-
lability of the tasks in our problem. Because the task in our
model either is executed locally or offloaded. In the case of
offloading, the task is executed Si amount of time on the
client instead of Ci amount of time in the case of local
execution. Also, the relative deadline becomes Do

i instead
of Dl

i. Therefore, we want to define our own schedulability
(or feasibility) test, based on the conditions in (6), which is
applicable for our problem. The utilization, the demand bound
function and the approximate demand bound function for a
task τi in our model are defined respectively as follows:

• τi is executed locally:

uli =
Ci
Ti
,

dbfl(τi, t) = max

{
0,

⌊
t

Ti

⌋}
× Ci,

dbf∗l (τi, t) =
{

0 if t < Dl
i

tCi

Ti
otherwise.

• τi is offloaded:

uoi =
Si
Ti
,

dbfo(τi, t) = max

{
0,

⌊
t−Do

i

Ti

⌋
+ 1

}
× Si,

dbf∗o(τi, t) =

{
0 if t < Do

i(
t−Do

i

Ti
+ 1
)
Si otherwise.

Figure 3 illustrates the demand bound function (in black)
and its approximation (dashed red line) for the task τi in
the case of local execution (Figure 3a), and in the case of
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offloading (Figure 3b). It also shows the available processing
time t.

According to our task model, the conditions in (6) can be
expressed as follows:

n∑
j=1

uj =

n∑
j=1

xju
o
j +

n∑
j=1

(1− xj)ulj

=

n∑
j=1

xj
Sj
Tj

+

n∑
j=1

(1− xj)
Cj
Tj
≤ 1 (9a)

∀τi ∈ T ,
i∑

j=1

dbf∗(τj , Di)

=

i∑
j=1

xj · dbf∗o(τj , Di) +

i∑
j=1

(1− xj) · dbf∗l (τj , Di)

=

i∑
j=1

xj

(
Di −Do

j

Tj
+ 1

)
Sj +

i∑
j=1

(1− xj)Di
Cj
Tj
≤ Di.

(9b)

Recall that xi is equal to 1 if the task τi is chosen for of-
floading; otherwise, xi is equal to 0. Also, the relative deadline
of the task τi is represented as: Di = xiD

o
i + (1 − xi)Dl

i. A
very safe upper bound to approximate the condition in (9b) is
to discard the value of Do

j (or replace
Di−Do

j

Tj
with Di

Tj
.) As a

result we have:

i∑
j=1

xj

(
Di −Do

j

Tj
+ 1

)
Sj +

i∑
j=1

(1− xj)Di
Cj
Tj

≤
i∑

j=1

xj

(
Di

Tj
+ 1

)
Sj +

i∑
j=1

(1− xj)Di
Cj
Tj

=Di

(∑i
j=1 xjSj

Di
+

i∑
j=1

xj
Sj
Tj

+

i∑
j=1

(1− xj)
Cj
Tj

)
. (10)

Therefore, based on the condition in (9b) and the over-
approximation in (10), the following condition in Lemma 1
can be used to test the feasibility of a schedule in our problem
under EDF.

Lemma 1: For a given offloading decision vector ~xn, if
∀τi ∈ T ,

Di

(∑i
j=1 xjSj

Di
+

i∑
j=1

xj
Sj
Tj

+

i∑
j=1

(1− xj)
Cj
Tj

)
≤ Di.

then the tasks can be feasibly scheduled by EDF, where Di ≤
Di+1.

