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Abstract

Dynamic languages such as R are increasingly used to process large
data sets. Here, the R interpreter induces a large memory over-
head due to wasteful memory allocation policies. If an application’s
working set exceeds the available physical memory, the OS starts
to swap, resulting in slowdowns of a several orders of magnitude.
Thus, memory optimizations for R will be beneficial to many ap-
plications.

Existing R optimizations are mostly based on dynamic compila-
tion or native libraries. Both methods are futile when the OS starts
to page out memory. So far, only a few, data-type or application
specific memory optimizations for R exist. To remedy this situa-
tion, we present a low-overhead page sharing approach for R that
significantly reduces the interpreter’s memory overhead. Concen-
trating on the most rewarding optimizations avoids the high runtime
overhead of existing generic approaches for memory deduplication
or compression. In addition, by applying knowledge of interpreter
data structures and memory allocation patterns, our approach is not
constrained to specific R applications and is transparent to the R
interpreter.

Our page sharing optimization enables us to reduce the memory
consumption by up to 53.5% with an average of 18.0% for a set
of real-world R benchmarks with a runtime overhead of only 5.3%
on average. In cases where page I/O can be avoided, significant
speedups are achieved.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors— interpreters; optimization; D.4.2 [Operating
Systems]: Storage Management— main memory

Keywords R language; memory optimization; page sharing; pag-
ing; virtual memory

1. Introduction

When the amount of memory required for computations exceeds
the physical memory available to the application, the execution is
painfully slowed down by frequent page swaps that require disk
I/0, a phenomenon also known as ’thrashing’. The performance
penalty due to thrashing might render complex computations en-
tirely infeasible. As a countermeasure, we propose an improved,
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more efficient memory allocation strategy for languages that are
commonly used to process large vectors (e.g. APL, Matlab or R),
reducing the overall memory consumption. We will use the R pro-
gramming language [11] to demonstrate the effect of our improve-
ment. R is a free, domain specific, dynamically typed programming
language with functional features. It is a de—facto standard in statis-
tics, e.g. for analyzing datasets using machine learning. A sample
application could be to classify patient data according to genetic
information, in order to determine an optimal medication strategy.

The basic features of R are extended by nearly 6000 packages
in public repositories like CRAN'. There also exist packages for
processing large datasets, particularly addressing more efficient
memory management strategies (e.g. sparse matrices). However,
this requires programmers to specifically adapt the code to invoke
functionality provided by the respective package. Packages are
often tailored to concrete applications, and thus cannot simply be
used by arbitrary R programs. In contrast, our optimization takes
place at the memory management layer between the R interpreter
and the operating system, making it entirely transparent to the R
programmer and applicable to any R program.

R is executed by an interpreter, which encapsulates all data
structures into vectors. Depending on the size of these vectors, the
interpreter chooses between multiple allocation strategies to reduce
fragmentation. When the size is above a certain threshold, the
interpreter allocates a large vector. For each of those, a dedicated
block of memory is allocated, potentially spanning multiple pages.

These pages, even when unused, take up memory. Our optimiza-
tion ensures that memory will only be allocated for pages that are
definitely required by the program. Moreover, pages already allo-
cated are shared, if possible, and may be reused. These optimiza-
tions incur a time-memory-tradeoff though: The more aggressive
pages are shared, the more time must be spent to unshare them.
Therefore blindly optimizing would incur a larger runtime penalty
than a strategy that takes into account the expected use of the mem-
ory, avoiding sharing when it is expected that no memory could
be saved. While there already exist similar OS level optimizations
such as lazy page loading (meaning a page is only allocated when it
is written to or read from for the first time) or sharing of pages with
the same content (deduplication), these optimizations lack knowl-
edge about the specific memory behavior of the runtime environ-
ment. This reduces the ability of the operating system to make qual-
ified decisions about optimizing the memory usage. For instance,
the operating system cannot know if a memory block requested by
a function will be written to immediately or only at a later time. Our
approach uses additional information available from the runtime
environment, e.g. about the short-term usage pattern of a memory
block to guide the efficient use of these optimizations.

Using the dynamic language R as an optimization target, this
paper presents an optimization for reducing memory consumption
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of R programs, which is based on dynamic sharing of memory
contents on the page level. The key contributions of this paper are:

e its innovative memory allocation optimization, based on avoid-
ing page duplication for large data structures

e page sharing related analyses which are used to refine the above
page sharing optimization

e an experimental evaluation of the effect of our optimization
on fifteen benchmarks, showing an up to 53.5% reduction in
memory usage with an average runtime overhead of just 5.3%

Section 2 gives a brief survey of related work. Memory manage-
ment of R programs and the R runtime environment is presented in
Section 3. Section 4 presents this paper’s main contribution: our
novel page sharing strategies for R, which are based on avoiding
page duplications by using code annotations and page content anal-
ysis. Section 5 presents the heuristics used for our optimization and
implementation details. Benchmark results are presented in Section
6. Finally, Section 7 concludes with a summary of the paper, also
giving an outlook on future work.

2. Related Work

As shown by Morandat et al. [8] and our previous work [9], the
interpreter-based original R implementation has several drawbacks
leading to slow and memory inefficient program execution.

A number of projects already work on diverse optimizations for
R [1-5]. Some of these projects like FastR [3], Renjin [4] or Ri-
poste [5] reimplement the original interpreter in another language
such as Java or C++. These approaches benefit from optimizations
available in their runtime environments. However, the reimplemen-
tations cannot yet guarantee full compatibility with existing R pro-
grams and packages due to the complex and evolutionary develop-
ment of the R language and its missing formal specification.

Optimizations from other projects like pqR [2] and the Orbit
VM [1] concentrate on specific bottlenecks on the R interpreter by
using, e.g., function specialization or the introduction of scalar data
types. While these provide full compatibility, they concentrate on
language rather than systems effects as basis for their optimiza-
tions. For other interpreter-based dynamic languages there are sim-
ilar approaches realized in projects like MaJIC [6] and PyPy [7].

In contrast to the approaches discussed above, our page sharing
optimization works on a layer between the R interpreter and the
operating system. This enables optimizations of arbitrary applica-
tions with only small modifications to the R interpreter including its
built-in functions and without requiring application changes. Thus,
in the following we provide a discussion of related system level
approaches to reduce memory overhead.

In general, related work on reducing memory utilization can
be categorized into two groups: memory compression approaches,
often influenced by embedded systems resource constraints, and
memory deduplication, which is mostly used in virtualization.

Memory compression tries to reduce the swapping activity of
a system by compressing memory contents instead of swapping
pages to secondary storage. For example, an adapted version of the
approach by Wilson et al. [16] is used in MacOS X version 10.9.
Wilson notes that the efficiency of memory compression largely
depends on technology trends due to the large computational over-
head. It will be increasingly attractive as CPU speeds increase faster
than disk speeds.

More recent publications, such as Beltran et al. [17], Yang et
al. [18] or Pekhimenko et al. [19], concentrate on using multicore
systems and improved compression algorithms and on embedded
devices. An analytical model for evaluating the efficiency of com-
pression is presented by Chihaia and Gross [20].
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All compression approaches share the drawback that a signifi-
cant share of processor time is spent for compressing and decom-
pressing memory contents. Typically, heuristics are employed to
determine the memory contents for which compression is most re-
warding. In contrast, our page sharing approach concentrates on
zero-filled pages and proactively avoiding page duplication.

