
Real-Time Task Scheduling on Island-Based
Multi-Core Platforms

Che-Wei Chang,Member, IEEE, Jian-Jia Chen, Tei-Wei Kuo, Fellow, IEEE, and Heiko Falk

Abstract—With the increasing number of cores in a computing system, how to coordinate the computing units and heterogeneous

memory resources has soon become extremely critical for real-time systems. This paper explores the joint considerations of memory

management and real-time task scheduling over island-based multi-core architecture, where the local memory module of an island

offers shorter access time than the global memory module does. The objective of this work is to minimize the number of needed islands

to successfully schedule real-time tasks. When the required amount of the local memory space is specified for each task, a scheduling

algorithm is proposed to provide an asymptotic 29
9 -approximation bound. When there is flexibility in determining the needed local

memory space for each task, we propose an algorithm with an asymptotic 4-approximation bound to jointly manage memory resources

and allocate computing cores. In addition to the worst-case approximation analysis, the proposed algorithms are also evaluated with 82

real-life benchmarks with the support of a worst-case execution time analyzer. Moreover, extensive evaluations are conducted to show

the capability of the proposed approaches when being used with various computing cores and memory resources.

Index Terms—Real-time system, multi-core architecture, heterogeneous memory, task scheduling, memory allocation

Ç

1 INTRODUCTION

IN order to address the demands in processor performance,
vendors had been focusing on the technologies in increas-

ing the processor clock rate, whereas these technologies had
led to critical design problems in recent years, due to
extremely high power consumption and heat dissipation
[20]. Although the adoption of multiple cores has been
proven as an effective way to resolve the power-consump-
tion and thermal problems [15], system engineers now face
serious challenges in developing effective memory architec-
ture [14], [21], [23], [36] for systems with a rapidly increasing
number of cores. For multi-core embedded systems, there is
an advanced architecture design which includes off-chip
DRAM as the global memory and adopts on-chip SRAM as
the fast local memory [18]. Cluster computers, such as blade
servers [31], also serve as a good example in the throughput
improvement of large-scale applications by deploying both

local and remote memory modules in the cost and perfor-
mance tradeoff. With the popular heterogeneous-memory
design and multi-core architecture in mind, the goal of this
work is to jointly consider task scheduling and memory allo-
cation formulti-core real-time system synthesis.

Traditionally, there have been two major approaches to
the multiprocessor real-time task scheduling, which are
global [7] and partitioned [6], [12] scheduling schemes. In
global scheduling, all task instances are put into a global
queue, and a global scheduler fetches a task instance from
the queue to an available processor according to some crite-
ria, such as the deadlines of task instances. Regarding parti-
tioned scheduling, tasks are statically assigned onto
processors such that any instance of a task is only executed
on the designated processor. There are also some hybrid
approaches, such as semi-partitioned scheduling [28], in
which a task could be statically partitioned into subtasks
and assigned to processors under some constraints, such
that the subtasks of a task must execute at different time
slots. For more details of multiprocessor scheduling, we
refer readers to a comprehensive survey in [15]. However,
most of the traditional scheduling algorithms assume the
(worst-case) execution time of each real-time task is given
and fixed, and do not consider the memory architecture
with heterogeneous memory modules. Thus, the emergence
of heterogeneous memory designs has renewed the research
of multiprocessor real-time scheduling.

To analyze the response time of a real-time task on sys-
tems with heterogeneous memory, system developers have
to consider not only task scheduling but also the impact of
memory allocation on the worst-case execution time
(WCET) of the task. When cache is included, the work in
[10] analyzes all potential cache conflicts to quantify the
possible swapping overheads during the task execution on
single and multi-core platforms, and the work in [33] dis-
cusses the preemption overheads for the early-deadline-first

� C.-W. Chang is with the Department of Computer Science and Information
Engineering, School of Electrical and Computer Engineering, College of
Engineering, Chang Gung University, No.259, Wenhua 1st Rd., Guishan,
Taoyuan 33302, Taiwan, and with the Research Center for Information
Technology Innovation, Academia Sinica, Taiwan.
E-mail: chewei@mail.cgu.edu.tw.

� J.-J. Chen is with the Department of Informatics, Karlsruhe Institute of
Technology, Germany. E-mail: j.chen@kit.edu.

� T.-W. Kuo is with the Department of Computer Science and Information
Engineering, National Taiwan University, No. 1, Roosevelt Rd., Sec. 4,
Taipei 106, Taiwan, with the Research Center for Information Technology
Innovation, Academia Sinica, Taiwan, with the Graduate Institute of Net-
working and Multimedia, National Taiwan University, Taiwan, and with
the College of Information and Communication Engineering, Sungkyunk-
wan University, Korea. E-mail: ktw@csie.ntu.edu.tw.

� H. Falk is with the Institute of Embedded Systems/Real-Time Systems,
Ulm University, Germany. E-mail: Heiko.Falk@uni-ulm.de.

Manuscript received 5 Feb. 2013; revised 6 Dec. 2013; accepted 16 Dec. 2013.
Date of publication 15 Jan. 2014; date of current version 9 Jan. 2015.
Recommended for acceptance by X.-H. Sun.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2013.2297308

538 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2015

1045-9219� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

(EDF) scheduling scheme on a single processor system. To
achieve better predictability of the execution time of each
real-time task, scratchpad memory (SPM) [25] is usually
included in the single processor real-time embedded system
with deterministic memory allocation. The work in [40] fur-
ther produces the WCETs of tasks with the consideration of
dynamic partitioning of SPM in a preemptive multitasking
system with one processor.

On the Intel many integrated core (MIC) architecture, the
work in [39] customizes the data layout of the studied appli-
cation bounding volume hierarchies (BVHs) to optimize the
throughput of the application. Based on general purpose
operating system environments, such as the Linux kernel
with the X Window system, the work in [26] proposes two
protocols which enable application tasks to share the
graphics processing units (GPUs) in the X Window System,
and the protocols can favor high-priority tasks to acquire
more GPU time. The system implementation in [27] further
allows GPU contexts to communicate with each other by
implementing a runtime GPU memory management in the
operating system instead of the user space [27]. However,
most of the above implementations concentrate on the aver-
age performance of systems and produce the completion
time of each task by experiments. None of the above imple-
mentations provides analysis to test whether a hard real-
time task can meet its deadline in the worst case.

Regarding multiprocessor systems with local memory
modules, Baruah [5] assumes that each processor consists
of exactly one private memory module with a limited
capacity, and each real-time task would occupy a given
size of the private memory while it is scheduled on a
processor. The work proposes a partitioned scheduling
algorithm with the considerations of both the timing and
private memory space requirements of tasks, and an
analysis scheme is also provided to check whether all
the tasks can meet their deadlines. The work in [35] con-
siders different memory footprints for tasks on different
processors and provides a partitioned scheduling algo-
rithm to pack tasks onto heterogeneous processors with-
out violating the timing and memory space constraints,
where all processors share only one common memory
pool. The latest result in [9] considers platforms with
heterogeneous memory, but all memory devices are
shared among all cores. Even though the joint consider-
ation of memory management and real-time scheduling
is an important and critical topic for advanced multi-
core systems, none of the above results has considered
the impact of allocating local and global memory mod-
ules on the worst-case execution time of real-time tasks.

This paper studies the partitioned scheduling on island-
based multi-core platforms, where an island-based multi-
core platform consists of a global memory pool and multiple
islands. All cores are grouped by islands, and the cores in
the same island share a fast local memory module. Exam-
ples for such platforms are blade servers [31], computers
with hierarchical memory architecture [21], and embedded
systems with shared scratchpad memory designs [22], [36],
where scratchpad memory is small SRAM with much
shorter access latency compared to DRAM. Different from
cache, which is another popular application of SRAM,
scratchpad memory can be mapped into the address space

of processors at predefined address ranges so that software
can explicitly access scratchpad memory with the support
of compilers or operating systems. However, the WCET of a
task depends on how it uses the scratchpad memory, in
which the scratchpad memory has to be shared by multiple
tasks. Thus, one of the major contributions of this work to
derive a memory allocation scheme and memory-allocation-
aware task scheduling algorithms, such that the memory
allocation scheme can co-work with our task scheduling
algorithms to satisfy the timing requirements of all real-
time tasks with minimized hardware resource costs.