Proof: Suppose that the if part of the lemma is true, then
we have:

∀τi ∈ T ,
∑i
j=1 xjSj

Di
+

i∑
j=1

xj
Sj
Tj

+

i∑
j=1

(1−xj)
Cj
Tj
≤ 1, (11)

Now, we want to show that the feasibility condition in (3)
is also true. For Di ≤ t < Di+1, we have:

n∑
j=1

dbf(τj , t)

=

n∑
j=1

xj · dbfo(τj , t) +
n∑
j=1

(1− xj) · dbfl(τj , t)

≤
n∑
j=1

xj · dbf∗o(τj , t) +
n∑
j=1

(1− xj) · dbf∗l (τj , t)

=

i∑
j=1

xj · dbf∗o(τj , t) +
i∑

j=1

(1− xj) · dbf∗l (τj , t),

because dbf∗o(τj , t) and dbf∗l (τj , t) are equal to 0

for all t < Do
j and t < Dl

j respectively.

≤
(∑i

j=1 xjSj

t
+

i∑
j=1

xj
Sj
Tj

+

i∑
j=1

(1− xj)
Cj
Tj

)
t ≤ t,(∑i

j=1 xjSj

t +
∑i
j=1 xj

Sj

Tj
+
∑i
j=1(1− xj)

Cj

Tj

)
≤ 1

for Di ≤ t < Di+1, see Equation (11).

The feasibility condition in Lemma 1 can be expressed as
follows:

∀τi ∈ T ,
∑i
j=1 xjSj

Di
+

( i∑
j=1

xj
Sj
Tj

+

i∑
j=1

(1− xj)
Cj
Tj

)
≤ 1,

(12)

which also includes the utilization condition in (9a). The
following lemma shows that the approximation in (12) has a
resource augmentation factor equals to 2.

Lemma 2: For the task τi, if∑i
j=1 xjSj

Di
+

( i∑
j=1

xj
Sj
Tj

+

i∑
j=1

(1− xj)
Cj
Tj

)
> 1

then there is no feasible schedule for the tasks {τ1, τ2, . . . , τi}
if the system is slowed down to 0.5 of the original speed.

Proof: If∑i
j=1 xjSj

Di
+

( i∑
j=1

xj
Sj
Tj

+

i∑
j=1

(1− xj)
Cj
Tj

)
> 1,

then we have two possibilities:

1)
∑i

j=1 xjSj

Di
> 0.5, then

∑i
j=1 xjSj > 0.5Di. The

infeasibility by slowing down can be verified as fol-
lows:

∑n
j=1 dbf(τj , Di) ≥

∑i
j=1 xj · dbfo(τj , Di) ≥∑i

j=1 xjSj > 0.5Di.
2)
(∑i

j=1 xj
Sj

Tj
+
∑i
j=1(1 − xj)

Cj

Tj

)
> 0.5. By slowing

down to 0.5 of the original speed, the utilization becomes:∑i
j=1 xj

2Sj

Tj
+
∑i
j=1(1 − xj)

2Cj

Tj
= 2

(∑i
j=1 xj

Sj

Tj
+∑i

j=1(1− xj)
Cj

Tj

)
> 1.
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B. Dynamic Programming Algorithm

The feasibility condition in Lemma 1 can be verified for a
given offloading decision vector ~xn. One solution to determine
the offloading decision ~xn is to find all the combinations for
the offloading decisions of the tasks, and then test the feasibil-
ity. However, this method needs exponential execution time.
Therefore, we propose a dynamic programming algorithm to
determine the offloading decisions of the tasks, and to test
the feasibility of the schedule at the same time. The tasks are
ordered according to the relative deadline Di, i.e., Di ≤ Dj

if i < j, to build the dynamic programming table. The tasks
that are not beneficial for offloading (Si ≥ Ci) or can not be
offloaded (Do

i < Si), are assigned and fixed for local execution
with Di = Dl

i. For the other tasks, i.e., that can be offloaded or
executed locally, we consider at the beginning that Di = Do

i ,
which is used for ordering of the tasks and testing. If the
dynamic programming algorithm finds a feasible schedule, the
obtained offloading decisions are used to determine the relative
deadlines of the tasks according to (1). And then, EDF is used
to schedule the tasks according to these deadlines.

