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Abstract—In order to execute applications under real-
time constraints on many-core processors with a Network-
on-Chip (NoC), guaranteed service (GS) communication with
guaranteed end-to-end latency and bandwidth is required.
Several hardware-based solutions for GS communication have
been proposed in literature. However, commercially available
many-core processors, e.g., Tilera’s TilePro64 or Adapteva’s
Epiphany, do not support such features. In this paper, we
propose a software solution that allows GS communication on
2D-mesh packet-switching NoCs. Our investigation is based
on a hardware model that is applicable to commercially
available processors, which include multiple NoCs to separate
request and response packets and support only best-effort
communication. We prove that a common upper bound of
the injection rate for all sources limits the congestion which
leads to an upper bound of the worst-case transmission latency
(WCTL) for any transmission, i. e., the combination of a request
and a response packet. Furthermore, our approach supports
arbitrary transmission streams that can be modified at runtime
without violating the upper bound of the WCTL, as long
as the injection rate is not violated. This enables adaptive
features such as task migration or dynamic scheduling policies.
Experiments evaluate our solution for different traffic patterns.

I. INTRODUCTION

The performance of single core processors is mainly
limited by the power dissipation that accompanies high
clock frequencies. While Moore’s law is still valid, the
rising number of transistors leads to a better performance
if number of cores per chip is increased instead of building
larger monolithic cores [1]. Hence, processors with more
than thousand cores are expected within the next decade
[1]. These many-core processors require a scalable and
flexible interconnection. On-chip networks or Networks-on-
Chip (NoCs) are an adaptation of well-known networking
concepts for many-core processors that scale well with chip
size and complexity [2].

Due to the increasing computational demand of topics
like autonomous driving, many-core processors will emerge
in safety-relevant embedded systems with real-time require-
ments. Since compliance with real-time constraints is a
system property, NoCs have to support guaranteed service
(GS) communication, i.e., guaranteed end-to-end latencies
for all transmissions. Each transmission consists of one
request packet and one corresponding response packet.

Adaptive or dynamic features such as online reconfigura-
tion of the application, task migration or dynamic scheduling
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policies allow to manage the temperature distribution on
the chip, to optimize the power efficiency of the processor,
and to decrease the failure probability. Using these dynamic
features under real-time constraints requires dynamic ad-
justment of GS communication, i.e., changing the stream
of transmissions at runtime while preserving the end-to-end
latency guarantees.

Basically, there exist two common approaches to achieve
GS communication on NoCs: i) hardware implementation
and ii) comprehensive analysis. In hardware, virtual circuits
in packet-switching NoCs can provide bounded end-to-
end latencies [2]. Logically independent resources, typically
realized as virtual channels (VCs), separate the virtual
circuits to avoid contention [2]. Dynamic modification of
GS communication requires a new analysis of the virtual
circuits and an online reconfiguration of the VCs. Com-
prehensive analysis methods such as network calculus, on
the other hand, theoretically consider all delay effects in
order to calculate the end-to-end latencies. However, any
result is only valid for the fixed stream of transmissions it
was derived for. Whenever the stream of transmissions is
modified the analysis has to be repeated.

In this paper, we present a software solution that en-
ables dynamic GS communication on NoCs. Our hardware
model focuses on NoCs of many-core processors that are
commercially available, e.g., in Tilera’s TilePro64 [3] and
Adapteva’s Epiphany [4]. Both processors have in common
that they include multiple 2D packet-switching NoCs to
separate request and response packets. The NoCs use the
dimension order (XY) routing policy with wormhole switch-
ing but do not guarantee end-to-end latencies. Thus, we
consider a similar hardware model that includes separate
request and response NoCs with the dimension order (XY)
routing policy and wormhole switching. We assume that the
links and routers of the NoC are deterministic and process
data in a fixed number of cycles.

