
April 22, 2015 Journal of Statistical Computation and Simulation JSCSKotthaus2013

Journal of Statistical Computation and Simulation
Vol. 00, No. 00, Month 201X, 1–16

RESEARCH ARTICLE

Runtime and Memory Consumption Analyses

for Machine Learning R Programs

[SPECIAL ISSUE: StatConf13] [PREPRINT]

Helena Kotthausa∗, Ingo Korba, Michel Langb, Bernd Bischlb, Jörg Rahnenführerb and Peter

Marwedela

aDepartment of Computer Science 12, TU Dortmund University, 44227 Dortmund, Germany;
bDepartment of Statistics, TU Dortmund University, 44227 Dortmund, Germany

(Received 00 Month 201X; final version received 00 Month 201X)

R is a multi-paradigm language with a dynamic type system, different object systems and functional
characteristics. These characteristics support the development of statistical algorithms at a high
level of abstraction. Although R is commonly used in the statistics domain a big disadvantage are
its runtime problems when handling computation-intensive algorithms. Especially in the domain of
machine learning the execution of pure R programs is often unacceptably slow. Our long-term goal
is to resolve these issues and in this contribution we used the traceR tool to analyse the bottlenecks
arising in this domain. Here we measured the runtime and overall memory consumption on a well-
defined set of classical machine learning applications and gained detailed insights into the performance
issues of these programs.

Keywords: performance analyses; machine learning; classification algorithms; profiling

1. Introduction

The R language has become the “lingua franca” in the statistics community. Its main
characteristic is a large set of dynamic features which allow the rapid development of
new algorithms for statistics. However, this flexibility comes at a price: R is considered
to be a rather slow language that needs a large amount of memory during runtime.

The field of machine learning is one area where the runtime problems are a major limit,
especially when handling larger input data sets. This is a known problem within the R
community and although some approaches for improving R have already been proposed
(e.g. in [1]) the problem has not been solved yet. Even though there were alternative
languages for statistical computation proposed like Lisp-Stat [2] or RIncanter [3] the R
community has shown no interest in moving away from their language of choice even when
faced with these issues. In recent years multiple projects were started with the goal to
create alternative, more efficient R implementations, for example Renjin [4], Riposte [5]
and NQR [6]. Other projects like pqR [7] or ORBIT [8] attempt to provide a faster R
by modifying the original R. The original R implementation also recently gained the
option to compile R functions into byte code for faster evaluation which provides some
improvement especially for programs that use loops. All of these projects have usually
shown improvements for simple R programs, but not all of them are yet able to speed up
complex real-world applications like machine learning algorithms. Our goal is to provide

∗Corresponding author. Email: helena.kotthaus@tu-dortmund.de

1

April 22, 2015 Journal of Statistical Computation and Simulation JSCSKotthaus2013

insights into the runtime behaviour of these algorithms on the original R interpreter.
Thereby alternative R implementations can use the results to provide optimisations that
improve the runtime of real-world code. Therefore we improved analysis tools originally
developed for R 2.12 at Purdue University [9] and ported them to R version 3.0.2 for use
in our analysis.

A major hurdle for general speedups of R programs is that R executes programs by
interpretation as opposed to compiling them to machine. Classic ahead-of-time compila-
tion of R code is hindered by the fact that R is highly dynamic. Thus information like
data types which are needed for optimisations in the compiler is only available at run-
time. For example, when a function is declared in an R program, no types are specified
for its arguments. When such a function is called, there are multiple ways to pass the
same set of arguments. These features make R very convenient for the programmer but
very inconvenient for compiling it before running the program. Other languages with
a similarly dynamic nature like Matlab and Python have overcome such speed issues
by using just-in-time based compilation approaches (Majic [10] and PyPy [11]), which
use knowledge gained at runtime to specifically compile entire program fragments for the
time-intensive parts instead of either compiling the entire program at once or interpreting
the program statement-by-statement. One popular runtime environment that provides a
just-in-time compilation environment is the Java Virtual Machine. At useR! 2012 [12] we
presented a concept for implementing an optimised version of R by targeting the Java
Virtual Machine. One existing alternative R implementation that targets the JVM is the
fastR project [13] which we intend to use as a basis to design optimisations specifically
for computationally intensive machine-learning R applications.

As our goal is to reach the best possible optimisation for runtime of R programs it
is necessary to closely examine the behaviour of real-world programs to determine their
bottlenecks. Morandat et al. [14] analysed bottlenecks for R programs from different fields
of statistics. We chose to focus specifically on machine learning algorithms combined with
real-world data sets from the UCI repository [15] in order to ensure a realistic scenario
when analysing the main reasons for the run-time problems of R. To support this analysis
we used the above mentioned tracing tool called traceR [16].

In this paper we present the results of the runtime analyses as well as the memory con-
sumption analyses of machine learning R programs and outline approaches to overcome
the identified bottlenecks to support the development of alternative R interpreters as well
as guiding changes in the original R interpreter. The rest of the paper is structured as
follows: Section 2 gives a detailed overview of the characteristics of the machine learning
benchmarks and the real-world input data sets that served as a basis for our analyses. In
Section 3 we describe the profiling tools that we used to analyse these benchmarks. The
results of the runtime analyses and memory analyses are presented in Section 4 and 5.
Section 6 summarises this paper and gives an outlook on future work.

2. Machine learning benchmark setup

We selected a larger number of R implementations of some of the most popular machine
learning algorithms to apply them on seven publicly available classification tasks provided
by the UCI repository [15].

Our focus in particular is not on classification performance as this has been addressed
in many works over the past years. Instead the attention is drawn towards resource
requirements and bottlenecks.

The following list references all classification algorithms and their respective R versions
we considered in our experiments. The choice is based on both the method’s popularity
and availability of an implementation. The reader is referred to the respective package

2

April 22, 2015 Journal of Statistical Computation and Simulation JSCSKotthaus2013

Table 1. Overview of UCI classification tasks after pre-processing. Dataset ID, number
of observations and number of features stored as numeric, integer or factor.

Dataset Observations Numeric Integer Factor

Blood Transfusion Service Center 748 2 2 0
ILPD (Indian Liver Patient Dataset) 579 5 4 1
Pima Indians Diabetes 768 8 0 0
Credit Approval 653 6 0 9
German Credit 1000 7 0 13
Spambase 4601 57 2 0
MAGIC Gamma Telescope 19020 10 0 0

and its supplied citation information for further details on methods and implementations.