Consider the sub-problem for the first i tasks
{τ1, τ2, . . . , τi}. Recall the feasibility condition in (12),

let
∑i

j=1 xjSj

Di
be the effective density for the first i tasks

at time Di, and
(∑i

j=1 xj
Sj

Tj
+
∑i
j=1(1 − xj)

Cj

Tj

)
be the

effective utilization for the first i tasks. Suppose that L(i, δ)
is the minimum effective utilization for the first i tasks, such
that their effective density at time Di is less than or equal
to δ. A two-dimensional dynamic programming table L(i, δ)
is constructed for all possible values of i and δ, such that
0 ≤ i ≤ n and 0 ≤ δ ≤ 1. Where, all the possible values
of δ are considered as the integer multiples of ρ (i.e., ρ is a
user-specified granularity), and 1

ρ is considered as an integer
number. We start by initializing all the elements of L(0, δ) to
zeros. Then, the following recursion is used to fill the table
for i from 1 to n.

L(i, δ) =

min


{
L(i− 1, δDi−Si

Di−1
) + Si

Ti
if Si < Ci ∧ δ ≥ Si

Di

∞ otherwise

L(i− 1, δDi

Di−1
) + Ci

Ti

(13)

Where δDi−Si

Di−1
and δDi

Di−1
are the effective density for the

first i − 1 tasks at time Di−1 if the task τi is assigned for
offloading and if it is assigned for local execution respectively.

Lemma 3: For given i and δ, the recursive function defined
in 13 computes the optimal solution for L(i, δ).

Proof: This Lemma can be proved by induction. For the
base case (i = 1) if the task can be offloaded, the function
stores the minimum between the offloading case Si

Ti
and the

local case Ci

Ti
which is optimal.

Inductive step: Assume that L(i− 1, δ) is optimal for the
subproblem of the first i − 1 tasks with i ≥ 2 and any given
0 ≤ δ ≤ 1. Let ~xoi−1 be the optimal offloading decision for
{x1, x2, . . . , xi−1} when the effective density of the first i−1

tasks is no more than δDi−Si

Di−1
(i.e., when task τi is considered

for offloading). Similarly, let ~xli−1 be the optimal offloading
decision for {x1, x2, . . . , xi−1} when the effective density of
the first i − 1 tasks is no more than δDi

Di−1
(i.e., when task τi

is considered for local execution).

Suppose for contradiction that ~x∗i is an offloading de-

cision for {x1, x2, . . . , xi} in which
∑i

j=1 x
∗
jSj

Di
≤ δ and(∑i

j=1 x
∗
j
Sj

Tj
+
∑i
j=1(1 − x∗j )

Cj

Tj

)
< L(i, δ). There are two

cases for the task τi in ~x∗i :

• Case 1: τi is executed locally in ~x∗i (x∗i = 0). Under the
assumption we have

(∑i
j=1 x

∗
j
Sj

Tj
+
∑i
j=1(1−x∗j )

Cj

Tj

)
<

L(i, δ). But

( i∑
j=1

x∗j
Sj
Tj

+

i∑
j=1

(1− x∗j )
Cj
Tj

)
=
( i−1∑
j=1

x∗j
Sj
Tj

+

i−1∑
j=1

(1− x∗j )
Cj
Tj

)
+
Ci
Ti

<L(i, δ) ≤
( i−1∑
j=1

xlj
Sj
Tj

+

i−1∑
j=1

(1− xlj)
Cj
Tj

)
+
Ci
Ti
,

Hence, the offloading decision ~x∗i−1 is an offloading de-

cision for the first i−1 tasks in which
∑i−1

j=1 x
∗
jSj

Di−1
≤ δDi

Di−1

and
(∑i−1

j=1 x
∗
j
Sj

Tj
+
∑i−1
j=1(1−x∗j )

Cj

Tj

)
<
(∑i−1

j=1 x
l
j
Sj

Tj
+∑i−1

j=1(1 − xlj)
Cj

Tj

)
, which contradicts the optimality of

L(i− 1, δ).
• Case 2: The same argument in case 1 applies when τi is

offloaded in ~x∗i (x∗i = 1).