Our key idea is to enforce a common upper bound of the
injection rate for each source. The injection rate of a source
is the inverse of the time between sending two consecutive
transmissions. An upper bound of the injection rate can be
implemented in software without additional hardware sup-
port. We prove that the congestion in both NoCs is limited
and derive an upper bound of the worst-case transmission
latency (WCTL) of any transmission. Hence, the stream



Figure 1. The platform consisting of 4x4 nodes connected with bidirec-
tional links to 4x4 routers of the request NoC (dark) and 4x4 routers of the
response NoC (light).

of transmissions can be modified online and dynamic GS
communication is possible as long as all sources obey the
common injection rate. Note that our approach is inverse
to the comprehensive analysis methods mentioned above.
Instead of taking a fixed transmission stream as given, we
shape the stream in such way that the latency is inherently
bounded. In contrast to methods based on time-division
multiplexing (TDM), our solution is more flexible since it
does not restrict injections to specific time slots.

The main contribution of this work is a software solution
that allows GS communication on NoCs that supports only
best-effort communication. Our solution enables dynamic
modification of the GS communication as long as the
maximum injection rate is not exceeded, which has to
be supported by the application. Experiments evaluate our
approach under different traffic patterns.

The remainder of this paper is structured as follows:
Section II introduces our system model. In Section III, we
explain our limited injection rate approach. Experimental
results are presented in Section IV. Section V provides an
overview of the related work. Our conclusions are drawn in
Section VI.

II. SYSTEM MODEL

In the following, we provide a model of the hardware
and the communication. The hardware model is later used
to derive the latency of a transmission. The communication
model captures all transmitted data and hence allows to
determine collisions of packets.

Typical real-time applications consist of communicating,
periodically executed tasks. We explicitly exclude applica-
tions from our model. Instead, we capture any communi-
cation on the chip in a traffic pattern, i.e., the stream of
transmissions 7 that all sources inject into the request NoC.
Any transmission 7; € 7T, e.g., read or write command,
consists of a request packet p;“? € P, which is injected into
the request NoC at time ¢, “?, and the corresponding response
packet p;*? € P, which is injected into the response NoC
by the destination after processing the request packet. Note

that higher-level abstractions such as periodically broadcast
messages with arbitrary sizes can be represented by an
infinite set of transmissions in the traffic pattern.

We consider a hardware platform that consists of x x
y nodes n; ; € N, as depicted in Figure 1. The bijective
functions src : P — N and dst : P — N denote the
corresponding source and destination nodes of each packet.
We consider only unicast packets and transmissions with
exactly one source and one destination.

The = X y nodes are connected by two separate but
identical 2D-mesh packet-switching NoCs. Two separate
NoCs are required to break the request-response depen-
dency [5]. Most protocols for communication between nodes
are based on a request / response mechanism, e.g., the
Virtual Component Interface (VCI) protocol, which allows
to connect different intellectual property (IP) components. If
both request and response packets were transmitted on the
same NoC, deadlocks could still arise due to dependencies
at transmission level [5]. E.g., the request packet of one
transmission could hold resources required by the response
packet of another transmission and vice versa.

A network interface (NI) connects each node n; ; € N
to both NoCs. The NI either stalls the CPU until a response
packet is received, or it continues the CPU’s execution
and deals with the response packet when it is received.
The former case is known as synchronous or blocking
communication. The latter case is known as asynchronous
or non-blocking communication.

Each NoC consists of  x y routers » € R. A schematic
overview of a router r is presented in Figure 2. The routing
logic implements the dimension-order (XY) routing policy.
Under this policy, a packet is first transmitted along the X
axis. When the column of the destination node is reached,
the packet is transmitted along the Y axis until the destina-
tion node is reached. This policy is known to be deadlock-
free and deterministic [2]. Under a deterministic routing
policy, the same path between any source and destination
pair is always chosen [6]. Hence, deterministic routing
policies ensure the in-order delivery of packets [2]. The
function h : P — NT denotes the number of routers on
the route of a packet from its source to its destination.