While some compression approaches like Nakar and Weiss [21]
or Benini et al. [22] realize optimizations by incorporating pro-
filed information on the application behavior or are specialized
to rewarding compression targets such as sparse matrices by
Lawlor [23]. These approaches still face the CPU overhead of com-
pression and decompression.

In contrast, memory deduplication reduces the memory over-
head by mapping virtual pages with identical contents to a single
physical page. This is often beneficial in virtualized environments
where large amounts of read-only memory, such as the code sec-
tions of shared libraries, are used in multiple virtual machines [25].

An often used implementation of deduplication is available in
Linux as the Kernel Samepage Merging (KSM) [15]. Deduplica-
tion introduces significant computational overhead, since the con-
tents of pages have to be scanned periodically in order to identify
pages with identical content. KSM has been optimized by Chen
et al. [13] using a classification of page access behavior to reduce
page scanning for deduplication, while Miller et al. use cross-layer
hints to improve the efficiency of deduplication scanners [24].

Valat et al. used application knowledge to reduce deduplication
overhead [12], which uses a special version of mmap to avoid un-
necessary page removal and enable page reuse in HPC environ-
ments. Jula and Rauchwerger use application-provided hints for
more locality of data allocation in C++ applications [14]. A mem-
ory trace-based evaluation of different deduplication and compres-
sion approaches is presented by Deng et al. [26].

Compared to deduplication approaches, our page sharing opti-
mization employs specific knowledge about the interpreter state to
reduce the number of pages that need to be scanned for identical
content. Scanning itself has low overhead, since only scans for ze-
roes have to be performed, which terminate at the first found non-
zero element. Furthermore, deduplication approaches such as KSM
are purely reactive, i.e., they can only reduce duplicates that already
exist when it scans the memory. Our system is not just simply re-
active, but it also proactively avoids the main sources of identical-
content pages from object allocation and duplication. In addition,
our optimization is aware of data structures and their contents used
by the R interpreter. Thus, a better prediction and avoidance of un-
necessary deduplication attempts is enabled.

In the next section, we will discuss the behavior of the R pro-
gramming language in regard to memory allocation.

3. Memory Allocation in R

The life cycle of an object in the R interpreter starts with its alloca-
tion. The R interpreter assumes that vectors are laid out in consec-
utive pages in memory, unlike other languages that can construct
a large array in memory using many smaller data structures. De-
pending on the size of the object, the interpreter uses a system of
multiple memory pools for objects with a data size of up to 128
bytes. For objects larger than this threshold, memory allocated via
the malloc C library function is used directly instead of pooling the
allocations. This reduces the memory fragmentation when many
small objects are created and some of them are released.

The R interpreter ensures that a newly allocated object is al-
ways initialized — either by explicitly initializing it or implicitly by
writing the results of a computation to it.

After the object is allocated and initialized, it can now be used
as input for various built-in interpreter functions like the plus op-
erator. These functions may modify the object, at which point a



copy-on-write optimization in the R interpreter is triggered: Instead
of copying an object immediately, the R interpreter only marks the
original object as shared with a flag in its header to delay the copy.
The interpreter now has two references to the same object, either of
which may be modified later. When this modification happens, the
copy process is triggered and a full copy of the affected object (po-
tentially spanning multiple pages) is created using the interpreter-
internal duplicate function. R uses these mechanisms to implement
a call-by-value semantic.

The R language does not require the programmer to explicitly
manage memory, so it needs garbage collection to automatically
free memory. The garbage collector in R is a mark-and-sweep, non-
moving, generational collector. It can be manually triggered or runs
when the interpreter’s heap is in danger of running out of space.

R-Object
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Figure 1. Example of Copy-on-Write in the standard R interpreter

When an R program allocates large objects, R’s copy-on-write
scheme implies that it has to use a large amount of memory for
each copy of such an object. This is illustrated in Figure 1. On the
left hand side a large R object consisting of an header H and four
pages A to D is shown both in virtual memory on the top (marked
with dotted lines) and its corresponding allocated physical memory
on the bottom (solid lines). On the right hand side, the situation
after a duplication that was triggered by a write access is shown.
Now there are two R objects shown in the virtual memory on top
and their corresponding physical memory on the bottom. In one of
the copies, page C was modified and is now marked as X, and the
copy has its own header H’. Although unmodified, the R interpreter
needs to use additional memory to create duplicates of pages A, B
and D (marked grey) because it assumes that objects are organized
as continuous blocks of memory and thus it has to duplicate at
object level granularity.

Our optimization attempts to reduce this memory overhead by
copying only parts of the object instead, sharing the same mem-
ory pages between multiple objects as long as they are not modi-
fied. This scheme is transparent to the interpreter’s memory man-
agement including the garbage collection, requiring only small
changes in memory allocation and freeing, as well as in the du-
plicate function.

In the next Section we present the details of our page sharing
strategies for the R interpreter.

4. Page Sharing Strategies

The general mechanism we use to avoid page duplications in R
is described in Section 4.1 based on optimizing the allocation
and duplication mechanisms. This optimization is further refined
by using static annotations that reduce the optimization overhead,
presented in Section 4.2 and by a dynamic refinement using a
page content analysis to increase the amount of shared memory,
introduced in Section 4.3.

4.1 Avoiding Page Duplications

As explained in the previous section, the R interpreter can only
allocate complete objects. The first part of our optimizations for the
R interpreter are implemented in the object allocation. To enable
the sharing of memory at page granularity within the R interpreter,
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we employ a custom memory allocator when a large vector has
to be allocated, as shown in Figure 2. When the internal function
allocVector is called to allocate an object, our optimized interpreter
selects between our custom memory allocator to share memory
on page granularity or the standard malloc function if this is not
required. In both cases the allocated memory is accessible within
the address space of the R interpreter.
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Figure 2. Memory allocation scheme for dynamic page sharing

Although our custom allocator uses a memory management
scheme similar to standard virtual memory schemes commonly
used in operating system kernels, it is completely implemented in
user space for ease of implementation, although a kernel level im-
plementation would be feasible. The downside of a user mode only
implementation is that it needs to replicate certain data structures
that are already present in the operating system like the mapping
from virtual to physical memory, because the existing structures in
the kernel are not sufficiently exposed to user space. Since we do
not have direct access to physical memory in user space, we use
a single file located on a RAM disk to allocate physical memory
(custom heap in Figure 2). A simple free-bitmap based allocator
is used to reserve pages from this file, and the file is dynamically
enlarged when needed. Mapping these physical pages into the vir-
tual address space of the interpreter can be accomplished using the
mmap Unix system call and changing their access permissions is
possible using the mprotect system call, which modifies the set-
tings of the memory management unit of the processor. To create a
memory management system from these operations in user space,
we also need a page table to map from a virtual address to a phys-
ical page. There are multiple ways of implementing such a page
table, for simplicity reasons we chose to use a hierarchical page
table using the same four-level structure that is used by the CPU
itself. Our system needs to map the same physical page to multi-
ple locations in virtual memory to allow sharing of pages, therefore
it needs a reference counter for each physical page. A reference
count greater than one for a page indicates that it is shared between
multiple objects or multiple times within one object.