• AdaBoost, in package ada [17]
• Conditional inference trees, in package party [18]
• Gradient boosting machine, in package gbm [19]
• k-nearest neighbour classification, in package kknn [20]
• Support vector machine, in package kernlab [21]
• Linear discriminant analysis, in package MASS [22]
• Logistic regression, in package stats [22]. Binary classification decision derived using

a probability cutpoint of 0.5.
• Least-squares support vector machine, in package kernlab [21]
• Naive Bayes, in package e1071 [23]
• Multi-nominal regression, in package nnet [22]
• Random forest, in package randomForest [24] using majority voting of classification

trees
• Regularized discriminant analysis, in package klaR [25]
• Classification tree (CART), in package rpart [26]

Most of the listed implementations allow the user to adjust several parameters to in-
crease predictive performance. For our purpose we did not tune any parameters but
instead either used the mostly meaningful defaults or, if available, used the implemen-
tations internal auto-tuning process. Therefore a fair comparison of the classification
performance is not possible as this would require some sort of parameter tuning. Opti-
mal tuning is no way straightforward – it requires deep experience with or knowledge of
the algorithms or, alternatively, a good automatic tuning approach.

However, even if we focus on runtimes, predictive performance cannot be completely
ignored. It is a sufficient indicator for a normal program flow, e.g. that no bugs resulting
in fast but meaningless predictions were triggered. Therefore classification performance,
measured by the mean misclassification rate of a 10-fold cross validation, is mainly pro-
vided for reference purposes in our analysis.

We used the package mlr [27] to conveniently apply all learners on identical cross-
validation splits and predict the performance. The unified interface provided by mlr

causes some overhead which influences both runtime and memory consumption. For
example, converting the input data from a matrix to a data frame or vice versa is a
frequent pre-processing operation handled internally by mlr. Nevertheless, we believe
that this does not severely affect the interpretation of our results as we believe that we
even come closer to a real-life computer experiment seen as an entire process including
such typical transformations normally done by the user.

On the data side we chose the datasets listed in Table 1. The most important criteria
for including datasets are (a) being a 2-class classification problem, (b) sufficiently large
number of observations to archive accurate results in the tracing and (c) having an even
and realistic mixture of data types. We preliminary removed all observations with missing
values from the data.

3

April 22, 2015 Journal of Statistical Computation and Simulation JSCSKotthaus2013

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

10

1000

BloodTransfusion IndianLiver PimaIndiansDiabetes CreditApproval GermanCredit Spambase MAGICGammaTelescope
task

ru
nt

im
e

[s
]

learner

●

●

●

●

●

●

●

●

●

●

●

●

●

ada

ctree

gbm

kknn

ksvm

lda

logreg

lssvm

naiveBayes

nnet

randomForest

rda

rpart

Figure 1. Runtimes for 10-fold cross validation: model fit, prediction and calculation of the misclassification error
on the respective datasets. Y axis is on log10 scale.

Table 2. Mean misclassification rates across 10-fold cross validation.

ada ctree gbm kknn ksvm lda logreg

IndianLiver 0.30 0.28 0.28 0.31 0.29 0.29 0.27
PimaIndiansDiabetes 0.24 0.25 0.35 0.27 0.24 0.23 0.23
GermanCredit 0.23 0.27 0.30 0.28 0.25 0.25 0.25
MAGICGammaTelescope 0.14 0.15 0.35 0.16 0.13 0.22 0.21
Spambase 0.05 0.09 0.39 0.08 0.07 0.11 0.07
BloodTransfusion 0.22 0.22 0.24 0.24 0.21 0.23 0.23
CreditApproval 0.13 0.14 0.45 0.16 0.14 0.13 0.15

lssvm naiveBayes nnet randomForest rda rpart

IndianLiver 0.29 0.45 0.29 0.29 0.31 0.34
PimaIndiansDiabetes 0.23 0.25 0.33 0.23 0.24 0.25
GermanCredit 0.26 0.25 0.30 0.23 0.29 0.27
MAGICGammaTelescope 0.20 0.27 0.24 0.12 0.21 0.18
Spambase 0.25 0.29 0.06 0.05 0.33 0.11
BloodTransfusion 0.26 0.25 0.24 0.25 0.24 0.21
CreditApproval 0.14 0.23 0.19 0.13 0.37 0.15

Figure 1 gives an overview of the runtimes for the datasets and Table 2 documents the
mean misclassification rates. Regarding the misclassification rates we see no evidence to
believe that any bugs resulting in constant or random predictions were triggered.

In the following analysis we focus on the tasks that use the Magic Gamma Telescope
dataset as it provides the highest aggregate runtime over all the algorithms. We expect
that this choice provides the clearest view on any bottlenecks and minimizes the influence
of one-time start–up costs.

3. Profiling tools

The R interpreter already provides profiling tools like Rprof for profiling the runtime
of R programs and also some options for profiling memory usage like tracemem and
Rprofmem. Rprof is a sampling profiler, which means that it halts the program execution
at regular intervals to check which function is currently executing. A sampling profiler
has a relatively small measurement overhead but the results can vary wildly between two

4

April 22, 2015 Journal of Statistical Computation and Simulation JSCSKotthaus2013

runs, especially when many functions with very small runtimes are involved. A bottleneck
could consist of functions that individually have a short runtimes, but are called very
often. In this case a sampling profiler may miscalculate the runtime percentage spent in
these functions because it is unable to measure the program flow that happens between
two of its samples. Furthermore, it operates only at the R function level, but does not
provide details about the internals of the R interpreter. Similarly, the memory profiling
options available are not detailed enough for our purposes – for example, Rprofmem only
reports memory allocations related to certain types of user data, but not those related
to interpreter internals like pairlists used for passing arguments in a function call.

To analyse the bottlenecks of R it is indispensable to have a more detailed view into the
interpreter’s internals. For this reason we have chosen the traceR tool as the basis for our
analysis. TraceR was originally developed at Purdue University for R 2.12 [9]. Besides
porting it to the R version 3.0.2 we also improved its analysis capabilities to provide more
detailed insights, e.g. to gather more information about the different sizes of vectors used
during the execution of an R program. Our profiling tool is available on GitHub [16]. The
main parts of the traceR tool are two instrumented versions of the R interpreter, one to
measure the time profile of an R program and one to analyse non-time-related behaviour
like memory allocations and details about function parameters. This separation removes
the overhead of the memory measurements from the time measurements.