For island-based multi-core platforms, this paper
explores the joint considerations of task scheduling over
homogeneous multiple cores and memory allocation with
heterogeneous memory modules. For an implicit-deadline
sporadic task set, our objective is to provide a solution
with the minimum number of allocated islands without
violating the timing and memory-space constraints,
where a sporadic task is said to have an implicit deadline if
its relative deadline is equal to its minimum inter-arrival
time. When the scheduler has the flexibility to decide the
number of blocks in the fast local memory pool for each
task, our algorithms provide an asymptotic 4-approxima-
tion bound (a formal definition of an asymptotic approxi-
mation bound will be given at the end of Section 2.2).
When the number of blocks in the fast local memory pool
for each task is fixed in advance, we propose a two-phase
algorithm: The first phase partitions tasks into task
groups under the capacity constraint of the fast local
memory by adopting any polynomial-time algorithm for
the traditional bin packing problem.1 The second phase
greedily allocates islands based on the task groups. Spe-
cifically, if the first-fit-decreasing2 procedure for the bin
packing problem is adopted, the algorithm provides an
asymptotic 29

9 -approximation bound. To evaluate the per-
formance of the proposed algorithms, 82 real-life bench-
marks are analyzed by using the worst-case execution
time analyzer aiT [1], and the profiling results are
included for two case studies of the proposed algorithms.
Extensive evaluations are also conducted to illustrate the
performance of the proposed algorithms with different
numbers of cores in an island and with different sizes of
the fast local memory.

The rest of this paper is organized as follows: Section 2
presents the task and platform models and provides the
problem definitions. Section 3 presents our algorithms to
allocate memory and to schedule tasks. If the memory allo-
cation is fixed and given as a part of the input instance,
Section 4 provides an algorithm to minimize the number of
required islands. Section 5 evaluates the capability of the
proposed algorithms with benchmark suites, and Section 6
concludes this work.

1. Given a bin size and a list of sizes of the items to pack, the bin
packing problem is to find an integer number of bins and a partition of
the items such that all items are packed into the bins [19] under the bin-
size constraint.

2. Given an instance of the bin packing problem, the first-fit-
decreasing approach would sort all items in a non-increasing order by
the sizes and sequentially pack each item into the first bin which can
accommodate the item [17].

CHANG ET AL.: REAL-TIME TASK SCHEDULING ON ISLAND-BASED MULTI-CORE PLATFORMS 539

2 SYSTEM MODEL AND PROBLEM DEFINITION

This section presents the system model. The problem defini-
tion is then provided, while its computational complexity is
also analyzed.

2.1 System Model

This paper considers a platform consisting of multiple
islands, where an island Li consists of M homogeneous
multiple cores Pi ¼ fC1;i; C2;i; . . . ; CM;ig. For each island,
there is a fast local memory pool with B blocks, which is
shared among the cores in the island, where a block is the
unit for memory allocation. For a platform, there is a large
global memory pool, which is shared among all cores of all
islands in the platform. The schematic diagram of the con-
sidered platform is shown in Fig. 1.

A set T ¼ ft1; t2; . . . ; tNg of N independent implicit-
deadline sporadic tasks is scheduled onto cores to meet the
timing constraints with the considerations of different mem-
ory access latencies. Each implicit-deadline sporadic task ti
is characterized by its minimum inter-arrival time Ti, where
the relative deadline is equal to Ti according to the defini-
tion of an implicit deadline.

In this work, we consider the different access latencies
of heterogeneous memory modules. Thus, the execution
of each task could be sped up if some proper blocks of
the task are mapped to the fast local memory. When the
blocks in the fast local memory are allocated to host a
task scheduled on a core in the corresponding island,
such a configuration would be fixed so that we can
derive the worst-case execution time of the task. For a
task ti, the set of accessed memory blocks is denoted as
Bi. For any set X, let jXj be the cardinality of X for the
simplicity of presentation. In order to derive the WCETs
Wj

i of each task ti 2 T when j ¼ 0; 1; 2; . . . ; jBij available
blocks in the fast local memory are assigned to ti, a
state-of-the-art static WCET analyzer aiT [1] is adopted
to perform the static analysis for each task. An example
is the WCET-aware C compiler presented in [18]. The
basic idea behind the WCET-aware C compiler is to cap-
ture the current worst-case execution path and the possi-
ble switches of the analyzed task. For a given number j
of the available fast local memory blocks, Wj

i (and the
corresponding memory allocation) of a task ti is selected

from several candidates with using no more than j
blocks of the fast local memory. For the rest of this
paper, we assume that Wj

i for j ¼ 0; 1; . . . ; jBij, i ¼ 1;
2; . . . ; jTj are given, and the analysis and optimization
are both based on the given WCETs. For the simplicity
of notations, we implicitly denote Wj

i as W
jBij
i if j > jBij

and j � B because the local memory blocks used by task
ti is no more than the total memory blocks of ti. More-
over, Wj

i is set to 1 if j > B or j < 0 to eliminate infea-
sible memory allocations.

2.2 Problem Definition

For an island-based multi-core platform, to meet the timing
constraints, we have to (1) decide the number of available
fast local memory blocks for each task and (2) assign each
task onto a core of an island for the execution without vio-
lating real-time constraints. For each island, tasks are
assigned to the island under the following constraints:
(1) The number of the required fast local memory blocks of
tasks in the island does not exceed the size B of the fast local
memory, and (2) all tasks could be scheduled onto the cores
without violating the real-time requirements (arrival times
and deadlines). On each core, tasks can be scheduled by
applying intra-core real-time scheduling algorithms, such
as the earliest-deadline-first (EDF) and rate monotonic (RM)
strategies [32], and the utilization of a task is defined as its

WCET divided by its minimum inter-arrival time. As a

result, if the number of available blocks j in the fast local

memory of task ti is decided, the utilization ui of task ti

is Uj
i ¼

W
j
i

Ti
, where the meaning of Uj

i is the worst-case
utilization of task ti by using j blocks of the fast local mem-
ory. The EDF policy assigns the task instance with an earlier
absolute deadline a higher scheduling priority, and the RM
policy uses the reciprocal of the task period (minimum
inter-arrival time) as the static priority of the task. Liu and

Layland have proven that the achievable utilization factor [32]

of EDF and RM are 100 and 69:3 percent, respectively,

where the achievable utilization factor provides an efficient

strategy for verifying the real-time guarantee of a given

scheduling scheme. With any intra-core scheduling policy,

all tasks in a core can meet real-time requirements if the

total utilization of the real-time tasks is no more than the

corresponding achievable utilization factor. In the rest of

this paper, if not specified, we assume EDF is adopted for

the intra-core scheduling.
When the required number of blocks in the fast local

memory is flexible for each task, the first target problem is
defined as follows:

Definition 1. (The Island-Based Real-Time Scheduling
(IBRT) Problem). Consider an island-based multi-core plat-
form with a large global memory pool, and each island consists
ofM homogeneous cores and B blocks of the fast local memory.
An implicit-deadline sporadic task set T is given along with
the WCETs Wj

i for mapping 0 � j � jBij blocks of ti in T to
the fast local memory. The problem is to derive the number
of the available fast local memory blocks for each task and to
assign the task onto a core of an island such that the number of
allocated islands is minimized, the total number of the required

Fig. 1. The island-based multi-core system architecture.

540 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2015

fast local memory blocks of tasks on each island does not exceed
the fast local memory size, and all tasks meet their real-time
constraints.

For some application scenarios, the number of required
fast local memory blocks might be fixed for a task due to
some application-specific constraints. When the number of
the blocks in the fast local memory is fixed for each task, the
second target problem is defined as follows:

Definition 2. (The Island-Based Real-Time Scheduling
with Fixed Memory Allocation (IBRTA) Problem) In
addition to the input M and B in the IBRT problem, each task
ti inT has a fixed required amountmi of the fast local memory
blocks and its WCET W

mi
i . The problem is to assign each task

onto a core of an island such that the number of allocated islands
is minimized, the number of the required fast local memory
blocks of the tasks on each island does not exceed the fast local
memory size, and all tasks meet their real-time constraints.