The left side of Figure 3 illustrates an example of our optimized
R object allocation that utilizes a global shared zeroed page. Here,
our custom memory allocator was asked to allocate an object with
a total size of five pages. While it has the requested size in vir-
tual memory (dotted), physically it only consists of a single non-
shared page in the beginning (marked H for header) followed by
four pages that point to a shared page (marked with 0) called the
zeroed page. The non-shared initial page is required as it will con-
tain not just data but also the object header used by the R interpreter.
The interpreter writes this object header to the front of the memory
allocation area and since it will be frequently updated, for exam-
ple during garbage collection, it cannot be shared between multiple
objects. The shared zeroed page is known to be filled with zero-
bytes. This allows us to avoid the zero-initialization of allocated
memory in the interpreter and also ensures that memory is only al-
located for those pages which are actually written to at a later time.
This concept of prepared zeroed pages is also found in operating
system kernels, but since the standard R interpreter immediately
writes into all memory that it allocates for initialization, it does not
benefit from this optimization.
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Figure 3. Page-shared memory allocation and copy-on-write

The numbers in small print below the physical pages in Figure
3 are the reference counters. Since the header page H is mapped
only once, its reference count is one and the reference count of
the zeroed page is four as it is shown to be mapped four times
into virtual memory. The interpreter now has the illusion that it has
received five pages of memory, even though only two pages are
allocated physically. To sustain this illusion, we must ensure that
any write access to a virtual page which points to a shared physical
page can be detected and handled. If such a write access were not
handled, from the interpreter’s point of view a single write access
would affect the intended virtual page and additionally all virtual
addresses where the same physical page is shared. In Figure 3 this
could mean that a write to one of the four instances of the zeroed
page would be mirrored in its other three instances, resulting in
incorrect object contents.

Therefore, we mark all pages with a reference count greater than
one as read-only, ensuring that a write access triggers a segmenta-
tion fault. We catch this fault in a signal handler which performs
unsharing of the affected page. This handler uses the virtual ad-
dress of the write access to determine the affected physical page. It
then allocates a new page, copies the contents of the original page
to it and replaces the page that caused the segmentation fault with
the new one. The resulting situation is shown on the right side of
Figure 3: One of the instances of the zeroed page which was writ-
ten to was replaced with a new page marked with X. This updates
the reference count of the both zeroed page and the newly allocated
page. Since the newly allocated page is only mapped once, it can
now be marked read-write and further accesses do not require spe-
cial handling anymore.

As noted in the discussion of R’s memory management in Sec-
tion 3, the R interpreter can only duplicate on the object level, even
when the object consists of multiple pages and part of the copy
may end up with identical content as the original (see Figure 1).
To avoid this, we augmented the copy-on-write mechanism in the
interpreter to take advantage of the page sharing capabilities of our
system, improving the duplication granularity from object level to
page level. While the allocation optimization avoids the immediate
allocation of pages by using the global zeroed page, the duplication
optimization allows us to reuse the already-allocated pages of the
original object instead of allocating new pages.

An example of such a duplication optimization is shown in Fig-
ure 4. On the left side the situation before duplication is shown:
An R object occupying five virtual pages, two of which reference
the global zeroed page is to be duplicated. Unlike the original R
interpreter which needs to allocate five new pages for the copy, our
optimization reduces this to a single allocated physical page which
is shown on the right side of the Figure with the original object
on the top and the copy on the bottom. Although we could create
a virtual-only copy of the first page containing the object header,
the R interpreter updates this header in the copy immediately af-
ter duplication, which would trigger an unsharing of this page. To
avoid the overhead of this event, our duplication immediately cre-
ates a physical copy of the page containing the header. Since most
of the pages of the original object are now mapped twice in virtual
memory, the reference counters of the corresponding pages must be
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updated and both the original and copy are marked as read-only to
allow unsharing on write accesses.

virtual  coeeepeeopeepeeegeeae e originaJ
memory Lt :
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Figure 4. Duplication with page sharing

In total, the finer copy granularity of our implementation en-
ables us to store both the original and copied objects from the ex-
ample in just five pages of memory. In contrast, the original R inter-
preter would need ten pages of memory to store the same objects.

Although the mechanism of sharing pages during allocation
and duplication described above always result in a valid view on
memory for the interpreter, there are cases where they introduce
additional overhead that can be avoided by further refinements
described in the next Subsection.

4.2 Static Refinement using Annotations

Our static refinements consist of two kinds of annotation to reduce
the run-time overhead caused by avoiding page duplication. The
first is based on expected use of the object immediately after allo-
cation, the second is based on the size of the allocated object.

The memory allocation strategy described in the previous Sub-
section (see Figure 3) saves memory by using a global zeroed page,
assuming that not all pages of the allocated object will be written to
immediately. This assumption is not always valid though, e.g. vec-
tor arithmetic functions in the R interpreter allocate a new object
and immediately write to all pages of it to store their results. This
will cause a segmentation fault for the first write of every page, trig-
gering the allocation of memory for all pages of the object. These
faults incur a run-time overhead for handling them which is not
present when allocating an object with non-shared pages.

To avoid this run-time overhead, we have added annotations to
the C source code of the built-in functions included in the R inter-
preter where we have determined that the newly allocated memory
will be completely overwritten directly after allocation. For this sit-
uation, our custom allocation function returns an object where ev-
ery virtual page references a new physical page, so no segmentation
faults will be triggered by the write accesses. Although these R ob-
jects will not save any memory on allocation, they still have the
opportunity for later optimizations, e.g. when they are duplicated.
Thus those objects should still be managed by our page sharing.

Currently the annotations for these “full-overwrite” functions
need to be placed manually in the R interpreter’s C source code by
locating calls to allocVector, followed by loop structures that write
to every element of the newly-allocated object. Those manually
placed annotations could also be automated by static code analysis
checking for allocation calls followed by loops that write to the
newly-allocated object similar to the pseudo-code in Figure 5.

The second kind of annotation for reducing overhead relates to
the size of the object that the interpreter wants to allocate. The R
interpreter can allocate objects with a variety of sizes, not all of
which span multiple pages. Our custom allocator is only used for
objects with a size that indicates potential for page sharing. This
potential is limited for smaller objects. The first page of an object
stores not just data but also the frequently modified object header
which is why we avoid sharing this page. Therefore, our system



passes R objects smaller than two pages of memory to the standard,
non sharing memory allocator. This limit could also be used as a
tunable parameter to select a trade-off between memory savings
and the run-time overhead incurred by our optimizations.

1 object = allocVector(length)
2 for (i = 0; i < length; i++):
3 object[i] = calculation (i)

Figure 5. Pseudo-code of a “full-overwrite” function

In addition to these static refinements we have also introduced
a dynamic refinement for increasing the number of shared pages
which will be described in the next Subsection.