Two neighbor routers of one NoC and an NI and a router
are connected by a link A € £. A link is a bidirectional
connection, so two neighbor routers can exchange packets
in both directions without a conflict. A flow control unit (flit)
is an atomic entity that is transmitted over any link A\ € £
in one clock cycle. Thus, all links have the same bandwidth
b= 1; ﬂ‘t . Each packet has a common fixed size that is
denoted by s and specified as a natural number of flits. Note
that a link is physically implemented by a data signal with
the size of a flit and another signal that is required by the
router-level flow control mechanism.

Consider the packet p; € P in an otherwise empty request
or response NoC, i.e., no other packets can interfere with
packet p;. The router determines the requested output port
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Figure 2. Schematic overview of a router with five input and output link
controllers (LCs) connecting the data and flow control (fc) signals to the
FIFO input and output buffers, and a switch controlled by the routing and
arbitration logic.

from the destination address stored in the first (header) flit
of packet p;. If there is no collision, the router reserves the
connection from input to output port until the last flit of
the packet p; is forwarded. If there is enough space in the
bounded FIFO input buffer of the next router, each following
flit of packet p; is forwarded immediately. This is known as
wormhole switching [2]. In the following, d, denotes the
fix amount of time it takes for one flit to be forwarded from
the input to the output port of a router without a conflict. If
the input buffer of the next router and bounded FIFO output
buffer of the current router are full, the link controller (LC)
employs a router-level flow control mechanism to ensure
that the current router does not accept new flits and a buffer
overflow is prevented. Hence, a packet can be split over
multiple routers. Since the upstream routers will eventually
be blocked as well, the blockage propagates through the
NoC. This mechanism is also known as backpressure [2]. If
the backpressure reaches a node and its NI, respectively, no
further packets can be injected into the NoC.

If multiple packets are present in one NoC, collisions can
occur. A collision happens if multiple header flits request
the same output port at the same time or if a router already
reserved the output port requested by the header flit of a
newly arriving packet for another packet. In the first case, the
arbitration logic applies a round-robin early access scheme to
select one packet to be transmitted. Early access means that
a packet is forwarded immediately if there is no collision.
The header flit and all following flits of the losing packets
are stored in their input buffers. When the tail flit of the
winning packet is transmitted, the conflict of the remaining
packets is solved in the same manner. In case the output
port was already reserved, no arbitration is required and the
newly arriving packet is blocked until the tail flit of the
other packet has passed. In the following, d,; denotes the
upper bound of time a packet is blocked by a collision with
another packet in one router, i. e., the worst-case time it takes
a router to arbitrate a conflict and process all flits of the
winning packet.

III. LIMITED INJECTION RATE APPROACH

Our goal is to determine an upper bound of the latency
of all transmissions of any traffic pattern. The latency of
a transmission [, (7;) is composed of 3 parts. i) The time
required for the request packet p;“? of the transmission 7;
to traverse the request NoC from src(p;“?) to dst(p;“?).
ii) The time the destination node needs to process the request
packet p; “? and to inject a response packet p; °*. iii) The time

required for the response packet p; " to traverse back in the

response NoC from src(p; ") to dst(p;*). So,

lr(7:) = bp(P;™) + dast + (™), ()

where [,(p;) is the latency of the packet p; in the request
or the response NoC and dgs; is an upper bound of the time
the destination node needs to process the request packet p; “?
and inject the response packet p; *".

The WCTL [¥¢ specifies the maximum latency of
all transmissions of any traffic pattern, so [¥¢ =
maxyr,c7 I (7). According to (1), the WCTL [*¢ is only
achieved if the latency of the request packet and the response
packet are both maximal. The worst-case packet latency
(WCPL) in one NoC [})¢ = maxyy,ep lp(p;) is the same for
the request and the response NoC, since they are identical.
Hence, the WCTL is

I = 2080 + dyyr. @)

Note that (2) is an upper bound since the request and the
response packets of one transmission in general do not both
experience the worst-case in each NoC .