For each task, to derive a feasible memory allocation and

a task scheduling result, we have to make sure the required

processor utilization of the task is no more than 100 percent

(where the adopted intra-core scheduling algorithm is

EDF), otherwise there is no feasible solution. Therefore, any

Wj
i with

W
j
i

Ti
> 100 percent is reset to 1, as such a setting is

not eligible for feasible solutions. For the rest of this paper,

we assume that the capacity of the global memory pool is

larger than or equal to the required memory space for the

tasks, i.e.,
P

ti2T jBij. The following theorem shows the

computational complexity of the problems.

Theorem 1. The IBRT and IBRTA problems are NP-hard in the
strong sense.

Proof. For a special case in which the memory allocation has
no influence on the worst-case execution time, the fast
local memory is sufficiently large, i.e., B �Pti2T jBij,
and there is only one core in each island, both problems
are equivalent to the bin packing problem, which is
NP-hard in the strong sense [19]. tu
As the studied problems are NP-hard, instead of

deriving optimal solutions, we will look for polynomial-
time approximation algorithms for these problems. For
the studied problems, an algorithm is said to be with an
a-approximation bound if it guarantees to derive a solu-
tion that uses at most a �OPT islands when the optimal
solution requires OPT islands. Similarly, an algorithm is
said to be with an asymptotic a-approximation bound if
it guarantees to derive a solution that uses at most
a �OPT þ b islands when the optimal solution requires
OPT islands, where b is a positive constant.

3 OUR ALGORITHMS FOR THE IBRT PROBLEM

This section presents our solutions for the IBRT problem
with joint considerations of task scheduling and memory
allocation. The lower bound of any instance of the IBRT
problem is first analyzed in Section 3.1, which also
shows the rationale behind our memory allocation strat-
egy. Two algorithms are then presented for the special
and general cases of the IBRT problem, respectively.
Their approximation bounds are also discussed.

3.1 Lower Bound for An Input Instance

In this section, we first establish the lower bound of the

optimal solution for any instance of the IBRT problem so

that we can use this lower bound as a base to derive the

approximation bound of our algorithms later. There are two

resource constraints in the IBRT problem: (1) the limited pro-

cessor utilization of a core and (2) the limited fast local mem-

ory space of an island. In order to balance the usage of the

processor utilization and the fast local memory space (which

have different units and scales), the required quantities of

the two resources of each task are normalized to better under-

stand the resource usage. That is, for a task ti withmi blocks

mapped to the fast local memory, we define that the normal-

ized required processor utilization is
U
mi
i
M , where U

mi
i and M are

the utilization of ti and the number of cores of an island, and

the normalized required memory space is mi
B which is the

required fast local memory spacemi divided by the sizeB of

the fast local memory in an island. For each task ti, we define

the normalized resource usage as the sum of the normalized

required processor utilization and the normalized required

memory space, and �i is denoted as the minimum normal-

ized resource usage of ti. That is �i ¼ min
jBij
mi¼0f

U
mi
i
M þ mi

B g.
The following lemma shows that L ¼ 1

2

P
ti2T �i is the

lower bound of any optimal solution for the IBRT problem,
and that shows the rationale behind the definition of the
minimum normalized resource usage �i of each task ti. The
lower bound also provides the base for the approximation
analysis.

Lemma 1. The lower bound of any input instance for the IBRT
problem is L ¼ 1

2

P
ti2T �i.

Proof. For an input instance, we assume that the optimal
solution uses OP T islands. As the solution is feasible,
each of the OP T islands provides at most 100 percent
normalized processor utilization and at most 100 percent
normalized memory space. Therefore, the total normal-
ized resource usage of the tasks of the optimal solution is
no more than 2 �OP T . As

P
ti2T �i is the minimum nor-

malized resource usage of all tasks, we know that
2 �OP T �Pti2T �i. As a result, we prove that L ¼
1
2

P
ti2T �i � OP T . tu

3.2 An Algorithm for Single-Core Islands

We first consider a special case of the IBRT problem, in
which the fast local memory is private for exactly one core,
i.e., M ¼ 1. An example is the programmable private
SRAMs for the Synergistic Processing Elements (SPEs) of
IBM Cell architecture [24]. The general case of the IBRT
problem (i.e.,M � 1) is going to be studied in Section 3.3.

Algorithm 1 illustrates the pseudo code of our single-
core-island (SCI) algorithm. In Algorithm 1, L

*

is the list of
the allocated islands and initialized as ; (an empty list),
where a list is a set with ordering. We denote pk as the pro-
cessor utilization of the core in island Lk and denote sk as
the number of the used fast local memory blocks in island
Lk. The SCI algorithm first determines the utilization ui and
the number mi of the required fast local memory blocks for
each task ti, as shown in Line 3 of Algorithm 1, which

CHANG ET AL.: REAL-TIME TASK SCHEDULING ON ISLAND-BASED MULTI-CORE PLATFORMS 541

minimizes the normalized resource usage of task ti. This
initialization is motivated by Lemma 1 and would provide
a good property for proving the approximation bound.
Then, for any task ordering of T, a first-fit approach is
applied to assign ti to an island based on the configuration
of ui and mi with the minimum normalized resource usage
of ti, as shown from Lines 4 to 7. If there is no island which
can accommodate the considered task ti, a new island is
allocated and then queued at the end of the allocated-island
list L

*

from Lines 8 to 11.

The time complexity of Line 3 is bounded by the
number jBij of the candidates of the memory allocation
of task ti, and let � ¼Pti2T jBij. The time complexity of
the forall loop from Line 4 to Line 7 is bounded by the
number of the allocated islands, which is limited by the
number jTj of tasks. As a result, the time complexity of
the SCI algorithm is OðjTj2 þ�Þ. The following theorem
further shows the approximation bound of the presented
algorithm.

Theorem 2. The SCI algorithm is a polynomial-time 4-approxi-
mation algorithm for the IBRT problem whenM ¼ 1.

Proof. For an instance of the IBRT problem, let the opti-
mal solution and the SCI algorithm use OP T and jL*j
islands, respectively. By Line 3 of Algorithm 1, we
know that total normalized resource usage of the tasks
is minimized as

P
ti2T �i. For the jL*j islands derived

from the SCI algorithm, if we merge the tasks in any
two of the jL*j islands into one island, either the proces-
sor utilization constraint or the fast local memory
space constraint would be violated because a first-fit
approach is adopted to pack tasks into islands. This
can be proved by contradiction. Therefore, the total
normalized resource usage of the tasks in any two of
the jL*j islands is more than 100 percent. Because each
island can provide at most 100 percent of processor
utilization and 100 percent of the normalized fast local
memory space, by pigeonhole principle, we have that

jL*j
2

<
X
ti2T

�i: (1)

By Lemma 1 and Equation (1), we know that

jL*j < 2 �
X
ti2T

�i � 4 �OP T:

The time complexity OðjTj2 þ�Þ is polynomial in the
input size. Therefore, we reach the conclusion. tu
The analysis in the proof of Theorem 2 provides an

upper bound for the approximation bound. We, unfortu-
nately, do not have a tight example. The lower bound of
the approximation bound of Algorithm 1 can be at least 3
with the following example: There are 3N tasks (N is a
positive integer), and each task ti consists of two feasible
memory configurations that are ð~ui ¼ 5

9 ; ~mi ¼ 0Þ and
ð~ui ¼ 1

3 ; ~mi ¼ 1
3Þ, where ~ui and ~mi are the normalized

required processor utilization and memory space. The
optimal solution would choose the second memory con-
figuration and pack the tasks into N islands. However,
the SCI algorithm would choose the first memory configu-
ration with the minimum normalized resource usage and
require 3N islands to accommodate all tasks. Thus, the
tight approximation bound of the SCI algorithm for the
single-core IBRT problem is between 3 and 4.

3.3 An Algorithm for Multi-Core Islands

This section presents the multi-core-island (MCI) algo-
rithm, illustrated in Algorithm 2, which has an asymp-
totic 4-approximation bound for the IBRT problem.
Similar to the SCI algorithm, for each task ti, the MCI algo-
rithm determines the worst-case utilization ui and the
number mi of required fast local memory blocks to mini-
mize the normalized resource usage of the task. For the
general case when M > 1, instead of any arbitrary order-
ing adopted in the SCI algorithm, all tasks are then sorted
in a non-increasing order by the required fast local mem-
ory space mi. In Algorithm 2, sk is denoted as the used
fast local memory space of island Lk, and Cr;k and pr;k are
denoted as the rth core of Lk and the current utilization
of Cr;k, respectively. For assigning a task, all the allocated
islands are tested by a first-fit approach as shown in Lines
6 to 14 in Algorithm 2. For testing the feasibility of assign-
ing a task ti on an island, the MCI algorithm has to make
sure that the remaining space of the fast local memory is
large enough to accommodate the required blocks mi in
Line 7, and all cores in the island are tested in a first-fit
scheme to check that if there is a core to feasibly serve the
required processor utilization ui (From Lines 8 to 12). If
there is no allocated island to feasibly accommodate task
ti under ti’s minimum normalized resource usage, a new
island is then allocated to accommodate ti.