4.3 Dynamic Refinement using Page Contents

During the execution of an R program, pages of objects are updated
with the results of calculations. This can result in multiple distinct
pages with the same content, which opens up the opportunity for
sharing those pages. The general idea of locating identical objects
in a system and saving memory by reducing them to a single object
is known as deduplication (see Section 2).
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Figure 6. Page content check for reduction of memory usage

We currently implement a restricted version of the content scan
which only checks for pages identical to the already existing global
zeroed page. The deduplication of zeroed pages is illustrated in
Figure 6. On the left side, the situation before the page content
scan is shown where an object contains two identical zero pages.
One of those pages is already mapped to the global zeroed page
(shown in bold), while the other uses a separate physical page. On
the right side, the situation after the content check is shown. Here,
the content check has detected the separate copy and mapped its
virtual page to the global zeroed page, freeing the memory that was
used for the unnecessary duplicate.

Although we could implement a general scan that could detect
duplication between pages of arbitrary content, such a scan would
incur a significantly runtime overhead (e.g. due to the calculation of
hash values) compared to scanning just for zeroed pages. A scan for
arbitrary content would need to check the full content of all pages
in the system, while a scan for zeroed pages can use an early abort
condition as soon as a non-zero element is found.

The frequency of content checks and the number of pages that
need to be scanned influences the overhead incurred by this opti-
mization. In order to minimize the number of pages that need to be
scanned, we chose to run the scan only after the completion of a
garbage collection in the interpreter. At this point we know that all
objects still in memory are alive. This enables us to avoid scanning
pages for duplicate content that would soon be discarded. Trigger-
ing content checks from the garbage collector also provides a nat-
ural regulation mechanism for the frequency of content checks as
the frequency of garbage collection calls depends on the memory
requirements of the running R program.

With the described content check optimization we can dynam-
ically share pages that were previously excluded from sharing the
global zeroed page, e.g. arithmetic vector operations as described in
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Subsection 4.2. Thus both the static and the dynamic refinements of
our page sharing optimization complement each other. In the next
Section we will present the interaction of those refinement strate-
gies and our general page duplication avoidance strategy.

5. Page Sharing Optimization

In this Section we will describe the heuristics used in the implemen-
tation of our page sharing optimization. Figure 7 shows the pseudo-
code for the main functionality of our page sharing strategies. Lines
1 to 25 show our custom object allocator that implements the two
static refinements described in Subsection 4.2. The first static re-
finement can be seen in line 3 where the size of the allocated object
is used to decide if the allocation should be passed to the standard
allocator or if it should handle the allocation with page sharing. If
the size of the object is sufficiently large, our allocator first needs to
allocate a region of virtual memory that is large enough to map the
object (alloc_virtspace, line 8). In our implementation this is emu-
lated using a mmap system call, which lets the kernel select a free
region of virtual memory. Although the mmap call maps data into
this region, we can override this mapping later using the map_page
function in line 23. The second static refinement is implemented as
a new parameter to the allocation function. Callers that completely
overwrite the object after allocation set this parameter to indicate
that they will not benefit from an initialization using the shared
zero page. This parameter is used in line 16 to select if the alloca-
tor should return references to the global zeroed page or allocate
memory for each virtual page of the object. Line 23 then calls the
map_page tfunction to map the selected page for the new object.

The pseudo-code of the map_page function is shown in figure
8 (line 1-13). It receives two parameters, a physical page and an
address of a virtual page where the page should be mapped to.
First, it adds a mapping from the virtual page to the physical page
to the page table. Then the actual mapping in virtual memory is
updated in line 4, which uses the remap_file_pages Linux system
call to change an existing mapping. Finally, the reference counter
of the page is incremented (line 7). If the reference counter is equal
to one, the page is mapped just once into virtual memory and is
marked as read-write (not shared), otherwise it is marked as read-
only since it is shared between multiple objects.

Both static refinements used in the alloc function in 7 reduce
the overhead of our optimization in cases where no gain would be
expected. Compared to other OS level page sharing optimizations
we can use additional information about the caller of the alloc
function and the knowledge where the R interpreter stores the
frequently modified object header. Therefore, we do not share the
first page of the allocation (first_page_flag in line 16) saving the
time required for the page fault taken when the interpreter first
updates the header.

After an object was allocated by our custom allocator, it may
need to be copied. Our duplication optimization strategies augment
the existing copy-on-write mechanism in the R interpreter, enabling
us to share pages other than the global zeroed page. Lines 28 to
53 show our duplicate function, which enables us to improve R’s
object level copy-on-write granularity to page level granularity,
avoiding unnecessary copies. Similar to allocation, duplicate does
not share the first page of the copy (lines 32 and 39-43) as it
contains not just data but also the object’s header. In line 36-51
the function iterates over the virtual pages of the original and copy
and maps the same physical pages that are used for the original
into the copy. Since these pages now must have a reference count
of at least two as they are mapped in both the original and copy
objects, map_page in line 51 automatically marks them as read-
only. Additionally in line 49 the page in the original object is also
marked as read-only. Both mappings of the page must be marked to
ensure that a write access triggers a fault which can then be used to
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alloc(object_size , expect_full_write ):
# static refinement: object size
if object_size < 2_pages:
return standard_alloc (object_size)

else:
# reserve a virtual address space
object = alloc_virtspace(object_size)

first_page_flag = true

for_each (virt_pg in object):

# the first page is always physical,

# static refinement: full overwrite

if expect_full_write or first_page_flag:
new_pg = get_free_physpage ()
first_page_flag = false

else:
new_pg = ZEROED_PAGE

map_page (new_pg, virt_pg)

return object

duplicate(orig_obj):
# reserve a virtual address space for copy
copy-obj = alloc_virtspace (sizeof(orig-obj))
first_page_flag = true

# map virtual pages of copy to

# physical pages of original

for_each (virt_orig_pg in orig_obj,

virt_.copy_-pg in copy_obj):

if first_page_flag:
# first page is copied
physpg = get_free_physpage ()
first_page_flag = false
copy-content (physpg, virt_orig_pg)

else:
# remaining pages are just mapped to the
# physical pages of the original object
physpg = pagetable_lookup[virt_orig_pg]
set_-readonly (virt_orig_pg)

map_page (physpg, virt_copy-pg)

return copy-obj

# dynamic refinement:
content_check ():
for_each (page in all_pages):

# check if the page

# global zeroed page

if pg != ZEROED_PAGE and
page_content_is_zero (pg):

is a copy of the

# map the global zeroed page instead

unmap-page (pg)
map_page (ZEROED_PAGE, pg)

Figure 7. Core page sharing optimizations
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virt_page ):
phys_page)

map_page (phys_page ,
pagetable_add (virt_page ,
remap-_file_pages (virt_page , phys_page)

# update reference counter

refcount[phys_page] += 1

1

2

3

4

5

6

7

8

9 # shared pages must not be write—able
10 if refcount[phys_page] > 1:

11 set_-readonly (virt_page)

12 else:

13 set_readwrite (virt_page)

14
15
16
17

write_fault_handler (fault_pg):

phys_pg = pagetable_lookup (fault_pg)
18
19 # allocate new phys. copy if page was shared
20 if refcounts[phys_pg] > 1I:
21 new_pg = get_free_page ()
22 copy-_content (new_pg, phys_pg)
23 unmap-_page ( fault_pg)
24 map-page (new_pg, fault_pg)
25

26 # page is now known to be non—shared and
27 # can be used directly
28 set_readwrite (fault_pg)

Figure 8. Page mapping and page fault handler

allocate a new physical copy of the affected page. Thus, our version
of duplicate enables lazy page allocation for copied objects.