TraceR uses a deterministic profiling approach where each interesting location is in-
strumented with an explicit call to the profiler for time measurements. This way no calls
can be missed, but a larger overhead is incurred compared to the sampling approach.
Since we directly measure within the interpreter, we can generate more detailed data
than Rprof. For example, we can measure how much of the program is spent in C/For-
tran code supplied by R packages or how much time was needed for memory management
tasks like garbage collection.

The results of our runtime and memory consumption analysis which were produced by
traceR are presented in the following sections.

4. Results: runtime analysis

In our runtime analysis we present an overall runtime profile for each machine learning
benchmark to expose their runtime problems and suggest optimisation ideas.

For the following measurements we ran our analysis R interpreters on a computer
equipped with two AMD Opteron 2378 processors (quad-core, 2.4 GHz) and 16 GBytes of
RAM, using Debian 7.3 as the operating system. Our profiling system traceR is based on
R 3.0.2 which was compiled using the default compiler flags (just -O2) with GCC version
4.7.2. The default settings were used to compile and run R, so only installed packages
were byte-code compiled and the default BLAS was used. The byte-code compiler that is
included with the R distribution provides the option to compile R code into a byte-code
representation that can be executed faster than standard R functions. It also provides
some optimisations which generally are beneficial for explicit loops in R code.

As can be seen from Section 2, the runtime of the benchmarks is generally longest for
the MAGIC Gamma Telescope data set. Although we have run our analysis on most
of the data sets, we will focus on the MAGIC Gamma Telescope set in the following
sections, to get accurate results in our bottleneck analysis.

To give a better overview of the behaviour of an R program, we have summarized
our measurements into eleven categories which can be split into three groups. The first
group is external code like C or Fortran. The R interpreter provides multiple ways for
interfacing with external code to allow both the use of generic external libraries as well
as libraries especially written for use within R. The difference between those two is

5

April 22, 2015 Journal of Statistical Computation and Simulation JSCSKotthaus2013

the way parameters are passed – for the generic interface, the R interpreter handles
all required type conversions itself. Libraries written especially for R receive the internal
representation of values instead and handle any required conversions themselves. External
libraries represent the lowest optimisation potential as they are executed outside of the
R interpreter. The second group are functions directly provided by the R interpreter
like arithmetic operations or built-ins. Their optimisation potential varies by the specific
function. The third group with the highest optimisation potential are the internal tasks
of the R interpreter that are not directly visible to an R programmer, but still important
for the execution of an R program like memory management tasks.

Figure 2 shows the percentage of runtime spent in the various categories by the bench-
marks. We consider a higher proportion of time spent in a category to be a valid hint for
the optimisation potential of this category. However, as explained above the optimisation
potential varies strongly depending on the group the category belongs to. Additionally
optimisations in one category may influence the time needed in other categories – for
example, reducing the number of memory allocations would reduce the time needed for
these allocations (MemAlloc) and also influence the time spent in garbage collection
(GC) since it needs to check fewer objects in memory. Since our goal is to develop opti-
misations that are beneficial to all machine-learning algorithms and not just a single one,
we need also to focus on the total time spent in a specific category over all benchmarks
to approximate the potential for optimisation. The runtime of the individual benchmarks
varies greatly, so we use relative proportions to ensure comparability. For further details
see Table A2 in the appendix.

The benchmarks are sorted by the category External which is the time spent on non-
R-code like C or Fortran code. This proportion varies strongly between benchmarks as
some of them are mostly implemented in R while others have been augmented with
external code. The highest amount of time spent on external code appears in the nnet

and randomForest benchmarks, which both spend 79.0% of their runtime outside of the
R code. This demonstrates that the authors of these packages considered the runtime
issues of the R interpreter to be serious enough that they implemented large parts of
their algorithms in a faster language like C, even though this generally requires more
effort than directly implementing an algorithm in R. On the other end of the scale the
rda and lssvm benchmarks both spend less than 0.1% of their runtime in external code
and are also two of the slowest programs within the benchmark set. This is not directly
correlated with the use of R versus external code though as can be seen by ada and
randomForest: Although they are among the slowest in the set, both spend more than
45.0% of their runtime in external code. Thus even the use of external code does not
guarantee fast runtimes as the complexity of the algorithm itself will largely influence
its runtime and memory footprint. When considering the sum of time spent in external
code by all benchmarks, only 15% of the total runtimes is spent in external code. Thus
optimisations on the R code side can still result in large improvements of runtime.

As already mentioned, the categories with the highest optimisation potential are the
interpreter internal tasks, especially for those benchmarks that spend less time in external
code like rda, lssvm and naiveBayes. Here the amount of time spent in Lookup which
looks up variables and functions can be up to 16.1% of the total runtime. The reason
for this is that before a function can be executed or a variable can be accessed, the
interpreter has to look up its definition or value through a chain of environments. Such
an environment provides a mapping from a symbolic name to a variable or function.
Initially there is only the global environment, also known as the user workspace. Each
function call adds one more environment to the end of this chain. This search has to be
repeated every time the R program uses the name of a variable or function. This could
be avoided by caching the result of the lookup. Again, the R language creates additional
problems for such an approach: R is a very dynamic language that allows a program

6

April 22, 2015 Journal of Statistical Computation and Simulation JSCSKotthaus2013

0h 10h 20h 30h 40h 50h 60h 70h 80h 90h 100h

randomForest

nnet

kknn

gbm

ada

ksvm

rpart

logreg

ctree

lda

naiveBayes

lssvm

rda External

Lookup

Match

Duplicate

GC

MemAlloc

Subset

Arith

EvalList

BuiltIn/Special

Other

runtime

Figure 2. Runtime profiles relative to the total runtime of each benchmark.

to change the definition of a function during runtime. This complicates a lookup cache
as it would need to ensure that it never returns a cached lookup that has already been
redefined by the R program.