The time complexity of the memory setting in Lines 1

and 2 is bounded by Oð�Þ, where � is set as
P

ti2T jBij, and
the sorting in Line 3 is bounded by OðjTjlogjTjÞ. The for

loop from Line 5 to Line 18 has OðjTjÞ iterations, while the

complexity for testing each task is bounded by the number

of tasks jTj. As a result, the time complexity of the MCI algo-

rithm is OðjTj2 þ�Þ.
In the following analysis, let L

*¼ fL1; L2; . . . ; LjL*jg be the

resulting list of the allocated islands by the MCI algorithm.

Similar to the normalized resource usage of tasks, for an

542 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2015

island Lk, the normalized resource utilization Rk is defined asPM

r¼1
pr;k

M þsk
B. Lemma 2 shows the relation among the allocated

islands in terms of the summation of the normalized

resource utilization. It also provides the base for proving the

asymptotic approximation bound of the MCI algorithm in

Theorem 3.

Lemma 2. For any instance of the IBRT problem, suppose that the
MCI algorithm derives a result of allocated-island list L

*

. Then,
Rk�1 þRk, as the summation of the normalized resource
utilizations of the ðk� 1Þth and kth islands, is greater than
100 percent for 1 < k < jL*j.

Proof. Because the MCI algorithm uses a first-fit approach
to assign tasks onto islands, while a task ti is assigned
onto an island Lk, at least one of the following two
cases holds: (1) mi þ sk�1 > B, which means that the
remaining fast local memory space of Lk�1 is not
enough to accommodate ti, or (2) mi þ sk�1 � B but
ui þ pr;k�1 > 100%; 81 � r � M, which means that
there is no core in Lk�1 having enough available pro-
cessor utilization to serve ti. If the first case is true,
we know that

sk�1

B
þ sk

B
> 100%: (2)

For the second case, we know that there is at least one
task assigned to each core in Lk�1, because no task could
be with the required processor utilization more than
100 percent. Thus, there are at least M tasks assigned to
Lk�1 because there are M cores in an island. Since the
MCI algorithm sorts all tasks in a non-increasing order by
the required fast local memory space before assigning

them to islands, we know that the fast local memory of
Lk can accommodate at least M tasks while each core can
support at least one task. As Lk is not the last allocated
island (k < jL*j), there are at leastM tasks assigned to Lk.
For each core cr;k�1 in Lk�1 and each task ti in Lk, we
have pr;k�1 þ ui > 100 percent due to the statement in
this case. Since there are at least M tasks assigned to Lk,
we know that

PM
r¼1 pr;k�1 þ

PM
r¼1 pr;k

M
> 100%: (3)

Because at least one of Equations (2) and (3) would be
true, we have that

PM
r¼1 pr;k�1

M
þ sk�1

B

 !
þ

PM
r¼1 pr;k
M

þ sk
B

 !

¼ Rk�1 þRk > 100%;

(4)

81 < k < jLj. Thus, this lemma is proved. tu
By using the result of Lemma 2, the approximation

bound of the MCI algorithm is proved in Theorem 3, which
provides an insight for real-time system synthesis for
island-based multi-core platforms.

Theorem 3. The MCI algorithm is a polynomial-time asymptotic
4-approximation algorithm for the IBRT problem.

Proof. For any instance of the IBRT problem, let L
*

be the
allocated-island list derived by the MCI algorithm, and
the optimal solution exactly uses OP T islands. By
Lemma 2, we have

XjL*j�1

k¼2

ðRk�1 þRkÞ > jL*j � 2; (5)

where Rk is the normalized resource utilization of each

allocated island Lk by the MCI algorithm. As the MCI

algorithm selects the memory configuration with the

minimum normalized resource usage min
jBij
mi¼0f

U
mi
i
M þ mi

B g
which is denoted by �i for each task ti, by Lemma 1, we

have

1

2

X
ti2T

�i � OP T: (6)

By Equations (5) and (6), we have

jL*j <
XjL*j�1

k¼2

ðRk�1 þRkÞ þ 2 < 2
XjL*j

k¼1

Rk þ 2

¼ 2
X
ti2T

�i þ 2 � 4 �OP T þ 2;

(7)

where the reason for the “¼” is that the total normalized
resource usage of the tasks must be equal to the total nor-
malized resource utilization of the islands, because all
tasks are assigned on islands. The time complexity of the
MCI algorithm is OðjTj2 þ�Þ which is polynomial in the
input size. Therefore, we reach the conclusion. tu

CHANG ET AL.: REAL-TIME TASK SCHEDULING ON ISLAND-BASED MULTI-CORE PLATFORMS 543

4 OUR SCHEME FOR THE IBRTA PROBLEM

This section presents a polynomial-time algorithm for the
IBRTA problem. For an instance of the IBRTA problem, each
task ti has the required processor utilization ui ¼ Wi

Ti
and the

required fast local memory spacemi. For the rest of this sec-
tion, we assume ui � 100% and mi � B for each ti 2 T, oth-
erwise there is no feasible solution for the input instance.

Before stepping into our results, we first summarize a
related problem, called the two-dimensional vector packing
problem [41]: Given a set V of vectors <v1; v2; . . . ; vN >
with two dimensions, where 0 � vi;j � 1 is the element in
the jth dimension of vector vi, the problem is to partition
V into L subsets such that L is minimized and the sum-
mation of the vectors in each subset is no more than 1 in
both dimensions. The two-dimensional vector packing
problem is a generalization of the bin packing problem
which has only one dimension in the vectors [19], and
the two-dimensional vector packing problem is proved
to be APX -hard [41]. When there is only one core in an
island (M ¼ 1), the IBRTA problem is equivalent to the
two-dimensional vector packing problem. For the two-
dimensional vector packing problem, the state-of-the-art
polynomial-time (randomized with high probability)
asymptotic approximation bound is ðln 2þ 1Þ by adopt-
ing a randomized algorithm [4].

The rest of this section discusses only the case with
M > 1 by presenting and analyzing our algorithm which
is denoted by multi-core-island with fixed fast local mem-
ory allocation (MCIF). The pseudo code of the MCIF algo-
rithm is presented in Algorithm 3. This algorithm has two
phases: (1) In the first phase, it considers only the limited
fast local memory space constraint to pack tasks into
groups, and (2) in the second phase, it considers only the

processor utilization constraint to assign tasks onto cores
and to allocate new island if it is necessary.

The first phase could be achieved by adopting any
existing polynomial-time bin packing algorithm by con-
sidering only the constraint of the limited fast local
memory space. For example, it has been shown in [17]
that the first-fit-decreasing procedure (in polynomial
time) uses at most 11

9 �OP TBIN þ 6
9 bins, in which

OP TBIN is the optimal solution for the instance of the
bin packing problem. It has also been shown in [16] that
the bin packing problem can admit an asymptotic poly-
nomial-time approximation scheme that uses at most
ð1þ �Þ �OP TBIN þ b bins, where b is a positive constant,
and � > 0 is a user-specified parameter. We do not
restrict ourselves for any polynomial-time algorithm of
the bin packing problem. Suppose that the first phase
partitions the tasks into g task groups, i.e., with g sets
G1;G2; . . . ;Gg of tasks, in which

P
ti2Gx

mi � B for any
x ¼ 1; 2; . . . ; g.

In the second phase (from Lines 2 to 14), for each task
group Gx, each task ti in Gx is assigned to a core by a
first-fit approach from Lines 5 to 11, where pr;k denotes
the current utilization of the rth core of island Lk. If no
core can accommodate the tasks, a new island would be
allocated for the task group as shown in Lines 12 to 14.
Note that the fast local memory space constraint is never
violated in the second phase because the required total
fast local memory space of the tasks in a group is no
more than B. Now, we show the property of the MCIF

algorithm in Theorem 4.