The dynamic refinement (see Section 4.3) we apply to save
memory by sharing pages via a page content check is shown in
the content_check function in lines 56 to 67. This optimization is
enabled for each object that was allocated by our custom allocator
and that is still alive after a garbage collection call. This reduces
the number of pages that we have to analyze and thus the over-
head of the optimization. Each page is scanned (line 58) for zero
contents that are not already shared by our global zeroed page to
free them afterwards. Therefore we map the global zeroed page to
the pages that have zero contents and are not already shared (lines
62 and 63). The unmap_page function in line 66 removes the du-
plicated zero pages from the page table and frees the memory that
was previously used by them. This function is the counterpart of
map_page. Additionally, it decrements the reference counter of the
previously-mapped page and marks the page as free if its reference
counter is zero. The map_page function in line 67 then maps the
global zeroed page into the virtual page occupied by the object and
increases its reference counter by the number of saved pages.

The previously shown functions from Figure 7 all use the
map_page function which marks shared pages (mapped more
than once into virtual memory) as read-only and the function
write_fault_handler shown in Figure 8 (line 16-28) is called. This
handler allocates a new page (line 21), copies the content of the
accessed page to it (line 22) and updates the virtual mapping (lines
23-24) at the page where the write occurred (called fault_page).
This new page is not shared yet, so it can be marked as read-write
(line 28). Since we remove a mapping of a virtual page, the refer-
ence counter of the corresponding physical page decreases, which
is handled by unmap_page. If all but one virtual instance of a shared
page were written to, the handler has created physical copies for
all of these pages. The last instance which has a reference count of
one is still marked read-only at this point, because the handler only



updates the pages for which a fault occurred. On a write access of
this last instance we leave out the allocation and copy steps: As the
reference count indicates the page is not shared anymore (line 20),
we can just mark it as read-write (line 28). After the handler has
mapped a new read-write page at the fault location, the interpreter
can resume its execution and the write will now succeed. Gener-
ally such a return from a custom segmentation fault handler is not
supported by the POSIX standards, but Linux and other operating
systems offer extensions to allow this. Our write fault handler is
implemented with the existing libsigsegv library*> which offers a
common API for these OS-specific extensions.

In the next Section we will evaluate the memory savings and
runtimes of the previously described page sharing optimizations.

6. Evaluation

This Section presents results obtained by applying the proposed dy-
namic page sharing optimization for R to real-world benchmarks.
Subsection 6.1 describes the experimental setup and benchmark
sets and the methodology used to perform the evaluation. Subsec-
tion 6.2 discusses the results in terms of memory consumption and
Subsections 6.3 and 6.4 evaluate the runtime effects of our page
sharing strategies.

6.1 Experimental Setup

We compared memory usage and runtime of the R interpreter in-
cluding our optimizations against the standard R interpreter. For
the following experiments we used a computer equipped with a
2.67 GHz Intel Core i5 M480 CPU and 6 GB of RAM, using a
64-bit version of Debian Linux 7.0 as the operating system. On
this system, memory pages have a size of 4096 bytes. Although
our implementation could use a larger page size than the system,
we chose to use the same size as we expect this to maximize the
amount of memory that can be shared.> We used R version 3.1.0 as
the base for our modifications, utilizing the default configuration.
Both the standard as well as our optimized interpreter were com-
piled using GCC version 4.7.2 with the default optimization flags
(-02) selected by the build system of R.

The standard memory measurement functions for user space
functions in Linux only measure the virtual memory of a process.
Since our system maps the same physical page multiple times into
virtual memory, these functions cannot show the amount of physi-
cal memory our page sharing optimization saves because they count
every virtual instance of a shared physical page. Therefore we had
to create our own memory measurement functions. To measure the
amount of memory reserved by the default allocator, we override
the standard allocation functions like malloc with versions that
track the current total amount of memory allocated and call the
original function afterwards. In our custom allocator we can di-
rectly count the number of physical pages that needed to be re-
served as well as the size of the management data structures. Us-
ing these measurements, we can accurately calculate the current
amount of physical memory allocated.

For the evaluation of our dynamic page sharing optimization,
we used two different benchmark sets. The first set shown in Table
1 is a shorter-running set of benchmarks. These were selected from
the R benchmark 2.5 suite* that was originally developed to mea-
sure the performance of various configurations of the R interpreter
plus one additional benchmark. The additional benchmark glmnet
utilizes an existing sparse matrix optimization implemented as an

2http://libsigsegv.sourceforge.net/

3 Using a smaller page size than the system size is inefficient since we rely
on the hardware MMU for efficient page access protection.

“http://r.research.att.com/benchmarks/R-benchmark-25.R
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Benchmark  Description

b25-1 Linear regression over a 3000x3000 matrix

b25-2 FFT of 2,400,000 random values

b25-3 Inverse of a 1600x1600 random matrix

b25-4 Grand common divisors of 400,000 pairs (recursive)
glmnet regression using glmnet on a sparse 20000x1000 matrix

Table 1. Misc Benchmark Set

R package and is included to analyze if our optimization can be
beneficial for programs that already try to reduce memory usage by
utilizing application-specific knowledge. For this benchmark set we
selected iteration counts for the outer loop that result in a runtime
of approximately 1 minute with the standard R interpreter.

The second set of benchmarks is based on a set of long-running
real-world machine-learning benchmarks, shown in Table 2. The
choice of those machine learning classification algorithms is based
on both the method’s popularity and the availability of an imple-
mentation. These benchmarks were also used in [9] and are publicly
available [10]. Most of the listed algorithms allow the user to ad-
just several parameters to increase predictive performance. We did
not tune any parameters but instead either used the mostly mean-
ingful defaults or, if available, used the implementation’s internal
auto-tuning process. To conveniently apply all learners on identi-
cal cross-validation splits we used the package m1r>. For the in-
put data we used a dataset that fullfills the following criteria: (a)
it is a 2-class classification problem, (b) it has a sufficiently large
number of observations to achieve accurate results and (c) it has an
even and realistic mixture of data types. We ensured that the data
set contained no missing values as most of the algorithms would
remove them from processing. The machine learning benchmarks
were configured to use 20-fold cross validation. The size of the data
set (15000 samples with 200 numeric features) was chosen to en-
sure that the fastest of the machine learning benchmarks has a run-
time of approximately one minute on the standard interpreter. We
chose to use the same data set for all algorithms to allow a better
comparison of their memory requirements.