Furthermore, we want to be able to adapt the traffic pattern
online, i.e., we want to allow arbitrary streams of transmis-
sions without any restriction of the source, destination, or
injection time. However, in general this changes the latency
of other transmissions. In the following, we show that an
upper bound of the WCTL [ in any traffic pattern can be
found if the common injection rate f of all sources n; ; € N
is limited by a certain bound. This maximum injection rate f
is defined as f = Z;C. Thus, the minimum time each source
has to wait before injecting the request packet of the next
transmission is at least [’ clock cycles. Note that due to
the definition of the WCTL [, any source will receive
a response packet before injecting the next request packet.
Hence, our approach is applicable to both synchronous and
asynchronous NoCs.

For the sake of brevity, we define the system S that con-
sists of two identical 2D-mesh wormhole switching NoCs,
each with the dimension order (XY) routing policy, z X y
nodes, bidirectional links, and FIFO buffers. Furthermore,
each source in the system S obeys the maximum injection
rate f.

In the following, we use some properties of the system S
to determine the latency of a packet without any collisions.
By adding the worst-case delay introduced by collisions with
other packets, we derive the WCPL l;”c.




A. Traversal Delay

We start by analyzing the traversal delay d;(p;), i.e., the
latency of the packet p; in one otherwise empty NoC of the
system S. The traversal delay d;(p;) is the time required
for the packet p; to traverse the request or the response
NoC from sre(p;) to dst(p;) without any collisions. Due to
wormhole switching, the traversal delay is

dpe) = hpo)dy + T50) + %, G
where d,. is the number of clock cycles required by a router
to process one flit, b is the bandwidth of any link A € L,
and s is the size of a packet in flits.

Thus, the worst-case traversal delay di’¢ of any packet
p; € P in one otherwise empty NoC of the system S is

1 1it s
dve = di(p;) = —1)(d, 2@
b %ﬁét@) (x+y—1)(d, + b)+ “

b

Due to the dimension-order (XY) routing protocol, the
maximum number of routers to be traversed in each 2D-
mesh NoC with = x y routers is = + y — 1, namely from
one corner to the diagonally opposite corner. Note that the
worst-case traversal delay d;’¢ holds for the request and for
the response NoC, since both NoCs are identical.

B. Blockage Delay

As soon as packets of other transmissions are present in
one NoC, the delay of each packet potentially increases due
to collisions and blockages by other packets, respectively.
In the following, we use some properties of the system S
to derive the maximum blockage delay of any packet in one
NoC of the system S.

Lemma 1. Two packets of an arbitrary traffic pattern collide
at most once in one NoC of the system S.

Proof: Suppose two packets p, and p; collide once,
i.e., they arrive in a router r and request the same link ..
The router r resolves this conflict by blocking one packet
and forwarding the other one. The dimension order (XY)
routing policy of the NoC implies that the remaining route
of packet p, and the remaining route of packet p, in the
NoC each have at most two parts A and B. The part A
of both remaining routes is identical. It contains at least
the link A\.. In part A, no further collisions of packet p,
and packet p, are possible due to the FIFO buffers and
the order-preserving property of the dimension order (XY)
routing policy. The part B of the remaining route of each
packets exists if dst(p,) # dst(py). The dimension order
(XY) routing policy ensures that the part B of both routes
is different, thus no further collisions of packet p, and
packet p, are possible. Without loss of generality, since the
remaining routes of the packets p, and p, have at most two
parts A and B which cannot lead to further collisions, two
packets collide at most once in any router of one NoC. W

Lemma 2. For an arbitrary traffic pattern in the system S,
a packet collides at most once with other packets injected
by another source in one NoC.