Theorem 4. The MCIF algorithm is a polynomial-time asymp-
totic ðaBIN þ 2Þ-approximation algorithm for the IBRTA
problem, where the asymptotic approximation bound of the
polynomial-time approximation algorithm adopted in the
first phase is aBIN .

Proof. The time complexity of the second phase in the
MCIF algorithm is bounded by OðjTj2Þ. Provided that
the first phase is also with polynomial-time complex-
ity, we know that the MCIF algorithm has polynomial-
time complexity.

For the rest of this proof, we focus on the optimality.
Suppose that the optimal solution allocates OP T islands
to serve all tasks. The first phase groups tasks by consid-
ering only their fixed numbers of required blocks in the
fast local memory. Thus, it is clear that based on any fea-
sible solution for the IBRTA problem, grouping all tasks
in each island as a task group is also a feasible way to
group tasks by only considering the fast local memory
constraint which is

P
ti2Gx

mi � B for any task group
Gx. Let the minimum number of task groups be OP TBIN

(the optimal solution of the bin packing problem instance
in the first phase), and the polynomial-time asymptotic
approximation algorithm (for the bin packing problem)
adopted in the first phase produces the number of task
groups g, such that g � aBIN �OP TBIN þ bBIN , where
aBIN and bBIN are defined from the adopted asymptotic
approximation algorithm. Therefore, we know that

g � aBIN �OP TBIN þ bBIN � aBIN �OP T þ bBIN; (8)

544 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2015

With the derived bound of the number of task groups
in Equation (8), now we move to the second phase to
illustrate the bound of the number of allocated islands.
Let the first phase partition task into g task groups. Sup-
pose that there are x task groups, in which each of these
groups uses only one island in the second phase of the
MCIF algorithm. Therefore, each of the remaining y task
groups uses more than one island in the second phase of
the MCIF algorithm, where y ¼ g� x. For these y task
groups, we further suppose these tasks require z islands
in the second phase of the MCIF algorithm. For each of
these y task groups, it is not difficult to see that the pro-
cessor utilization for any two used cores in the second
phase is more than 100 percent, otherwise the tasks on
the two cores should be packed into one core, because
the MCIF algorithm adopts a first-fit strategy to assign
tasks onto cores from Lines 5 to 11. Based on the first-fit
strategy, we also know that all cores of the allocated
islands would be used, except the cores in the last allo-
cated island for each of the y task groups. Therefore,
more than ðz� yÞM cores are used for assigning the tasks
in the y task groups, and the total processor utilization
for these used cores is more than ðz�yÞM

2 . This leads to the
lower bound of the optimal solution, in which
OP T > ðz� yÞ=2 because the average utilization among
the cores in these ðz� yÞ islands in more than 50 percent.
As a result, we know that the number of the allocated
islands of the MCIF algorithm is xþ z, in which

xþ z ¼ xþ yþ ðz� yÞ � aBINOP T þ bBIN þ 2 �OP T

¼ ðaBIN þ 2ÞOP T þ bBIN;

(9)

where the inequality comes from the definition xþ y ¼ g,
Equation (8), and OP T > ðz� yÞ=2. Thus, this theorem
is proved. tu

Corollary 1. When the first phase in the MCIF algorithm uses the
First-Fit-Decreasing procedure, the MCIF algorithm has an
asymptotic 29

9 -approximation bound for the IBRTA problem,
with time complexity OðjTj2Þ.

Proof. First-Fit-Decreasing procedure is proved to use at
most (119 �OP TBIN þ 6

9) bins in the bin packing problem
[17], where OP TBIN is the optimal solution of the bin
packing problem. The algorithm and analysis is shown
asymptotically tight in [17]. The time complexity for the
first-fit-decreasing procedure is OðjTj log jTjÞ. Therefore,
the time complexity is dominated by the second phase,
i.e., OðjTj2Þ, and the asymptotic approximation bound is
29
9 based on Theorem 4. tu
This paper explores how to assign a set of independent

implicit-deadline sporadic tasks onto an island-based multi-
core platform to meet the timing constraints with the con-
siderations of different memory access latencies. It is nota-
ble that this work considers static memory allocation to
support the execution of tasks, i.e., the memory allocation
will be derived and fixed by our memory allocation algo-
rithm before the task execution. Thus, the switching over-
heads of local memory are not considered in this paper.
Thus, the WCET of each real-time task can be derived when
the allocation of the local memory is given. In this work, we

have to count the worst-case latency caused by memory bus
contention to the WCET of each task to safely meet the tim-
ing requirements of all real-time tasks. To further provide
tighter WCETs for our task scheduling algorithms, our
work can be extended by considering timing predictable
memory bus arbitrators, such as the time division multiple
access (TDMA) policy [29], [37] for the bus sharing of multi-
ple tasks and the bandwidth reservation scheme [42] of
memory bus. For the implementation of memory bus arbi-
trators, the MERASA project [38] develops a package of sys-
tem software and proposes a program model to limit the
extra latency for memory bus access, which can be applied
to ensure the timing behavior for communications.

In this paper, all of the proposed polynomial-time algo-

rithms are with approximation bounds which are proven by

assuming that the adopted intra-core scheduling is EDF. If

RM is adopted in our algorithms for the intra-core schedul-

ing, we have to make sure that the utilization of each

core is no more than nr;kð2
1

nr;k � 1Þ to safely meet all timing

requirements of real-time tasks [32], where nr;k is the num-

ber of the tasks on the rth core of the kth island. For exam-

ple, Step 7 of Algorithm 3 (the MCIF algorithm) “if

pr;k þ ui � 100% then” will be changed into “if

pr;k þ ui � nr;kð2
1

nr;k � 1Þ then” if RM is used to replace

EDF for the intra-core scheduling. Moreover, we know that

limnr;k!1nr;kð2
1

nr;k � 1Þ ¼ ln2 < 69:3%. Thus, the proven

approximation bound aBIN þ 2 in Theorem 4 will become
aBINþ2
69:3% .

5 PERFORMANCE EVALUATION

This section presents the setting of our experiments and the
experimental results to evaluate the performance of the pro-
posed algorithms.

5.1 Environment Setup

In order to schedule all real-time tasks without violating
their real-time timing requirements, we have to derive the
WCETs of all tasks and verify whether all tasks could meet
their relative deadlines even with the WCETs. To derive the
WCETs of each task by using different numbers of the fast
local memory blocks, a WCET-aware C compiler [18] is
used to derive the values Wj

i for all possible numbers j of
the used fast local memory blocks of each task ti, where the
WCET-aware C compiler is based on the Infineon TriCore
TC1797 architecture with optimization level -O2. For the
Infineon TriCore TC1797 platform, 1 Mega-Byte half-word
addressable Flash is installed as the global memory module,
and 40 Kilo-Bytes on-chip scratchpad memory is included
as the fast local memory, where scratchpad memory is small
SRAM that are mapped onto the address space of cores at
predefined address ranges so that software can explicitly
access scratchpad memory. The latency cycles for accessing
the fast local memory (scratchpad memory) and the global
memory (half-word addressable Flash memory) are 1 cycle
and 7 cycles, respectively. In the WCET-aware C compiler,
the size of a block is set to 128 Bytes.

The rationale behind the WCET-aware C compiler is to
capture the current worst-case execution path (which is

CHANG ET AL.: REAL-TIME TASK SCHEDULING ON ISLAND-BASED MULTI-CORE PLATFORMS 545

the path with the current WCET) of a task during the
compiling and check possible switches to derive the
WCET with the limited size of the fast local memory.
Therefore, by iteratively applying all possible sizes of the
fast local memory to the WCET-aware C compiler, all
the WCETs Wj

i of ti with 0 � j � jBij can be derived. In
the following evaluations, 82 different real-life bench-
marks from MRTC [2], MediaBench [30], UTDSP [3], Net-
Bench [34], and DSPstone [43] are included, where
NetBench is with encoders, and DSPstone is partitioned
into fixed-point and floating-point parts.