After the interpreter has located a function definition that should be called, it needs to
Match the arguments given in the call to the arguments given in the definition. Function
arguments can be passed by name, by position or via the ... argument, which is used
to pass a variable number of arguments. The time spent on argument matching is up
to 3.1% of the total runtime as seen in the rda benchmark, and over all benchmarks
only 1.9% of the total runtime is needed for argument matching. Our results show that
there were no function calls with more than 17 parameters and 84.8% of all calls over
all benchmarks had no or just one parameter. This shows that the machine learning
benchmarks rarely use the full flexibility of argument passing that R provides, which has
a positive effect on runtime and is thus not a bottleneck compared to other R programs.

R uses a copy-on-write scheme for function arguments, the value of an argument is
generally only duplicated when it is modified by the called function, although exceptions
exist. Duplication is marked as Duplicate in Figure 2. Its proportion varies between 0.3%
(ksvm) and 13.0% (ctree) of the total runtime. Although duplication itself contributes
only 3.0% of the total runtime of all benchmarks, it causes an increase in the proportion
of memory allocation (MemAlloc) and garbage collection (GC) time because the dupli-
cated values need to be stored and removed later. Besides the function lookup, memory
allocation and garbage collection are the two main contributors to the runtime of the
benchmarks from the group of interpreter-internal tasks.

The garbage collection (GC) scans the data that was allocated by the R program for
values that are no longer in use and removes them. The runtime spent on garbage collec-
tion varies between 3.9% for randomForest and 34.0% for logreg. Over all benchmarks,
9.0% of the total runtime is spent in GC. This value is influenced by the number of
memory allocations and also by the memory footprint that is needed for the data struc-
tures of the R program. The influence of the memory footprint can be seen in the ksvm

benchmark, where 10.6% of the runtime is spent in garbage collection, even though only
0.9% is spent in memory allocation. Here memory allocation percentage is low because
the benchmark uses a small number of data structures (in this case vectors), but each
of those has a large size and thus a large memory footprint. For other benchmarks the
memory allocation can be a more important part of the runtime with a maximum of

7

April 22, 2015 Journal of Statistical Computation and Simulation JSCSKotthaus2013

24.6% in naiveBayes. This benchmark allocates a large amount of vectors with a small
memory footprint. The dependence between memory allocation, memory footprint and
garbage collection will be explained in more detail in Section 5 as this is one of the most
important bottlenecks within the internal interpreter tasks.

The last group in our runtime bottleneck analysis are the functions provided by the R
interpreter. We have picked two sets from the group of interpreter-provided functions as
they are a significant contributor to the overall runtime of a benchmark. The first is the
set of subsetting operations (Subset) used for the evaluation of vector index expressions.
Those operations are very important for machine learning programs to generate training
data subsets. The highest proportion of runtime for subsetting operations occurs in the
lssvm benchmark with a value of 14.9%. Since subsetting has to allocate new space to
return the results also it directly influences the time spent on memory allocation and
thus garbage collection.

The second set from the group of interpreter-provided functions are the basic arithmeti-
cal operations (Arith) like addition or matrix multiplication. Since R usually operates
on vectors, these operations could benefit from the use of vector-oriented instructions
in the CPU, which R currently utilises only if special libraries are used. However, over
all benchmarks just 5.5% of the total runtime is needed for arithmetic operations. This
implies that optimising the runtime of these functions is unlikely to have a large impact
on the overall runtime.

Before a real arithmetic operation happens the R interpreter has to run several pre-
processing steps, like data type checks or data type conversion to ensure that the data
has a valid format for operation. This supports the dynamic type system of R. For
example, different calculations need to be performed for the multiplication of integer
values compared to complex values. Those pre-processing steps are not only needed for
arithmetic operations but basically for all functions. The overhead of these pre-processing
steps could be reduced by the use of function specialisation, which is a common compiler
optimisation. This optimisation takes a generic function that can accept any data type
and converts it into specialised version that accept only specific data types, which avoids
the overhead needed for type checking. Such a specialisation has been implemented on
the byte-code level in the ORBIT VM [8] next to other optimisations, yielding a total
speedup of 3.5x over the standard byte code interpreter on a set of R benchmarks that
were mainly looping over data.

Although we cannot demonstrate function specialisation directly in the R interpreter,
we can illustrate the principle with the example program in Figure 3. Here, a simple
function using S3 dispatch is defined and called both via the standard UseMethod mech-
anism as well as directly. The latter case would correspond to a specialized call where
the interpreter has determined during runtime that this particular call only receives ar-
guments of class “special”. In this simple example, the direct call that avoids UseMethod
is nearly two times faster than the generic function call because the overhead of the type
check can be avoided.

For a subset of functions provided by the R interpreter that are called built-in functions,
another required pre-processing step is shown as EvalList in Figure 1. In this step all
arguments of the built-in function are evaluated before they are passed, which needs
6.3% of the total runtime of all benchmarks. R usually delays this evaluation when other
types of functions like user functions or special functions are called.

The last important category Builtin/Special contains the time spent on special and
built-in functions except for arithmetic and subset operations which we have already
examined separately. Special functions include control-flow structures like if or return.
When considering the sum of time spent in this category over all benchmarks, 24.8%
of the total runtime is spent in these functions, including the time needed for type
checks and data conversion that could be optimised by the previously mentioned function

8

April 22, 2015 Journal of Statistical Computation and Simulation JSCSKotthaus2013

1 # d e f i n e a s imple S3 f u n c t i o n
2 addOne <− function (x) UseMethod(”addOne” , x)

3 addOne . s p e c i a l <− function (x) x + 1

4
5 # d e f i n e a v a r i a b l e o f c l a s s ” s p e c i a l ”

6 s p e c i a l v a r <− 0

7 class (s p e c i a l v a r) <− ” s p e c i a l ”
8

9 # d i s p a t c h v ia UseMethod

10 addOne(s p e c i a l v a r)
11

12 # d i r e c t l y c a l l the s p e c i a l i z e d v er s i on o f addOne
13 addOne . s p e c i a l (s p e c i a l v a r)

Figure 3. Illustration of function specialisation.

specialisation.
The final category called Other includes the remainder of the runtime like the start–up

time of the interpreter and does not represent a viable optimisation target.

5. Results: memory consumption analysis

For our memory analysis we concentrate on analysing the most important data structures
needed while executing an R program. This analysis is important to develop different
optimisations which on the one hand may reduce the footprint of the data structures
used by the interpreter and on the other hand reduce the amount of allocated data
structures. Additionally the memory usage of an R program and its run time influence
each other. For example, a program that uses a lot of function calls needs memory to
hold the parameter lists which in turn requires more time for memory management since
these lists need to be allocated and later removed.