Hence, based on the induction hypothesis, the lemma is proved.

Finally, we check if there exists a feasible schedule using
the following theorem.

Theorem 2: There exists a feasible schedule under EDF
for our offloading problem if the minimum of L(n, δ)+ δ, for
0 ≤ δ ≤ 1, is less than or equal to 1. Otherwise, there is no
feasible schedule by slowing down to 0.5 of the original speed.

Proof: This comes from Lemma 1 and the sub-optimality
property of the dynamic programming scheme shown in
Lemma 3. The infeasibility by slowing down the original
platform comes from Lemma 2.

If we have a feasible schedule, we backtrack the dynamic
programming table to obtain the offloading decision for each
task τi, starting from the solution found, as follows: (1) If τi is
assigned for local execution, we backtrack to L(i−1, δDi

Di−1
). If

it is assigned for offloading, we backtrack to L(i−1, δDi−Si

Di−1
).

The time complexity of the dynamic programming algorithm
is O(n log n+ n 1

ρ ).

C. Estimating the Value of Ii

Based on the given Ii values, the dynamic programming
algorithm in Subsection V-B determines the tasks that should

It comes from the construction of L(i, δ) in (13).

6



Algorithm 1 Estimating the value of Ii
1: ∀τi ∈ T , Ii ←∞;
2: ∀τi ∈ T |Si < Ci, Order them according to Ci−Si

Ri
in the

list L;
3: To ← ∅;
4: while L 6= ∅ do
5: Pick the task τj from L with the maximum Cj−Sj

Rj
;

6: To ← To ∪ {τj};
7: L ← L \ {τj};
8: ∀τi ∈ To, Ui ← Us

|To| , Ii ←
Ri

Ui
;

9: Run the dynamic programming algorithm from Subsec-
tion V-B;

10: if There exists a feasible schedule then
11: Return ~x;
12: end if
13: end while
14: return “Fails to find a feasible schedule”;

be offloaded to have a feasible schedule. However, the value
of Ii depends on the number of offloaded tasks. Because if the
number of offloaded tasks increases, the server needs longer
time to finish them, which affects the value of Ii. The value
of Ii also depends on the given utilization from the server Us.
Fortunately, this value (Us) is predefined and fixed. So, it is
difficult to calculate the exact value of Ii without knowing
the number of the offloaded tasks to the server. Therefore,
we present in this subsection an iterative algorithm, which is
described in Algorithm 1, to estimate the value of Ii.

The main idea of the algorithm is to nominate a set of tasks
To ∈ T for offloading, i.e., predict the number of offloaded
tasks, based on the heuristic value Ci−Si

Ri
. Then, the Ii value

is calculated just for the candidate tasks in the set To. For the
other tasks, the Ii value is assigned to infinity. The tasks with
Si ≥ Ci are not beneficial for offloading. Thus, Algorithm 1
assigns all of them for local execution by setting their Ii value
to infinity. All other tasks, that are beneficial for offloading,
are added to the list L (Lines 1 and 2). As long as the list L
is not empty, the algorithm keeps doing the following steps:

• Pick the task τj with the maximum heuristic value Cj−Sj

Rj

from the list L (i.e., beneficial for offloading) and nomi-
nate it for offloading. Using this heuristic, the algorithm
tries to decrease the load of the client as much as possible
and to increase the load of the server as less as possible
(Lines 5 - 2).

• Calculate the value of Ii for the candidate tasks. Accord-
ing to the system model, the server assigns a TBS with
a specific utilization Us to the client. To be feasible, the
algorithm on the client assigns for each task τi ∈ To a
TBSi with a utilization Ui such that their total utilization
is equal to the given utilization from the server Us, i.e.,∑
τi∈To Ui = Us (Line 8).