5.2 Case Studies with Benchmarks

In the first experiment, benchmarks are grouped into six
benchmark groups, as shown in Fig. 2, and there are four
cores in each island. For each benchmark group, 40 tasks
are created for each benchmark with the WCETs obtained
from the WCET-aware C compiler. The minimum inter-
arrival time of each task is then properly set such that
the worst-case utilization forms a uniform distribution
between 1 and 100 percent (by normalizing to the num-
ber of cores in an island, that are 0:25 and 25 percent)
when using no scratchpad memory. For each benchmark
group, the size of the fast local memory (the scratchpad
memory) in an island is configured as 0, 4, 8, 12, 16, 20,
and 24 percent of the total size of the program codes of
all tasks. With the above setting, the MCI algorithm is
then applied to derive the results with 1;000 tests for

each configuration, and the average of the required num-
bers of islands is reported.

For each benchmark group, the evaluation results are
normalized to the number of required islands when
using no scratchpad memory (0 percent). The results in
Fig. 2 show that the number of the required islands can
be significantly reduced for most of the benchmark
groups by using the fast local memory with the size only
8 percent of the total size of the program codes. It is
because that the MCI algorithm would allocate proper
fast local memory blocks for each task to provide the
minimum lower bound of the number of required
islands. However, some applications, such as the bench-
marks in UTDSP and DSPfloat, do not have their perfor-
mance bottlenecks on memory access, i.e., increasing the
number of the fast local memory blocks does not signifi-
cantly reduce the WCETs of the applications. Thus, the
reduced numbers of required islands of those two bench-
mark groups are less than the results of the other bench-
mark groups. To further evaluate the MCI algorithm with
larger local memory space, we further conduct a simula-
tion set, as shown in Fig. 3. In this experiment, the size
of the fast local memory (the scratchpad memory) in an
island is configured as 0, 20, 40, 60, 80, and 100 percent
of the total size of the program codes of all tasks.
According to the results in Fig. 3, we can see that the
numbers of required islands are saturated when the size
is larger than 60 percent. The reason is that all of the

Fig. 2. The performance evaluation of the MCI algorithm with benchmarks for small local memory.

Fig. 3. The performance evaluation of the MCI algorithm with benchmarks for large local memory.

546 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2015

frequently accessed parts of each benchmark are already
in the local memory, and the performance bottleneck is
moved to the computing power of cores when the size
of local memory is larger than 60 percent.

In the second experiment, as shown in Fig. 4, we evaluate
the performance of the MCIF algorithm. When the memory
requirement of the fast local memory space is fixed for each
task, the MCIF algorithm could schedule tasks onto cores
with joint considerations of the processor utilization and the
limited local memory size. For each benchmark group,
40 tasks are created for each benchmark in the group with
the obtained WCETs. The setting of the minimum inter-
arrival time of each task is the same with the setting of the
previous experiment. For each benchmark group, the size of
the fast local memory in an island is configured as 0, 4, 8, 12,
16, 20, and 24 percent of the total size of the program codes of
all tasks. For thememory allocation, we use the same amount
of the fast local memory as that used by the MCI algorithm in
the previous experiment for each experimental set, and the
fast local memory space is randomly distributed among the
tasks. That is, the number of the required fast local memory
blocksmi would be fixed for each task ti before we apply the
MCIF algorithm, and the WCET W

mi
i is derived from the

WCET-aware C compiler. With the fixed memory allocation
results, the MCIF algorithm is applied to derive the results
with 1000 tests for each evaluation set, and the average of the
required numbers of islands is then reported.

The evaluation results of the second experiment are
also normalized to the number of required islands when
using no scratchpad memory. As shown in Fig. 4, the
MCIF algorithm could also reduce the number of required
islands while the size of the fast local memory is increas-
ing. However, the performance of the MCIF algorithm is
not as good as the performance of MCI algorithm (in
Fig. 2) because the memory allocation is not optimized
in this experiment. From Figs. 2 and 4, we can see that
the MCI algorithm outperforms the MCIF algorithm when
the size of local memory is small because memory alloca-
tion is a critical issue when the size of the local memory
is relatively small. When the size of the local memory is
large, the bottleneck of the system resource co-manage-
ment is moved from the remaining local memory space
to the available processor utilization. Thus, the perfor-
mance of the MCIF algorithm is similar to that of the

MCIF algorithm when the size of the local memory is
large because the MCIF algorithm also carefully partition
tasks onto cores of islands to efficiently use the comput-
ing utilization of all cores.

5.3 Extensive Evaluations

In the third experiment, as shown in Fig. 5, we present a
case study by combining the 82 different real-life bench-
marks from MRTC, MediaBench, UTDSP, NetBench, and
DSPstone into a task set, where each benchmark maps to a
task with the corresponding WCETs. The minimum inter-
arrival time of each task is then set such that the worst-case
utilization is 40 percent when using no scratchpad memory.
In this experiment, First-Fit is the solution which uses the
first-fit approach to assign tasks to cores without the consid-
eration of the fast local memory. 5 percent-MCI (resp. 10 per-
cent-MCI and 20 percent-MCI) is the solution of the MCI

algorithm by using the fast local memory with the size of
5 percent (resp. 10 and 20 percent) of the total size of the
program codes. The number of the cores in an island is var-
ied from 1 to 8, where all cores are identical (having the
same computing power) in all configurations.

From this case study, we can see that using the fast local
memory can help system designers to reduce the number of
required islands because some frequently used blocks of
tasks can be mapped to the fast local memory. While the
number of cores in an island is relatively small, the available
processor utilization is the critical resource. Therefore, for

Fig. 4. The performance evaluation of the MCIF algorithm with benchmarks.

Fig. 5. The evaluation with different numbers of cores per island.

CHANG ET AL.: REAL-TIME TASK SCHEDULING ON ISLAND-BASED MULTI-CORE PLATFORMS 547

an extreme case that there is only one core in each island,
First-Fit, 5 percent-MCI, 10 percent-MCI, and 20 percent-
MCI require 41, 20, 19, and 18 islands, respectively. For this
case, a small-size fast local memory can provide a signifi-
cant improvement. For another extreme case that each
island consists of 8 cores, First-Fit, 5 percent-MCI, 10 per-
cent-MCI, and 20 percent-MCI require six, five, four and
three islands, respectively. For this case, since the resource
bottleneck is moved to the fast local memory, using more
blocks of the fast local memory can further reduce the num-
ber of required islands.

In the last experiment, as shown in Fig. 6, we would
like to show the performance of the MCIF algorithm and
analyze the memory allocation strategy of the MCI algo-
rithm. For this experiment, each island consists of 4
cores, and the 82 benchmarks are included, where two
tasks are created for each benchmark with the derived
WCETs. The minimum inter-arrival time of each task is
set such that the worst-case utilization forms a uniform
distribution between 0:4 and 40 percent when using no
scratchpad memory. The size of the fast local memory in
each island is configured as 2 to 20 percent of the total
size of the program codes of all tasks.

In this experiment, we consider three solutions as fol-
lows: (1) Baseline uses only the first-fit approach to assign
each task on a core by using no fast local memory for the
WCET analysis. (2) MCI represents the MCI algorithm. (3)
MCIF-Random uses the MCIF algorithm to partition tasks
onto cores. For the memory allocation, MCIF-Random
uses the same amount of the fast local memory as that
used by MCI, and the fast local memory space is ran-
domly distributed among the tasks. The results shown in
Fig. 6 illustrate that MCIF-Random always outperforms
Baseline, and MCI outperforms MCIF-Random. The per-
formance improvement of MCIF-Random compared to
baseline is from the using of the fast local memory and
the proposed task assignment algorithm. The perfor-
mance improvement of MCI compared to MCIF-Random
is due to the intelligent memory allocation algorithm
which minimizes the lower bound of the number of the
required islands.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we explore the joint considerations of task
scheduling and memory allocation for real-time tasks on

island-based multi-core platforms. For an implicit-deadline
sporadic task set, our algorithms provide asymptotic
4-approximation and ðaBIN þ 2Þ-approximation bounds for
minimizing the numbers of required islands for the IBRT
and IBRTA problems, respectively, in which aBIN is the
asymptotic approximation bound of the algorithm adopted
for the bin packing problem. The performance of the pre-
sented algorithms is evaluated with 82 real-life benchmarks
with different numbers of the cores in an island and with
different sizes of the fast local memory.

When constrained-deadline sporadic tasks are further con-
sidered, it is no more guaranteed that all timing constraints
can always be satisfied if the utilization of each core is no
more than the achievable utilization factor, where a spo-
radic task is said to have a constrained deadline if its relative
deadline is no longer than its minimum inter-arrival time.
In this extension, the density of a task is defined as the
WCET divided by the relative deadline, and we can use the
density of a task to replace the utilization of the task if the
ratio of the minimum inter-arrival time to the relative dead-
line is bounded by a constant g. Within this patch, the pro-
posed algorithms can still work for constrained-deadline
sporadic tasks, but the approximation bounds will be
increased by g times.