The first Section 5.1 gives an overview of the memory allocation behaviour for the
examined benchmarks while the second Section 5.2 focuses specifically on vectors and
their memory footprint. Similar to the runtime analysis in Section 4 we focus on the
MAGIC Gamma Telescope data set, using the same execution environment.

5.1 Memory consumption overview

In this section we concentrate on the entire amount of memory allocated during the
runtime of each benchmark. Therefore we focus on allocations of new data in memory,
but ignore their later removal by the garbage collector to provide a clearer view on
the influence of the memory allocation on the overall runtime. The garbage collector
periodically scans all objects allocated within the interpreter to determine if they are still
in use and deallocates those for which it can determine that they are not in use anymore.
This makes the memory available again for reuse by objects that are allocated later.
Later in this section we also consider the actual peak memory consumption compared to
the total memory allocated to provide insights into the gains provided by the garbage
collector.

Figure 4 shows the distribution of the memory allocations between different categories
that can be split into two groups: Data structures that are primarily used for interpreter-
internal tasks and structures that primarily hold user data. Since the memory allocations
of the benchmarks vary, we used relative proportions to ensure better comparability. For
further details see Table A1 in the appendix.

The first category are Pairlists that are mostly used for internal data of the interpreter

9

April 22, 2015 Journal of Statistical Computation and Simulation JSCSKotthaus2013

0V 10V 20V 30V 40V 50V 60V 70V 80V 90V 100V

ksvm

randomForest

ctree

logreg

rpart

nnet

gbm

lda

kknn

ada

lssvm

rda

naiveBayes Pairlists

Promises

Environments

Other

Externals

Vectors

allocated memory

Figure 4. Memory profiles relative to the total memory allocation of each benchmark.

itself. Although pairlists have many uses within the R interpreter, one major contributor
to their allocation is the creation of argument lists that are needed for each function
call. In the machine learning benchmarks we analysed that the length of the argument
list is mostly irrelevant: As we have mentioned in Section 4 most function calls have
zero or one arguments, thus for our benchmarks the number of calls that triggers the
pairlist creation is a much more important factor than the number of arguments per call.
Programs with a high amount of R function calls suffer from a higher memory overhead
which negatively influences their runtime.

Memory allocated for pairlists ranges from 1.1% for ksvm to 58.5%-60.4% for rda and
naiveBayes. The high amount of allocated pairlists in rda corresponds to its low use of
external code which is shown in Figure 2. The large proportion of time spent on lookups
and argument matches also confirms that rda use many calls to R functions. It is also the
slowest benchmark in our set. The example of ctree however shows that a high runtime
percentage in R code does not necessarily correspond to a large allocation of pairlists or
a slow runtime. ctree only spends 8.6% of its runtime in external code, but merely uses
2.5% of its allocated memory for pairlists. Its low runtime percentage for lookups and
matching confirms that it uses relatively few function calls compared to rda, so fewer
pairlists are needed for the arguments.

The next category in the group of the interpreter-internal data structures are Promises.
Due to the functional characteristics of the R language, a function argument can not only
be bound to a simple value, but also to a complex expression like other function calls.
Such an expression is only evaluated when its result is really needed. This can happen
directly in the called function or later when the called function passes a not-yet-evaluated
argument to another function where it is needed. The mechanism for this is called lazy
evaluation and R implements it by boxing each argument in a so-called “promise”. A
promise contains a reference to the original argument and the corresponding environ-
ment. Since those two references do not require much memory, a promise needs just 56
bytes (on a 64 bit system) and summed over all benchmarks only 2.5% of the total allo-
cated memory is used for promises. Even though this is just a low percentage compared to
allocations of other data structures, the absolute values reveal some optimisation poten-
tial. Three of the benchmarks (lssvm, naiveBayes, and rda) use more than 1 gigabyte of
memory allocations just for promises with a maximum of almost 6 gigabytes for rda. Our
analysis tools show that in an average of 86.4% of all cases the creation of a promise was

10

April 22, 2015 Journal of Statistical Computation and Simulation JSCSKotthaus2013

not necessary because its evaluation happened in the same function that it was initially
created for. As explained in Morandat et al. [14] it is not always possible to replace the
creation of promises by eager evaluation.

The last important category in the group of interpreter-internal data structures are
Environments. Similar to promises they only contain references to other values and are
mainly created when an R function is called. Considering all benchmarks, 1.2% of their
total memory allocations is used for environments. Since the interpreter needs to search
through the chain of environments during lookups, this apparently small value has a
strong influence on the time required for lookups. As described in Section 4 lookups are
the second-largest bottleneck in the interpreter internal tasks.

There are also a few additional interpreter-internal data structures that require memory
allocation, but since they use less than one percent of the total allocated memory of all
benchmarks, the Other category is not an interesting target for optimisation. Taken
together, all of the described interpreter-internal data structures (ignoring the vector
headers) sum up to 40% of the total allocated memory. Thus almost half of the allocated
memory is used for executing the R program and not for the user data it processes, which
adds more overhead for memory allocation and garbage collection.

The user data allocations are divided in allocations that are triggered from external
code (Externals) and the allocation of Vectors. Memory allocation from external libraries
requires just 0.5% of the total allocated memory while vectors account for 61.2% of the
total allocated memory over all benchmarks and thus they are the biggest consumer of
memory allocations in the R interpreter. Therefore we will take a more detailed look at
vector allocations in the next section.

5.2 Memory consumption for vectors

In this section we focus on vectors as they are the most important data structure in
the R language and higher-dimensional structures like matrices and arrays are internally
constructed from it. When R allocates memory for a vector it differentiates between small
and large vectors. Small vectors can store up to 16 double or 32 integer or logical values,
large vectors are used when the number of elements exceeds this limit. In addition to
these two classes we have separated the class of vectors with exactly one element from
the small vectors as well as the class of vectors with zero elements, which for example can
be created when all elements are removed from a vector. Figure 5 shows the proportions
of these allocations in relation to the total vector memory allocation of each benchmark.
For most benchmarks the Large Vectors dominate. Even though the Figure 5 shows only
the ratios for the processing of the Magic Gamma Telescope data set, the distribution
between Large and Small/Single-Element Vectors is roughly the same for all input data
sets. NaiveBayes is the only benchmark where a non-negligible amount of Zero-Element
Vectors appears, reaching about 4.0% of the total vector memory allocated compared to
less than 0.2% for all other benchmarks.