Benchmark Description

ada Boosting of classification trees

gbm Gradient boosting machine

kknn k-nearest neighbour classification

Ida Linear discriminant analysis

logreg Logistic regression. Binary classification
decision derived using a probability cutpoint of 0.5

Issvm Least-squares support vector machine

naiveBayes Naive Bayes classification

randomForest ~ Random classification forest

rda Regularized discriminant analysis

rpart Recursive partitioning for classification trees

Table 2. Machine Learning Benchmark Set

Each benchmark was run 10 times with both the standard as
well as our page sharing interpreter, results are given as the arith-
metic mean of these 10 runs. To reduce non-determinism, we have
set the random number seed to a fixed value as the first statement
in each of the benchmark programs. Each repetition was started in
a fresh interpreter process, so initialization costs are included in the
measurements (an expected overhead on the order of one second
or less). The R interpreter does not use adaptive optimizations. All
system services that might interfere with the measurements were

5 Version 1.0-2612. http: //CRAN.R-project.org/package=mlr



disabled. Both runtime and memory usage were measured simulta-
neously. For the memory usage both the global peak memory usage
for a benchmark run as well as a second average memory usage
measurement which will be detailed in Subsection 6.2. We calcu-
lated a 95% confidence interval for these measurements as well
as the ratio of their means using the percentile bootstrap method.
Means over these ratios were calculated using geometric mean to
reduce the influence of outliers.

In the next Section we will discuss the effects of our page
sharing strategies on the memory consumption of the R interpreter
with the setup and methodology described above.

6.2 Memory Consumption Analysis

In this Section we will analyze how our page sharing strategies
influence the memory consumption of the R interpreter. Therefore
we measured the peak memory consumption of the R interpreter
during its execution. The peak memory consumption alone does
not represent any information about changing memory usage over
time though — the peak may occur only for an instant or for a
longer period of time depending on the benchmark. Therefore we
also measured short-term peak usage over periods of 1 second,
resulting in a memory-over-time profile of the R program. These
measurements are used to gain a complete view on the memory
consumption of the program. We calculate the arithmetic mean
of these one-second measurements as a second memory usage
indicator besides the global peak to allow easier comparisons of
the memory behavior, shown as Average usage in our results.
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Figure 9. Relative memory usage with page sharing compared
to standard R (lower is better). The 100% baseline represents the
standard R interpreter (std. R) without optimizations. Geometric
means of memory gains are 13.6% for peak and 18.0% for average
memory usage. Error bars have been omitted as the confidence
intervals were smaller than 0.5% for all values.

Figure 9 shows the peak (Peak usage) and average (Average
usage) memory consumption of the R interpreter running with
our page sharing optimization. The 100% baseline represents the
standard R interpreter without optimizations. Values below this
baseline indicate relative memory savings realized by our page
sharing strategies. Error bars have been omitted as the confidence
intervals were smaller than 0.5% for all value. The detailed values
are presented in Table 3, which also shows the number of pages
identified as shareable by the content check and thus indicates the
optimization potential of this refinement. Confidence intervals have
been omitted as they were smaller than 0.5% for all values.

The relative peak memory usage compared to the standard R in-
terpreter ranges from -0.9% for gbm to 53.8% for Issvm. This shows
that our optimizations do not realize any memory savings for some
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of the benchmarks and instead slightly increase their peak memory
consumption because it needs additional data structures for page
management. However, in the case of ghm, we can still achieve a
reduction of the average memory usage by 7.9% compared to the
standard R interpreter. For naiveBayes this situation is reversed:
Our optimization saves 12.1% of its peak memory usage while it
results in a slight increase of average memory usage (-0.6%). Since
the amount of pages recovered by the content check (see Table 3)
is small, the reduction of the peak memory usage must be caused
by the optimizations for allocation and duplication.

In the case of b25-2 our optimization cannot save memory in
the peak case and no meaningful amount in the average case, but
again the overhead incurred is very small. The reason why b25-
2 does not gain from our optimizations is that even though it
uses large vectors with 2.4 million elements, it allocates a vector
which is immediately filled with random numbers similar to the
pseudo-code shown in Figure 5. Therefore it cannot gain from our
optimizations in the allocation of the vector and the content check
cannot find any all-zero pages either. This is also indicated by the
low number of pages recovered by the content check shown in
Table 3 as column ZPG. Furthermore, b25-2 does not use any object
duplication, so our optimizations for duplication cannot reduce its
memory consumption either.

Even though our page sharing optimization results in a slight in-
crease of peak or average memory usage for the three benchmarks
described above, the twelve other benchmarks all gain from our op-
timizations in both the peak and average memory measurements.
The geometric mean over all fifteen benchmarks shows a reduction
of peak memory usage by 13.6% and a reduction of average mem-
ory usage by 18.0%. The benchmarks that profit the most from our
optimizations are Issvm with 53.8% for peak usage and randomFor-
est with 37.9% for average usage. Both of these benchmarks have
very high values for the number of pages recovered by the content
check. Thus for them the reduction of memory usage is not just
caused by the allocation and duplication optimization but also the
dynamic refinement of our optimization contributes to the savings.

Table 3 only shows summarized values for the memory con-
sumption over the complete runtimes of all benchmarks. To gain
additional insight about the memory usage behavior, we analyzed
the memory consumption over time. Results for the four most in-
teresting ones (glmnet, gbm, randomForest and naiveBayes) are
shown in Figure 10. The confidence intervals for these measure-
ments are all very small (less than 1%), so the figure shows only
data from a single run. For each benchmark, we have selected the
run whose execution time was closest to the average of the 10 runs.
The x-axis represents the runtime in seconds, the y-axis the cor-
responding memory consumption of the benchmark. Both the pro-
file for the standard R interpreter (grey curves) and the interpreter
with our page sharing optimizations (black curves) are shown. The
straight lines at the top mark the peak memory usage, while the
dotted lines mark the average memory usage.

As mentioned in Section 6.1 we analyzed the glmnet because it
utilizes an already-existing memory optimization in the form of an
R package for sparse matrices. Our goal here is to determine if our
optimizations can still offer additional memory savings even in the
presence of such specialized application knowledge. In the top left
of Figure 10 the memory-over-time behavior of this benchmark is
shown. While we only have a small improvement of the average
memory consumption (see dotted black line), we achieve a 6.2%
improvement of peak memory consumption. The Figure shows that
at all local memory peaks during the execution of glmnet we save
a small amount of memory while the memory consumption during
the remaining parts of runtime of the benchmark is largely unaf-
fected. This results in only a minor reduction of the average mem-
ory consumption. Still, even in the presence of a very specific op-



Benchmark Std R Peak  P-Sharing R Peak ~ Gain Peak  Std R Avg ~ P-Sharing R Avg  Gain Avg 7PG

[MB] [MB] [%] [MB] [MB] [%] [#]
b25-1 296.2 228.1 23.0 259.6 192.2 25.9 13
b25-2 131.1 131.4 -0.2 128.8 128.0 0.6 13
b25-3 197.2 164.8 16.4 157.7 112.6 28.6 37919
b25-4 134.2 119.7 10.8 127.2 114.6 9.9 194892
glmnet 354.9 332.8 6.2 249.5 246.0 14 46877
ada 187.2 170.1 9.1 156.0 126.2 19.1 2031992
gbm 191.5 193.2 -0.9 147.7 136.0 79 464
kknn 316.5 287.6 9.1 274.0 231.0 15.7 421
1da 216.2 208.2 3.7 184.8 175.1 5.3 20447
logreg 213.0 186.7 12.3 184.7 162.8 11.9 955
Issvm 1365.1 631.0 53.8 820.2 381.1 53.5 3972699
naiveBayes 143.6 126.2 12.1 80.8 81.3 -0.6 78
randomForest 565.5 520.4 8.0 390.8 242.7 37.9 1130650
rda 254.1 227.7 10.4 197.0 177.3 10.0 707
rpart 144.5 125.8 12.9 130.7 103.3 20.9 56214