To provide better approximation algorithms for con-
strained-deadline sporadic tasks, we should look into the
required computing time of each task at any time point
(it is also called as demand bound function of the task in
[6], [12], [13]) for the future work of this paper. Specifi-
cally, the recent result [11] has studied how to allocate
the local memory to minimize the required size of the
scratchpad memory to meet the timing constraints for
constrained-deadline tasks by using EDF and RM in uni-
processor systems.

ACKNOWLEDGMENTS

This work was partially supported by Baden
W€urttemberg MWK Juniorprofessoren-Program, by the
National Science Council of Taiwan, R.O.C., under grant
100-2221-E-002-120-MY3, by the Excellent Research Proj-
ects of National Taiwan University under grant
102R890822, and by Deutsche Forschungsgesellschaft
(DFG) under grant FA 1017/1-1 and EU COST Action
IC1202: Timing Analysis On Code- Level (TACLe). This
work was an extended version of the paper [8] that
appeared in the Asia and South Pacific Design Automa-
tion Conference (ASP-DAC) 2013.

REFERENCES

[1] AbsInt Angewandte Informatik GmbH, “aiT: Worst-Case Execu-
tion Time Analyzers, ” http://www.absint.com/ait, 2013.

[2] Malardalen WCET Research Group, “WCET Benchmarks,”
http://www.mrtc.mdh.se/projects/wcet, 2013.

[3] UTDSP Benchmark Suite, http://www.eecg.toronto.edu/
�corinna/DSP/infrastructure/UTDSP.tar.gz, 2013.

[4] N. Bansal, A. Caprara, and M. Sviridenko, “Improved Approxi-
mation Algorithms for Multidimensional Bin Packing Problems,”
Proc. IEEE 47th Ann. Symp. Foundations of Computer Science
(FOCS), 2006.

[5] S. Baruah, “Partitioning Sporadic Task Systems Upon Memory-
Constrained Multiprocessors,” ACM Trans. Embedded Computing
Systems, vol. 12, article 78, 2013.

Fig. 6. The evaluation with different sizes of the fast local memory.

548 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2015

[6] S. Baruah and N. Fisher, “The Partitioned Multiprocessor Sched-
uling of Sporadic Task Systems,” Proc. IEEE 26th Int’l Real-Time
Systems Symp. (RTSS), pp. 321-329, 2005.

[7] M. Bertogna, M. Cirinei, and G. Lipar, “Schedulability Analysis of
Global Scheduling Algorithms on Multiprocessor Platforms,”
IEEE Trans. Parallel and Distributed Systems, vol. 20, no. 4, pp. 553-
566, Apr. 2009.

[8] C.-W. Chang, J.-J. Chen, T.-W. Kuo, and H. Falk, “Real-Time Parti-
tioned Scheduling on Multi-Core Systems with Local and Global
Memories,” Proc. 18th Asia and South Pacific Design Automation
Conf. (ASP-DAC), 2013.

[9] C.-W. Chang, J.-J. Chen, W. Munawar, T.-W. Kuo, and H.
Falk, “Partitioned Scheduling for Real-Time Tasks on Multi-
processor Embedded Systems with Programmable Shared
SRAMs,” Proc. ACM 10th Int’l Conf. Embedded Software
(EMSOFT), 2012.

[10] S. Chattopadhyay and A. Roychoudhury, “Scalable and Precise
Refinement of Cache Timing Analysis via Model Checking,” Proc.
IEEE 32nd Real-Time Systems Symp. (RTSS), 2011.

[11] J.-J. Chen, “Task Set Synthesis with Cost Minimization for Spo-
radic Real-Time Tasks,” Proc. IEEE Real-Time Systems Symp.
(RTSS), 2013.

[12] J.-J. Chen and S. Chakraborty, “Resource Augmentation Bounds
for Approximate Demand Bound Functions,” Proc. IEEE Real-
Time Systems Symp. (RTSS), pp. 272-281, 2011.

[13] J.-J. Chen and S. Chakraborty, “Partitioned Packing and Schedul-
ing for Sporadic Real-Time Tasks in Identical Multiprocessor Sys-
tems,” Proc. 24th Euromicro Conf. Real-Time Systems (ECRTS),
pp. 24-33, 2012.

[14] Q. Chen, M. Guo, and Z. Huang, “Adaptive Cache Aware Bi-Tier
Work-Stealing in Multi-Socket Multi-Core Architectures,” IEEE
Trans. Parallel and Distributed Systems, vol. 24, no. 12, pp. 2334-
2343, Dec. 2013.

[15] R.I. Davis and A. Burns, “A Survey of Hard Real-Time Scheduling
for Multiprocessor Systems,” ACM Computing Surveys, vol. 43,
no. 4, article 35, Oct. 2011.

[16] W.F. de la Vega and G.S. Lueker, “Bin Packing Can Be Solved
Within 1+Epsilon in Linear Time,” Combinatorica, vol. 1, no. 4,
pp. 349-355, 1981.

[17] G. Dosa, “The Tight Bound of First Fit Decreasing Bin-Packing
Algorithm is FFDðIÞ � 11

9 OP T ðIÞ þ 6
9,” Proc. First Int’l Conf. Com-

binatorics, Algorithms, Probabilistic and Experimental Methodologies,
pp. 1-11, 2007.

[18] H. Falk and J.C. Kleinsorge, “Optimal Static WCET-Aware
Scratchpad Allocation of Program Code,” Proc. ACM/IEEE 46th
Design Automation Conference (DAC), 2009.

[19] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman, 1979.

[20] P. Gepner and M.F. Kowalik, “Multi-Core Processors: New Way
to Achieve High System Performance,” Proc. Int’l Symp. Parallel
Computing in Electrical Engineering (PARELEC), 2006.

[21] J. Guo, M. Lai, Z. Pang, L. Huang, F. Chen, K. Dai, and Z. Wang
“Hierarchical Memory System Design for a Heterogeneous Multi-
Core Processor, Proc. ACM Symp. Applied Computing (SAC), 2008.

[22] Y. Guo, Q. Zhuge, J. Hu, M. Qiu, and E.H.-M. Sha, “Optimal
Data Allocation for Scratch-Pad Memory on Embedded Multi-
Core Systems,” Proc. Int’l Conf. Parallel Processing (ICPP), pp. 464-
471, 2011.

[23] Z. Huang, M. Zhu, and L. Xiao, “LvtPPP: Live-Time Protected
Pseudo-Partitioning of Multi-Core Shared Caches,” IEEE Trans.
Parallel and Distributed Systems, vol. 24, no. 8, pp. 1622-1632, Aug.
2013.

[24] J.A. Kahle, M.N. Day, H.P. Hofstee, C.R. Johns, T.R. Maeurer, and
D. Shippy, “Introduction to the Cell Multiprocessor,” IBM J.
Research and Development, vol. 49, no. 4.5, pp. 589-604, 2005.

[25] S. Kang and A.G. Dean, “Leveraging Both Data Cache and
Scratchpad Memory through Synergetic Data Allocation,” Proc.
IEEE Real-Time and Embedded Technology and Applications Symp.
(RTAS), 2012.

[26] S. Kato, K. Lakshmanan, Y. Ishikawa, and R. Rajkumar,
“Resource Sharing in GPU-Accelerated Windowing Systems,”
Proc. IEEE Real-Time and Embedded Technology and Applications
Symp. (RTAS), 2011.

[27] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt, “Gdev: First-
Class GPU Resource Management in the Operating System,” Proc.
USENIX Conf. Ann. Technical Conf. (ATC), 2012.

[28] S. Kato, N. Yamasaki, and Y. Ishikawa., “Semi-Partitioned Sched-
uling of Sporadic Task Systems on Multiprocessors,” Proc. 21st
Euromicro Conf. Real-Time Systems (ECRTS), pp. 249-258, 2009.

[29] T. Kelter, H. Falk, P. Marwedel, S. Chattopadhyay, and A.
Roychoudhury, “Bus-Aware Multicore WCET Analysis through
TDMA Offset Bounds,” Proc. Euromicro Conf. Real-Time Systems
(ECRTS), 2011.