The benchmarks rda and naiveBayes use a much higher percentage of single-element
and small vectors compared to the other benchmarks. This is another factor besides
the large number of pairlists that influence the time spent on MemAlloc (Figure 2) for
these two benchmarks. Since the number of allocations increases when the same amount
of data is processed using vectors of a smaller size, the time for allocation increases.
Over all benchmarks, 20.4% of all allocated vector memory is used for single-element or
small vectors, thus for most of the benchmarks the large vectors are the main factor that
influences the vector memory allocation. On the other hand the single-element and small
vectors have the best potential for optimisations: Each vector needs a header block so it
can be integrated in the memory management subsystem of R. The size of this header

11

April 22, 2015 Journal of Statistical Computation and Simulation JSCSKotthaus2013

0L 10L 20L 30L 40L 50L 60L 70L 80L 90L 100L

ksvm

randomForest

ctree

logreg

nnet

rpart

gbm

lda

kknn

ada

lssvm

naiveBayes

rda Single-ElementSVectors

SmallSVectors

LargeSVectors

Zero-ElementSVectors

allocated memory

Figure 5. Vector memory profile relative to the total memory allocation of vectors for each benchmark.

is 40 bytes (on a 64 bit system) for each vector. For vectors with fewer elements, the
relative overhead of this header increases. The worst case are single-element vectors: A
40 byte header is needed to manage an object whose size is just 4 or 8 bytes, thus in
the worst case the header needs 10 times more memory compared to the real data. This
suggests a big optimisation potential for introducing scalar values that are not boxed
within a vector and thus could use a smaller header. If such a scalar value is only used
within a function, a just-in-time compiler may even be able to keep the value in a CPU
register instead of storing it in main memory, saving the time for both allocation and
garbage collection for scalar values.

To show the optimisation potential for scalars the number of vectors of each class is
important. The higher the number of single-element vectors used by a benchmark the
more memory can be saved by the use of scalar values. Table 3 shows the proportion
of vectors for the single-element, small and large classes with the Average line showing
the proportion over the total number of vectors used by all benchmarks. The benchmark
lssvm uses the highest percentage of single-element vectors with 95.52% while over all
benchmarks 56.96% of all vectors allocated are single-element vectors. For lssvm just
the headers for these vectors require about 6.1 gigabytes of allocated memory which is
6.5% of the total memory allocation that could be reduced by introducing scalar values.
Even though over all benchmarks only up to 5.4% of the total allocated memory could be
saved by using scalar values instead of single-element vectors, this small percentage has
a high influence on the runtime since it influences the time spent on memory allocation
and garbage collection which are two of the most important bottlenecks in the runtime
analysis (Section 4).

In addition to the total memory allocation we have also measured the peak memory us-
age of the R interpreter as reported by the operating system using the getrusage system
function. This function reports the maximum amount of memory that the program has
requested from the operating system. The value is lower than the total allocated mem-
ory value because the garbage collection removes unused values from memory during the
runtime. Figure 6 shows the maximum memory usage compared to the total memory
allocation for each benchmark. Over all benchmarks, 55.7 times more memory was allo-
cated compared to the maximum amount used at once. This ratio explains the amount
of time spent on garbage collection. While the total memory allocated is influenced by
the number of data structures that were allocated during runtime, the memory used is
influenced by the footprint of those data structures.

12

April 22, 2015 Journal of Statistical Computation and Simulation JSCSKotthaus2013

Table 3. Relative number of vectors for single-element, small
and large vectors.

benchmark single-element [%] small [%] large [%]

ada 58.36 40.83 0.81
ctree 34.69 60.68 4.63
gbm 30.39 67.13 2.48
kknn 52.61 46.65 0.74
ksvm 47.75 50.34 1.92
lda 29.67 69.78 0.55
logreg 28.93 67.00 4.06
lssvm 95.52 4.00 0.48
naiveBayes 28.58 70.59 0.83
nnet 31.70 65.21 3.09
randomForest 38.94 59.69 1.37
rda 50.20 49.72 0.08
rpart 31.24 65.88 2.88

Average 56.96 42.65 0.40

1

10

100

1000

10000

100000 Memory Used

Memory Allocated

M
eg
ab
yt
e

Figure 6. Maximum memory usage versus total memory allocation for each benchmark. Y axis is on log scale.

Benchmarks that use mostly data structures with a big footprint like large vectors
also have a low ratio between allocated and used memory because they need to allocate
less data structures for the same input data set. The benchmarks gbm, nnet and rpart

for example have a low ratio between allocated and used memory because large vectors
form the largest part of their allocated memory and thus the overall number of allocated
data structures is low. The benchmark with the highest ratio between allocated and used
memory is rda with a factor of 512. This value also influences the 32.1% of runtime that
it needs for memory allocation and garbage collection (see Figure 2). As can be seen
from Figure 4 rda uses 58.5% of its allocated memory for pairlists. Pairlists have a small
footprint, rda uses a large number of allocations for them and thus spends a significant
portion of its runtime in memory allocation. This demonstrates that for a representative
analysis of runtime and memory bottlenecks not only the overall allocated memory of a
program has to be examined, but also the memory footprint and amount of each data
structure has to be taken into account.

13

April 22, 2015 Journal of Statistical Computation and Simulation JSCSKotthaus2013

6. Conclusion

This paper is the first one to present detailed insights into the runtime and memory
behaviour of the most popular R implementations of machine learning algorithms when
running on the R interpreter. For our analysis we applied the machine learning algorithms
to real-world data sets from the UCI [15] repository. To uncover the bottlenecks of those
R program benchmarks we have improved different profiling tools originally developed
for R 2.12 at Purdue University [9] and ported them to the version 3.0.2 of R.

On the runtime bottleneck side, we were able to demonstrate that memory manage-
ment is a major contributor to the total runtime of the benchmarks. Since the time
spent on memory management is influenced both by the number of data structures that
are allocated as well as their footprint, we propose to introduce a new data type for
scalar values that could be used to replace the frequent usage of single-element vectors.
The introduction of scalars appears to be a promising approach to bypass the inherent
overhead of single-element vectors and thus the total memory footprint of an R program.