Table 3. Memory Results of page sharing: Std R Peak - peak memory usage by the standard interpreter; P-Sharing R Peak - peak memory
usage by optimized interpreter; Gain Peak - relative peak memory reduction achieved by optimized interpreter; Std R Avg - average memory
usage by the standard interpreter; P-Sharing R Avg - average memory usage by optimized interpreter; Gain Avg - relative average memory
reduction achieved by optimized interpreter; ZPG - number of zero pages found by the content check; Geo. mean of memory gain is 13.6%
for peak and 18.0% for average memory usage; Confidence intervals have been omitted as they were smaller than 0.5% for all values
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Figure 10. Memory consumption over time for benchmarks with different memory behavior for the standard R interpreter vs. optimized
interpreter. Lines at the top mark the respective peak memory usage, dotted lines mark the average memory usage.

timization for sparse matrices we can still offer additional memory
savings. As can be seen from column ZPG in Table 3 this is due to
a large number of pages recovered by the content checks.

Not all benchmarks profit from the content checks though. For
example, Table 3 shows that in gbm only 464 zeroed pages are re-
covered by the content checks, so this benchmark profits more from
lazy allocation and duplication. The corresponding memory-over-
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time behavior is shown in the top right of Figure 10. For this bench-
mark, our optimization does not reduce the peaks of the memory
consumption, but there is a marked reduction of memory usage in
the valleys between the peaks, reducing the average memory con-
sumption by 7.9%.

Another benchmark that not profit from the content checks is
naiveBayes with just 78 zeroed pages recovered. The memory-



over-time profile of naiveBayes in the bottom left of Figure 10
shows that its situation is reversed compared to gbm: In naiveBayes
only the peak memory consumption is reduced by our optimization
(large distance between the straight lines at the top), but not the
average consumption (small distance between the dotted lines). The
Figure shows that naiveBayes has much smaller peaks compared to
gbm, so the large reduction of memory consumption at those peaks
only has a small effect on the average memory consumption.
Finally, randomForest in the bottom right of Figure 10 provides
an example of a benchmark which profits a lot from the recovery
of zeroed pages by the content check. Over the full runtime of the
benchmark, the content checking reclaims 1,130,650 pages, corre-
sponding to slightly more than 4 GB of memory, which is more than
the peak memory allocation of this benchmark. The memory-over-
time profile shows a sawtooth curve for our optimized interpreter,
so this benchmark uses large blocks of memory which are slowly
written to. For our page sharing optimizations this represents an
ideal memory usage pattern as we can delay the allocation of mem-
ory until the benchmark writes data to it. This results in a 37.9%
improvement of the average memory consumption (large distance
between dotted lines), which means that we reduce the average time
during which the benchmark has a high memory consumption.
Looking back at Figure 10 for glmnet (top left), the black line
which shows the profile for our optimized interpreter is longer than
the grey line for the standard interpreter and there is an increasing
shift between the peaks of both lines over time. The reason for
this is that our page sharing needs additional CPU time to provide
its optimizations. Therefore, we take a closer look at the runtime
overhead of our page sharing optimization in the next Section.

6.3 Runtime Overhead of Page Sharing

Our page sharing optimization incurs a runtime overhead compared
to the unmodified interpreter. Table 4 shows the runtime of our
benchmarks for both the standard and page sharing R interpreters
(Std R, P-Sharing R), the relative overhead of the page sharing in-
terpreter (Loss) and the number of times the content check opti-
mization was triggered (CC). Here the confidence intervals have
been omitted as they were smaller than 1.0% for all values.

Benchmark StdR [s]  P-SharingR[s] Loss[%] CC [#]
b25-1 69.3 69.8 0.8 10
b25-2 61.6 62.0 0.7 58
b25-3 57.2 58.4 1.9 23
b25-4 60.2 70.3 16.9 1045
glmnet 59.3 64.0 7.9 156
ada 9874.3 10055.7 1.8 12113
gbm 160.4 168.0 4.7 287
kknn 2030.8 2063.6 1.6 486
I1da 86.5 98.1 13.3 334
logreg 82.8 89.6 8.2 280
Issvm 530.5 601.2 13.3 1002
naiveBayes 1539.7 1555.6 1.0 31466
randomForest 4107.1 4135.5 0.7 224
rda 7617.8 7871.8 33 11849
rpart 61.5 64.2 44 304

Table 4. Runtime Results: Std R - runtime with standard R inter-
preter; P-Sharing R - runtime with optimized R interpreter; Loss -
relative runtime overhead incurred by optimized R interpreter; CC -
number of content checks executed by the optimized R interpreter;
Geometric mean of runtime loss is 5.3%; Confidence intervals have
been omitted as they were smaller than 1.0% for all values.

There are multiple reasons for this overhead. First, allocation it-
self is more complicated as both virtual and physical pages need to
be managed. The static refinement (see Section 4.2) that limits our

88

allocator to objects above a size limit of two pages avoids this over-
head for small objects where our page sharing optimizations cannot
realize any significant memory gains. Second, the first write access
to a shared page requires intervention of the fault handler, which
is an overhead that is not present in the standard R interpreter. We
tried to reduce this overhead with a static refinement that excludes
functions which are known to immediately overwrite their memory
allocation, but this covers only the case where both the allocation
and write access happen in the same interpreter function. If the im-
mediate write is caused by calculations in the benchmark, our static
refinement cannot detect this. A case where this happens is 625-4
which has a runtime overhead of 16.9%. This benchmark recur-
sively calculates the greatest common divisors for two vectors. The
R interpreter duplicates those vectors passed as function parameters
in each recursion and the benchmark updates these vectors.

Third, our dynamic refinement that checks the content of pages
for deduplication also adds runtime overhead. Its overhead is ex-
pected to be small for programs where it does not contribute signif-
icantly to the memory savings, since it only checks for pages which
contain just zero bytes, so it can abort its scan as soon as it finds the
first byte that does not match this criterium. An example of a low
overhead for content checks can be seen in the ada benchmark in
Table 4 where the content check was triggered 12113 times, but the
total overhead was just 1.8%. On the other hand, the Issvm bench-
mark shows an overhead of 13.3% with just 1002 content checks
which found almost four million zero pages according to Table 3.
This shows that the overhead of the content check depends not just
on the number of times it is called but also on the number of pages
it had to search through. The geometric mean of the runtime over-
head for all benchmarks is just 5.3%.