Proof: Let the packet p, be injected at t,. Let pf) with
1 € Z denote a set of consecutive packets injected by another
source at tj, with

it >4 4+ 1v, i € Z. (5)
Suppose the packet p, collides with a certain packet py
of p at t.. According to the definition of the WCPL [%¢,
the packet p, and all packets p} are present in one NoC of
the system S at most for [ clock cycles. Therefore, the
packet p, can only collide with the packet py if
te <te <ty +1,)° and 6)
ty <te <ty +1,° @)
hold. According to Lemma 1, p, collides at most once with
pp in one NoC. However, the packet p, could collide with
another packet of pé. From (6) and (7) follows that 7 —
lye < tq <ty + 1, From (5) we know that all previous
packets p; ~", n € N are present in the NoC at most until
ty — ¢ < tq. Likewise, any subsequent packet ppt™ is not
injected into the NoC before ¢; +17“ > t, +1;°. Hence, all
previous and subsequent packets of p; cannot collide with
the packet p, in the same NoC. Therefore, packet p, collides
at most once with any packet p} injected by another source
in one NoC. n
Due to the definition of the injection rate f, the number
of packets present in the NoCs of the system S is limited. In
the following, we prove that this also limits the maximum
number of times any packet can be blocked.

Theorem 1. For an arbitrary traffic pattern in the system S,
any packet p; € P collides at most xy — 2 times with other
packets in one NoC.

Proof: In one NoC of the system S, there exist xy
sources. According to Lemma 2, any packet p; € P collides
at most once with any packet from another source in one
NoC of the system S. Due to the dimension order (XY)
routing policy and bidirectional links, the destination node
dst(p;) of the packet p; cannot inject packets that collide
with the packet p,. Furthermore, the packet p; cannot collide
with any other packet p; € P injected by the same source
src(p;) = sre(p;) if all sources obey the injection rate f.
Thus, any packet p; € P collides at most zy — 2 times with
other packets in one NoC. [ ]

The delay added by a collision dy(p;) of the packet p;
with another packet not only depends on the traffic pattern,
but also on the internal state of the router. Since a low
level analysis of all relevant facts is complex and since we
are only interested in the worst-case behavior, we assume
a packet is always blocked. The upper bounded blocking
delay d,; is the worst-case delay experienced by a packet
when colling with another packet, namely the time required
by a router to arbitrate a conflict and process all flits of the
other packet.

Corollary 1. For an arbitrary traffic pattern in the system S,
the worst-case blocking delay d’¢ of any packet p; € P in



one NoC is at most
dy© = (zy — 2)drp. ®)
Proof: Based on Theorem 1, any p; € P collides at
most xy—2 times with other packets in one NoC. Hence, the
worst-case blocking delay di’¢ of any p; € P is the number
of collisions of the packet multiplied with the maximum
amount of time it takes a router to arbitrate the conflict and
process the winning packet. ]

C. Worst-Case Latencies

The WCPL [;¢ in the system S is the sum of the worst-
case traversal delay d;’¢ and the worst-case blockage delay
dy¢ of any packet, so

Ly =dy + dy°. C))
For a given set of parameters of the system S, (2) calculates
the WCTL [¢ of any transmission in the system S. The
WCTL [*¢ defines the maximum injection rate f = lgl,c.
By definition, the injection rate limits the number packets
present in the system S at any instant of time, which again
limits the number of collisions and bounds the WCTL [¢.

D. Dynamic Traffic Pattern

In the following, we prove that the definition of the
injection rate f allows to dynamically modify the traffic
pattern, i.e., the stream of transmissions, without violating
the WCTL <.

Theorem 2. In the system S, the source and destination of
any future transmission can be changed without increasing
the WCTL I'*¢. Furthermore, in the system S, new transmis-
sions can be added to the traffic pattern without increasing
the WCTL [*¢.

Proof: The WCTL [*¢ calculated in (2) is upper
bounded if all parts of (2) are upper bounded. The delay
of the destination dgs; is upper bounded by definition. The
WCPL [;7¢ is defined by (9). According to Corollary 1, any
packet p; € P is blocked for at most d;’° clock cycles in the
system S. The worst-case traversal delay d;°¢ of any packet
pi € P in one otherwise empty NoCs of the system S
is upper bounded, since the maximum number of hops in
each NoC is fix. Thus, l;,”“ and [Y¢ cannot increase in the
system S. ]