For some of the benchmarks whose algorithms are implemented mostly as R code the
overhead incurred by function calls is also a significant contributor to their runtime. A
dynamic compilation approach may be able to provide improvements for this bottleneck
as it could reduce the number of function calls by inlining small functions into their
caller. Another area where such an approach can be helpful is the time spent on functions
provided by the R interpreter: to support the dynamic type system of the R language,
these functions must perform type checking and conversion of their arguments. Using
function specialisation, this overhead could be avoided whenever the data types used in
the call are known to the compiler.

On the memory bottleneck side, we have shown that vectors and pairlists are the
two main contributors to the total allocated memory. As for vectors our results show
that a large number of them are created to store just a single element, which incurs
an unacceptably high memory overhead in the R interpreter. Here our proposed scalar
optimisation would reduce the amount of allocated memory as well as the number of
data structures created during the runtime of an R program, which are both factors that
influence the time needed for memory management.

Our results support both the development of alternative R interpreters that could
attempt to integrate our optimisations ideas to avoid the bottlenecks we have shown as
well as guiding changes within the original R interpreter, even though this may require
major changes to its code base. One existing alternative R implementation that targets
the JVM is the fastR [13] project, which represents one possible basis for our future
work to design optimisations specifically for computationally intensive machine-learning
R applications.

Acknowledgement

This work was partly supported by Deutsche Forschungsgemeinschaft (DFG) within the
Collaborative Research Center SFB 876, project A3. The authors thank Uwe Ligges, Jan
Vitek, Floréal Morandat and Luke Tierney for providing us with feedback.

References

[1] Tierney L. Compiling R: A Preliminary Report. In: Proceedings of the 2nd international
workshop on distributed statistical computing. 2001.

[2] Tierney L. Lisp-Stat. 2014. Available from: http://homepage.cs.uiowa.edu/ luke/xls/xlsinfo.

14

April 22, 2015 Journal of Statistical Computation and Simulation JSCSKotthaus2013

[3] RIncanter - Use embedded R from Clojure and Incanter. 2014. Available from:
https://github.com/jolby/rincanter.

[4] Bertram A. Renjin: JVM-based Interpreter for the R Language for Statistical Computing.
2014. Available from: http://www.renjin.org.

[5] Talbot J, DeVito Z, Hanrahan P. Riposte: a trace-driven compiler and parallel VM for vector
code in R. In: Proceedings of the 21st international conference on parallel architectures and
compilation techniques. PACT ’12. Minneapolis, Minnesota, USA. New York, NY, USA:
ACM. 2012. p. 43–52.

[6] Kane MJ, Emerson JW. Not Quite R for the Parrot VM. 2014. Available from:
https://github.com/NQRCore.

[7] Neal R. pqR - a pretty quick version of R. 2014. Available from:
https://github.com/radfordneal/pqR.

[8] Wang H, Wu P, Padua D. Optimizing R VM: Allocation Removal and Path Length Reduction
via Interpreter-level Specialization. In: Proceedings of the international symposium on code
generation and optimization (cgo). CGO ’14. Orlando, Florida. 2014.

[9] The Reactor Project. 2014. Available from: http://r.cs.purdue.edu.
[10] Almasi G, Padua D. MaJIC: A Matlab Just-In-Time Compiler. In: Languages and compilers

for parallel computing. Springer Berlin Heidelberg. 2001. p. 68–81.
[11] Bolz CF, Cuni A, Fijalkowski M, Rigo A. Tracing the meta-level: PyPy’s tracing JIT com-

piler. In: Proceedings of the 4th workshop on the implementation, compilation, optimiza-
tion of object-oriented languages and programming systems. ICOOOLPS ’09. Genova, Italy.
ACM. 2009. p. 18–25.

[12] Kotthaus H, Plazar S, Marwedel P. A JVM-based Compiler Strategy for the R Language.
Research Poster at The 8th International R User Conference. 2012.

[13] FastR. 2014. Available from: https://github.com/allr/fastr.
[14] Morandat F, Hill B, Osvald L, Vitek J. Evaluating the design of the R language: objects

and functions for data analysis. In: Proceedings of the 26th european conference on object-
oriented programming. Beijing, China. Springer-Verlag. 2012. p. 104–131.

[15] Bache K, Lichman M. UCI machine learning repository. 2014. Available from:
http://archive.ics.uci.edu/ml.

[16] traceR. 2014. Available from: https://github.com/allr/tracer.
[17] Culp M, Johnson K, Michailidis G. ada: an R Package for stochastic Boosting. 2012. R

package version 2.0-3. Available from: http://CRAN.R-project.org/package=ada.
[18] Hothorn T, Hornik K, Zeileis A. Unbiased Recursive Partitioning: A Conditional Inference

Framework. Journal of Computational and Graphical Statistics. 2006;15(3):651–674. R pack-
age version ”1.0-13”.

[19] Ridway G, et al.. gbm: Generalized Boosted Regression Models. 2013. R package version 2.1.
Available from: http://CRAN.R-project.org/package=gbm.

[20] Hechenbichler KSK. kknn: Weighted k-Nearest Neighbors. 2013. R package version 1.2-5.
Available from: http://CRAN.R-project.org/package=kknn.

[21] Karatzoglou A, Smola A, Hornik K, Zeileis A. kernlab - An S4 Package for Kernel Methods
in R. Journal of Statistical Software. 2004;11(9):1–20. R package version 0.9-19.

[22] Venables WN, Ripley BD. Modern Applied Statistics with S. 4th ed. New York: Springer.
2002. R package version 7.3-29. Available from: http://www.stats.ox.ac.uk/pub/MASS4.

[23] Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F. e1071: Misc Functions of the
Department of Statistics (e1071), TU Wien. 2012. R package version 1.6-2. Available from:
http://CRAN.R-project.org/package=e1071.

[24] Liaw A, Wiener M. Classification and Regression by randomForest. R News. 2002;2(3):18–22.
R package version 4.6-7. Available from: http://CRAN.R-project.org/doc/Rnews/.

[25] Weihs C, Ligges U, Luebke K, Raabe N. klaR: Analyzing German Business Cycles. In: Baier
D, Decker R, Schmidt-Thieme L, editors. Data analysis and decision support. Springer-
Verlag. 2005. p. 335–343. R package version 0.6-9.

[26] Therneau T, Atkinson B, Ripley B. rpart: Recursive Partitioning. 2013. R package version
4.1-3. Available from: http://CRAN.R-project.org/package=rpart.