• The dynamic programming algorithm is used to find a
feasible schedule. If there exists one, Algorithm 1 returns
the offloading decision ~x (Lines 9 - 11).

If the list L becomes empty before finding a feasible
schedule, then our algorithm fails to find a feasible schedule.

TABLE I: Timing parameters of the case study tasks (ms)

τi Description Ci Si Ri Ti

τ1 Motion Detection 30 7 21 115
τ2 Object Recognition 220 2 102 418
τ3 Stereo Vision 88 16 41 695
τ4 Motion Recording 18 7 14 63

VI. EXPERIMENTAL EVALUATION AND SIMULATION

In this section, we evaluate our algorithm by implementing
a case study of a surveillance system, and synthesis workload
simulation. We use the abbreviation DP to refer to the
dynamic programming algorithm. The term Simple-Offload
is used to refer to the algorithm in which the offloading
decision is taken based on the comparison between the data
transfer time added to the round-trip offloading time, and the
local execution time, i.e., a task τi is simply offloaded if
Si + Ii < Ci. To show the effectiveness, we report the results
by adopting these two algorithms.

The Ii values are calculated using Algorithm 1. The evalu-
ation is performed for different values of the given utilization
from the server Us. The server uses the fair-sharing policy,
where its utilization is partitioned between the connected
clients equally, i.e., the given utilization Us for each client
is equal to 1 divided by the number of served clients. For
example, if the given utilization for a client is Us = 1,
this means that the server is dedicated to this client. And if
Us = 0.1, then the server serves 10 connected clients at the
same time.

A. Case Study of a Surveillance System

A surveillance system is implemented as a case study
to evaluate our algorithm and to compare it with the
Simple-Offload approach. The server is Pentium(R) Dual-Core
2.8 GHz 64-bit CPU with 4 G memory. The client has Centrino
Duo 1.73 GHz 32-bit CPU and 512 MB of memory, and is
provided with two cameras (left and right). The client performs
four independent sporadic real-time tasks on the input video
streams. The tasks can be described as follows:

• Motion Detection: Detects the moving objects.
• Object Recognition: Recognizes and tracks a given ob-

ject.
• Stereo Vision: Calculates the distance between the cam-

era and the object of interest by generating a depth map
for left and right images.

• Motion Recording: Records the video of the detected
motion for records and any further human observations.

Motion detection, object recognition and motion recording
process the images captured by the left camera. Table I shows
the parameters of the tasks above, where the time is measured
in milliseconds. The total utilization without offloading is equal
to nearly 120%, i.e., there is no feasible schedule if all of
the tasks are executed locally. The offloading algorithms are
implemented to find a feasible schedule.

Figure 4 shows that our dynamic programming algorithm
can find a feasible schedule for the tasks of the case study
when the number of the served clients is up to four, i.e., the
given utilization is Us = {0.25, 0.333, 0.5, 1}. For more than

7



0

1

2

3

4

DP Simple-Offload

N
u

m
b

er
 o

f 
se

rv
ed

 c
li

en
ts

 

Algorithm 

Feasible

Fig. 4: Case study results.

four clients, or Us ≤ 0.2, the algorithm is not able to find a
feasible schedule. But, it guarantees that there is no feasible
by slowing down the processor to 0.5 of the original speed.
The Simple-Offload algorithm can find a feasible schedule for
Us = {0.5, 1}, i.e., the server provides offloading services for
two clients or is dedicated for one.

The difference between the results of the two algorithms
comes from the fact that the dynamic programming algorithm
tries to find the offloading decision that minimizes the total
demand of all the tasks, while the offloading decision in
Simple-Offload algorithm is based on each task alone. Also,
the dynamic programming algorithm nominates a task τi for
offloading if Si < Ci which reduces the demand of this task in
the case of offloading, while in the Simple-Offload algorithm
the task is offloaded only if Si + Ii < Ci.