[30] C. Lee, M. Potkonjak, andW.H. Mangione-Smith, “Mediabench: A
Tool for Evaluating and Synthesizing Multimedia and Communi-
cations Systems,” Proc. IEEE/ACM Ann. Int’l Symp. Microarchitec-
ture (MICRO), 1997.

[31] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S.K. Reinhardt, and
T.F. Wenisch, “Disaggregated Memory for Expansion and Sharing
in Blade Servers,” Proc. 36th Ann. Int’l Symp. Computer Architecture
(ISCA), pp. 267-278, 2009.

[32] C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environment,” J. ACM, vol. 20,
no. 1, pp. 46-61, 1973.

[33] W. Lunniss, S. Altmeyer, C. Maiza, and R.I. Davis, “Integrating
Cache Related Pre-Emption Delay Analysis Into Edf Scheduling,”
Proc. IEEE 19th Real-Time and Embedded Technology and Applications
Symp. (RTAS), 2013.

[34] G. Memik, W.H. Mangione-Smith, and W. Hu, “Netbench: A
Benchmarking Suite for Network Processors,” Proc. IEEE/ACM
Int’l Conf. Computer Aided Design (ICCAD), 2001.

[35] M. Niemeier, A. Wiese, and S. Baruah, “Partitioned Real-Time
Scheduling on Heterogeneous Shared-Memory Multiprocessors,”
Proc. 23rd Euromicro Conf. Real-Time Systems (ECRTS), 2011.

[36] O. Ozturk, M. Kandemir, and I. Kolcu, “Shared Scratch-Pad Mem-
ory Space Management,” Proc. Seventh Int’l Symp. Quality Elec-
tronic Design (ISQED), 2006.

[37] A. Schranzhofer, J.-J. Chen, and L. Thiele, “Timing Analysis for
TDMA Arbitration in Resource Sharing Systems,” Proc. IEEE 16th
Real-Time and Embedded Technology and Applications Symp. (RTAS),
2010.

[38] T. Ungerer, F.J. Cazorla, P. Sainrat, G. Bernat, Z. Petrov, H. Casse,
C. Rochange, E. Quinones, S. Uhrig, M. Gerdes, I. Guliashvili, M.
Houston, F. Kluge, S. Metzlaff, J. Mische, M. Paolieri, and J. Wolf,
“Mersa: Multicore Execution of Hard Real-Time Applications
Supporting Analyzability,”Micro, vol. 30, pp. 66-75, 2010.

[39] I. Wald, “Fast Construction of Sah Bvhs on the Intel Many Inte-
grated Core (MIC) Architecture,” IEEE Trans. Visualization and
Computer Graphics, vol. 18, no. 1, pp. 47-57, Jan. 2012.

[40] J. Whitham, R.I. Davis, N.C. Audsley, S. Altmeyer, and C. Maiza,
“Investigation of Scratchpad Memory for Preemptive Multi-
tasking,” Proc. IEEE 33rd Real-Time Systems Symp. (RTSS), 2012.

[41] G.J. Woeginger, “There is no Asymptotic PTAS for Two-Dimen-
sional Vector Packing,” Information Processing Letters, vol. 64,
no. 6, pp. 293-294, 1997.

[42] H. Yunz, G. Yaoz, R. Pellizzoni, M. Caccamo, and L. Sha,
“Leveraging Both Data Cache and Scratchpad Memory through
Synergetic Data Allocation,” Proc. IEEE Real-Time and Embedded
Technology and Applications Symp. (RTAS), 2013.

[43] V. Zivojnovic, J.M. Velarde, C. Schlager, and H. Meyr, “DSPstone:
A DSP-Oriented Benchmarking Methodology,” Proc. Int’l Conf.
Signal Processing and Technology (ICSPAT), 1994.

Che-Wei Chang received the BS degree in com-
puter science and information engineering from
National Chiao Tung University, Taiwan, in 2006
and the PhD degree in computer science and
information engineering from National Taiwan
University, Taiwan and won the PhD Dissertation
Award of the Institute of Information and Comput-
ing Machinery (IICM) in 2012. He is an assistant
professor of the Department of Computer Sci-
ence and Information Engineering, Chang Gung
University, Taiwan. He was a visiting junior

researcher in the Karlsruhe Institute of Technology (KIT), Germany, in
2011. He has been a postdoctoral research fellow at the Research Cen-
ter for Information Technology Innovation, Academia Sinica, Taiwan
from 2012 to 2013. His research interests include energy-efficient
scheduling, fast-booting designs and multi-core management. He is a
member of the IEEE.

CHANG ET AL.: REAL-TIME TASK SCHEDULING ON ISLAND-BASED MULTI-CORE PLATFORMS 549

Jain-Jia Chen received the BS degree from the
Department of Chemistry, National Taiwan Uni-
versity, in 2001, and the PhD degree from the
Department of Computer Science and Informa-
tion Engineering, National Taiwan University,
Taiwan, in 2006. He is a junior professor at the
Department of Informatics, Karlsruhe Institute of
Technology (KIT), Germany. After finishing the
compulsory civil service in Dec. 2007, between
Jan. 2008 and April 2010, he was a postdoc
researcher at Computer Engineering and Net-

works Laboratory (TIK) in ETH Zurich, Switzerland. He joined KIT in
May 2010. His research interests include real-time systems, embedded
systems, energy-efficient scheduling, power-aware designs, tempera-
ture-aware scheduling, and distributed computing. He received Best
Paper Awards from ACM Symposium on Applied Computing (SAC) in
2009 and IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA) in 2005 and 2013.

Tei-Wei Kuo received the BSE and PhD degrees
in computer science from the National Taiwan
University and the University of Texas at Austin,
in 1986 and 1994, respectively. He is currently a
distinguished professor of the Department of
Computer Science and Information Engineering,
National Taiwan University, where he was the
department chair between 2005 and 2008. He is
also the executive director and a research fellow
of the Intelligent and Ubiquitous Computing The-
matic Center of the Research Center of the IT

Innovation, Academia Sinica, Taiwan. He chairs the Embedded Systems
Group of the National Networked Communication Program office, Tai-
wan, since 2010, and serves as the Program Director of the Computer
Science Division of the Taiwan National Science Council from 2013. His
research interests include embedded systems, real-time systems, and
non-volatile memory. He has published a number of papers in top journal
and conferences with two best paper awards so far and owns more than
15 patents in flash memory storage systems and real-time operating
systems. He received the Distinguished Research Award from the
National Science Council of Taiwan, the Young Scholar Research Award
from the Academia Sinica, and the 10 Outstanding Young Persons
Award of Taiwan. He was in the editorial board of the Journal of Real-
Time Systems, IEEE Embedded Systems Letters, and IEEE Transac-
tions on Industrial Informatics. He was a program chair and a general
chair of the IEEE Real-Time Systems Symposium and serves as a pro-
gram committee members of many top conferences in his fields, such
as DAC, RTAS, EMSOFT, CODES+ISSS, ICDCS, etc. He is a fellow of
the IEEE.

Heiko Falk received the PhD degree in computer
science from the University of Dortmund, Ger-
many, in 2004. From 2004 until 2011, he worked
as assistant professor in the embedded systems
group at the Technical University of Dortmund.
Since 2011, he is full professor for embedded
systems and real-time systems at Ulm University
(Germany). His PhD focused on high-level
source code optimizations. Typical embedded
multimedia applications only use a small fraction
of their execution time to compute audio or video

data. Most of the execution time is used to evaluate complex control
flow. Motivated by this observation, he developed novel techniques for
control flow optimization at the source code level. In the last years, the
focus of his work is on code generation and optimization for performance
and predictability of safety-critical real-time systems. The WCC compiler
initially established by him and developed by the research teams led by
him is the currently only known compiler which is able to systematically
reduce the worst-case execution time (WCET) of programs by tightly
integrating static timing analyses into the code generation and optimiza-
tion stage. He works on novel concepts to handle parallelism during
real-time analysis and optimization. Mutual interferences between tasks
running preemptively on the same CPU, or between tasks running on dif-
ferent cores and using shared resources are the key challenges of his
current work. In the future, WCC’s optimizations will be applied to all
software components of complex multitask and multicore systems in
order to globally optimize the entire system’s real-time capabilities.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

550 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2015

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