Our static refinement that checks the object size to determine
if the standard allocator or our custom allocator should be used
gives us the opportunity to modify this size limit in order to change
our runtime overhead. This results in a trade-off between memory
savings and runtime overhead as we expect that an increase of the
object size limit results in a decrease of the number of objects that
are considered for our custom allocator.
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Figure 11. Static refinement using different object sizes; Error
bars have been omitted as the confidence intervals were smaller
than 0.3% for all values

This trade-off is illustrated in Figure 11 for logreg with five
different object size limits for our custom allocator shown on the
x-axis. The y-axis shows the runtime (grey) and peak memory
consumption (black) of the optimized interpreter relative to the
same values for the standard R interpreter. Error bars have been
omitted as the confidence intervals were smaller than 0.3% for all
values. For both values a lower percentage is better, since the 100%
baseline represents the runtime and memory values of the standard



Benchmark StdR  P-Sharing R Gain StdR  P-Sharing R Gain StdR  P-SharingR  Speedup (CI)
Peak [MB] Peak [MB]  Peak [%] Avg[MB] Avg [MB]  Avg [%] [s] [s]

logreg-2 1GB 1228.2 1094.8 10.9 965.7 789.6 18.2  6395.5 5785.6 1.105} 334

logreg-2 6GB 1228.2 1094.8 10.9 967.8 823.2 14.9  579.8 598.5 0.9699-971

Issvm 1GB 1365.1 631.1 53.8 970.0 381.3 60.7  3080.3 593.8 5.1883-350

Issvm 6GB 1365.1 631.0 53.8 820.2 381.1 53.5  530.5 601.2 0.8829-883

Table 5. Evaluation results with two configurations of RAM; see table 3 and 4 for column descriptions, except Speedup: Runtime speedup
factor (Std. R / P-Sharing R). Confidence intervals for runtime are shown (CI), others have been omitted as they are smaller than 0.8%.

R interpreter without our optimization. The 8 KB limit is the same
one that was used for the measurements shown previously.

The results in Figure 11 show that for logreg increasing the
size limit for custom-allocated objects reduces the gain of our
optimizations as fewer objects can be optimized. With a size limit
of 1024 KB, our gain is slightly negative as we have a memory
overhead for our page management data structures. This indicates
that in logreg the savings of our page sharing system are triggered
by R object allocations with a size smaller than 1024 KB. On the
other hand, since the increase of the size limit reduces the number
of objects handled by our optimization, its overhead contributes
less to the overall runtime of the benchmark. With a small object
size limit like 8 or 16 KB, the runtime overhead is larger (8.4%).

In all previous measurements the RAM available in the system
was sufficient to hold all data used by the benchmark. If this is not
the case, our runtime overhead can become insignificant which we
will show in the next Section.

6.4 Runtime Reduction with Page Sharing

When the amount of RAM in the system is too small to hold all
data required by the benchmark, there are situations where our op-
timizations can also reduce the runtime of the benchmark instead
of adding overhead. This is due to frequent page swaps that re-
quire disk I/O when the total capacity of RAM is exceeded, a phe-
nomenon also known as ’thrashing’. To analyze this situation, we
will consider two benchmarks. The first one is the Issvm bench-
mark where our optimization provides a large reduction in mem-
ory consumption. The second benchmark is an instance oflogreg
where our optimization provides smaller memory gains. We had to
increase the memory requirement of the benchmark beyond the ca-
pacity of RAM in the system. Therefore, we limited the system to
just 1GB of RAM instead of increasing the data set size because
the runtime of the benchmarks does not scale linearly with the data
set size, resulting in excessively high runtimes. Since logreg has a
much smaller memory consumption than 1 GB, we have addition-
ally increased the data set size for logreg to 70000 samples with
300 numeric features which increases the memory requirements of
this benchmark to approximately the same level as Issvm. This still
results in acceptable runtimes for logreg.

Table 5 shows the results for the previous 6GB and the lim-
ited 1GB RAM configuration for both benchmarks. logreg is now
shown as logreg-2 because it was running with the previously de-
scribed larger data set. In the 1GB configuration, the system had
to swap for both the standard and optimized interpreters, result-
ing in a large increase in runtime over the 6GB configuration. The
peak memory usage for the interpreters are identical in both con-
figurations while the average memory usage differs as this value is
time-dependent and thus influenced by swapping. This swapping
also increases the variability in our runtime measurements, so we
included the confidence intervals for the speedup factors in table 5.

Reducing the available memory from 6 GB to 1 GB has drasti-
cally increased the run time for both interpreters. Still, the reduc-
tion in memory usage by our optimizations has turned the slow-
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down (factor 0.969) in the 6 GB configuration into a small speedup
(factor 1.105) when the RAM is limited to 1 GB. Depending on
the benchmark and its memory usage pattern, a different situation
could also happen: In the worst case, the content check of our op-
timized interpreter touches a large number of pages, forcing them
to be swapped in. This additional swap activity can increase the
runtime so much that the gains from a reduced memory footprint
may become irrelevant. A kernel-level implementation of the con-
tent check which we plan for future work, could easily avoid this
by not scanning pages that are currently swapped out.

The second benchmark /ssvm shows something closer to the
best case for our optimization: It manages to save enough memory
to avoid swapping. In this case we can get significant speedups as
shown in Table 5 for the 1 GB configuration of Issvm.

Similar to logreg-2, the memory usages do not vary much be-
tween both configurations. Considering the runtime results, our
optimized interpreter only needs 593.8 seconds to run the bench-
mark which is almost unchanged from the 6 GB configuration. On
the other hand, the standard interpreter has now increased its run-
time to 3080.3 seconds (51.3 min.) when limited to 1 GB of RAM.
This makes the overhead of our optimization irrelevant as the time
gained by avoiding page 1/Os is much larger. Thus our page sharing
optimization allows us to speed up the benchmark by a factor of 5.2
by reducing the peak memory consumption by 53.8%.

This shows that reducing the memory consumption by our page
sharing optimization can significantly improve the runtime for
memory—hungry benchmarks if the available RAM is constrained.
In turn, this can allow the processing of larger data sets.

7. Conclusion

Reducing the memory overhead of R application is a useful opti-
mization that can benefit a large number of applications — especially
in cases where the use of swap space can be avoided. We presented
an application transparent memory optimization approach that em-
ploys page sharing at a memory management layer between the
R interpreter and the operating system’s memory management. By
concentrating on the most rewarding optimizations, the sharing of
zero-filled pages and improving the object duplication granularity
of the R interpreter to page-level granularity, we avoid the over-
head of OS level memory optimization approaches such as dedu-
plication and compression. Using our approach, considerable re-
ductions of the memory consumption for a large number of typical
real-world benchmarks could be achieved, which allows the pro-
cessing of larger data sets. In the case where swapping could be
avoided, we managed to achieve a significant speedup.

Our approach has several parameters that would allow for dy-
namic tuning to speed up our optimization. In a future work we
will utilize machine-learning techniques to optimize the trade-off
between runtime and memory by tuning these parameters.

Currently, our approach has to replicate a subset of the virtual
memory information that is already available in the OS kernel. Fu-
ture work will concentrate on a hybrid user level/kernel mode im-
plementation of our page sharing approach, which should result in



a reduction of the overhead of our current user mode-only imple-
mentation and enable possibilities for the concurrent optimization
of multiple applications with large memory footprints. This could
result in a better utilization of multicore systems since it allows
to execute a larger number of applications simultaneously without
forcing the OS to swap.
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