B. Simulation Setup and Results

A synthetic workload is also used to evaluate our algorithm.
Sporadic real-time tasks were generated randomly as follows:

• Ti: Randomly generated integer values between 50 and
150 ms with uniform distribution.

• Ci: Randomly generated floating-point values, such that
the total utilization of each task set without offloading is
equal to Ulocal.

• Si: Randomly generated integer values from 1 to Ci ms
with uniform distribution.

• Ri: Ri = Ci

α , where α is the speed-up factor of the server.

For each value of Ulocal = {1.1, 1.2, 1.3} and of
Us = {0.1, 0.2, 0.5, 1}, a total of 10 task sets were
generated and evaluated for different values of α =
{0.25, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Each task set contains 20
sporadic real-time tasks that generated randomly according
to the conditions above. All of the generated task sets are
not feasible if they are executed locally, because their total
utilization Ulocal is greater than one for all cases. Our dynamic
programming algorithm and the Simple-Offload approach were
implemented to find feasible schedules for the generated task
sets by the help of computation offloading. The two algorithms
are evaluated by considering the percentage of the obtained
feasible task sets (or schedules), which is equal to the number
of obtained feasible schedules divided by the total number of
generated task sets for each simulation case above.

Figures 5 and 6 show the percentage of the feasible task
sets obtained by the dynamic programming algorithm and
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Fig. 5: Feasible task sets obtained by the dynamic program-
ming algorithm.

Simple-Offload algorithm respectively, for all possible values
of α and Ulocal. As the value of α increases, the number of
obtained feasible schedules increases for all given utilizations
from the server. Because with a faster server (higher α values),
the value of Ii decreases, and then the client may offload more
tasks. We also observe that with faster servers we need less
given utilization Us to find feasible schedules.

Figure 5 shows that the dynamic programming algorithm
finds feasible schedules for α = {0.25, 0.5, 1}, which means
that the algorithm offloads tasks to servers that have the same
speed of the client or even slower. But, the Simple-Offload
algorithm finds feasible schedules just when the server is faster
than the client as shown in Figure 6. Because the offloading
decision in this algorithm is based on the relation between
Si + Ii and Ci, and Si + Ii is always greater than Ci in the
case of slower server (or server with the same speed of the
client). In the contrary, the dynamic programming algorithm
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Fig. 6: Feasible task sets obtained by the Simple-Offload
algorithm.

nominates any task with Si < Ci for offloading, while its result
returns before the deadline, to reduce the demand of the tasks
and then find a feasible schedule. See Figure 7 that presents
a comparison between the two algorithms for Us = {1, 0.5},
Ulocal = 1.1 and all values of α.

In general, the simulation shows that the computation of-
floading technique helps to reduce the local processor demand
by offloading part of the tasks to the server, and then find
feasible schedules.

VII. CONCLUSION

In this paper, the computation offloading mechanism is
used to satisfy the real-time constraints in mobile devices,
where the sporadic real-time tasks are considered. According to
this mechanism, the computation intensive tasks are offloaded
from the client (i.e., the mobile device) to the server (i.e, a
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Fig. 7: Feasible task sets obtained by both algorithms for Us =
{1, 0.5} and Ulocal = 1.1

powerful remote processing unit). On the server side, we adopt
the total bandwidth server (TBS) to provide response time
guarantee for the offloaded tasks. There are two challenges in
our problem: determine which tasks to be offloaded, and sched-
ule all of the tasks on the client without violating their real-
time constraints. Therefore, a dynamic programming algorithm
is proposed to determine the offloading decision of the tasks,
such that their schedule is feasible. The algorithm is evaluated
using a case study of surveillance system and synthesized
benchmarks. The evaluation shows that our algorithm can
find a feasible schedule using computation offloading. For
future research, we plan to use the computation offloading to
minimize the energy consumption in the mobile devices.
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