[27] Bischl B. mlr: Machine Learning in R. 2013. R package version 1.0-2612. Available from:
http://CRAN.R-project.org/package=mlr.

15

April 22, 2015 Journal of Statistical Computation and Simulation JSCSKotthaus2013

Appendix A. Runtime and Memory Profiles of all Benchmarks

Table A1. Distribution of the memory allocated between six different categories of each
benchmark. The categories can be split into two groups: User data, which are data struc-
tures that primarily hold user data and Internal data which are structures that are pri-
marily used for interpreter-internal tasks.

User data Internal data
Benchmark External Vectors Pairlists Promises Environments Other

ada 1.04 68.89 27.97 1.08 0.88 0.06
ctree 1.62 95.12 2.48 0.41 0.20 0.17
gbm 6.85 83.08 7.41 1.27 0.57 0.74
kknn 4.64 62.90 24.81 4.28 1.92 1.41
ksvm 0.36 98.12 1.11 0.20 0.11 0.09
lda 4.24 72.30 20.23 1.72 1.01 0.45
logreg 3.34 91.85 3.52 0.58 0.27 0.40
lssvm 0.14 69.43 29.22 1.08 0.09 0.05
naiveBayes 0.37 32.09 60.46 4.71 1.85 0.52
nnet 6.10 85.16 6.35 1.10 0.50 0.71
randomForest 0.80 97.24 1.64 0.15 0.10 0.07
rda 0.09 32.46 58.47 5.48 2.99 0.51
rpart 6.55 84.78 6.31 1.08 0.50 0.70

16

April 22, 2015 Journal of Statistical Computation and Simulation JSCSKotthaus2013

T
a
b

le
A

2
.

D
is

tr
ib

u
ti

o
n

o
f

th
e

ru
n
ti

m
e

sp
en

t
in

el
ev

en
d

iff
er

en
t

ca
te

g
o
ri

es
o
f

ea
ch

b
en

ch
m

a
rk

.
T

h
e

ca
te

g
o
ri

es
ca

n
b

e
sp

li
t

in
to

th
re

e
g
ro

u
p

s:
E

xt
er

n
a

l
w

h
ic

h
is

th
e

ti
m

e
sp

en
t

in
ex

te
rn

a
l

co
d

e
li
k
e

C
o
r

F
o
rt

ra
n

li
b

ra
ri

es
,

R
-P

ro
vi

d
ed

w
h

ic
h

a
re

fu
n

ct
io

n
s

d
ir

ec
tl

y
p

ro
v
id

ed
b
y

th
e

R
in

te
rp

re
te

r,
R

-I
n

te
rn

a
l

w
h

ic
h

a
re

th
e

in
te

rn
a
l

ta
sk

s
o
f

th
e

R
in

te
rp

re
te

r
th

a
t

a
re

n
o
t

d
ir

ec
tl

y
v
is

ib
le

to
a
n

R
p

ro
g
ra

m
m

er
.

R
-P

ro
v
id

ed
R

-I
n
te

rn
a
l

B
en

ch
m

a
rk

E
x
te

rn
a
l

S
u

b
se

t
A

ri
th

B
u

il
ti

n
/
S

p
ec

ia
l

L
o
o
k
u

p
M

a
tc

h
D

u
p

li
ca

te
G

C
M

em
A

ll
o
c

E
v
a
lL

is
t

O
th

er

a
d

a
4
9
.7

3
4
.7

3
1
.5

7
1
8
.2

8
3
.2

0
0
.5

7
3
.1

9
7
.2

2
9
.9

9
0
.9

9
0
.5

4
ct

re
e

8
.6

2
0
.8

1
0
.2

3
4
6
.4

9
1
.2

9
0
.5

1
1
3
.0

0
2
4
.7

9
3
.2

2
0
.1

0
0
.9

5
g
b

m
5
6
.1

4
2
.8

0
0
.7

4
2
0
.3

3
1
.1

7
0
.5

4
1
.6

2
1
2
.3

8
2
.8

0
0
.1

2
1
.3

5
k
k
n

n
6
3
.3

5
1
.8

3
0
.9

5
1
3
.1

8
2
.1

3
1
.0

3
1
.1

7
1
0
.2

8
4
.7

8
0
.3

8
0
.9

1
k
sv

m
4
7
.6

3
0
.6

8
1
7
.7

9
2
1
.0

7
0
.4

7
0
.2

0
0
.3

0
1
0
.5

5
0
.9

5
0
.0

7
0
.2

9
ld

a
1
.6

5
6
.5

4
2
.8

3
4
5
.4

5
4
.4

6
1
.5

6
3
.5

1
1
6
.3

8
1
3
.3

9
0
.9

2
3
.3

1
lo

g
re

g
9
.0

3
1
1
.1

2
4
.8

7
2
3
.4

4
1
.7

5
0
.8

2
6
.7

6
3
4
.0

5
5
.9

4
0
.1

9
2
.0

4
ls

sv
m

0
.0

9
1
4
.9

3
6
.9

9
3
0
.5

1
1
6
.1

1
0
.1

7
0
.4

5
6
.8

6
1
4
.0

0
8
.7

0
1
.1

9
n

a
iv

eB
a
y
es

1
.2

6
9
.4

2
2
.1

5
2
8
.8

7
1
1
.5

6
1
.7

7
4
.8

0
1
1
.0

8
2
4
.5

6
1
.2

9
3
.2

6
n

n
et

7
8
.7

7
1
.4

3
0
.6

6
8
.8

0
0
.5

7
0
.2

7
0
.9

7
6
.4

0
1
.4

0
0
.0

6
0
.6

8
ra

n
d

o
m

F
o
re

st
7
9
.7

6
1
.5

2
0
.1

4
1
2
.5

5
0
.2

0
0
.0

6
1
.1

9
3
.9

1
0
.4

3
0
.1

1
0
.1

4
rd

a
0
.0

2
4
.6

3
6
.5

0
2
6
.1

0
1
1
.5

4
3
.1

3
3
.6

3
9
.5

4
2
2
.5

6
9
.2

1
3
.1

4
rp

a
rt

1
9
.1

4
3
.3

8
1
.3

7
3
5
.8

5
2
.1

7
1
.0

3
4
.2

9
2
4
.4

8
5
.5

0
0
.2

4
2
.5

6

17