IV. EXPERIMENTAL RESULTS

In this section, experimental results evaluate our limited
injection rate approach under different traffic patterns. The
following experiments were performed on SoCLib [§], a
cycle-accurate, bit-accurate simulator based on SystemC. It
includes an implementation of DSPIN [9], a 2D mesh NoC
that implements the dimension order (XY) routing policy,
wormhole switching, bidirectional links, and FIFO buffers.
We created a platform consisting of 4 x4 nodes connected by
two DSPIN NoCs to separate request and response packets,
as shown in Figure 1. Each node contains a MIPS32El
core and local memory without caches connected by a

crossbar. Thus, node-local traffic does not affect the NoC.
The parameters of the simulation platform are x = y = 4,
s = 3flits, d,. = 3 cycles, d, = 4 cycles, dqst = 2 cycles,
and b =1 it

cycle*
A. Traffic Patterns

First, we describe the traffic patterns applied in the
following experiments. Unfortunately, the traffic pattern that
leads to the worst-case latency of a transmission in both
NoCs is unknown. However, we assume such a traffic pattern
exists in general in order to derive a safe upper bound of
the WCTL.

In our experiments we use two well known traffic patterns.
The first traffic pattern maximizes the latency of all transmis-
sions with a common source in the request NoC. This latency
traffic pattern is achieved if all sources inject transmissions
to the same destination with their maximum allowed in-
jection rate f. Since all sources inject transmissions to a
common destination, all request packets potentially conflict
in the last link connecting the destination node with the
request NoC. The request packets with the highest number
of hops from source to destination arrive at the last link after
all other request packets and hence are potentially blocked
by all other packets.

The opposite extreme traffic pattern balances the traffic
optimally in the request NoC. This can be achieved if each
source node n, , injects transmissions to the destination
node 7, _y_1,n—z—1. Since this maximizes the network’s
throughput, it is also known as the worst-case throughput
traffic pattern [7].

B. Delay Measurements

In a first experiment, we measure the latencies of trans-
missions under the latency traffic pattern. Thus, all sources
send request packets to node ng . Due to the router-level
flow control, a NI cannot inject new request packets into
the request NoC if the input buffer of the first router is
full. Since we want to capture the maximum latency of each
packet, we set the buffer size of both NoCs to 50 packets,
i.e., 150 flits. Since 50 transmissions are injected from each
source, the NI is always able to inject a new request packet.
Figure 3 shows the traces of node ns 3, the source which
injects the transmissions with the largest traversal delay,
i.e., packets with highest number of hops. By inserting
NOP instructions between two consecutive injections, we
decrease the injection rate f until the latency of consecutive
transmissions [, is constant.

1) Synchronous NoC: The upper two traces of Figure 3
show the latencies in a synchronous version of DSPIN,
where the NIs wait on the response packet while the CPU is
stalled. Without decreasing the injection rate (0 NOPs), the
latency of the first transmission of n3 3 is 138 cycles. This is
due to sources closer to the destination which have a shorter
traversal delay and inject multiple transmissions before the
request packet of first transmissions of source ng3 3 arrives
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Figure 3.

Trace of the first 3,000 cycles of source node n3 3 in synchronous and asynchronous NoCs. All sources inject 50 transmissions to node ng o

with different injection rates (NOPs). Blue empty up arrows represent injected request packets, red filled down arrows represent arriving response packets.

at the destination. By decreasing the injection rate for all
sources (8 NOPs), this effect is prevented. Hence, the latency
of first transmission of n3 3 is reduced to 88 cycles.

The blocking nature of the synchronous NoC has the
disadvantage that the CPU is stalled during the transmis-
sion, while it could potentially execute memory-independent
instructions. This time is different for each source since it
depends on the traffic pattern. In order to achieve a common
injection rate for all sources, the time the CPU stalls has
to be subtracted from the additional waiting time added by
software.

2) Asynchronous NoC: We adapted DSPIN’s NIs to
support asynchronous behaviour in order to alleviate the
mentioned disadvantages. The lower two traces of Figure 3
show the latencies in the asynchronous version of DSPIN.
Without decreasing the injection rate (0 NOPs), both NoCs
are severely overloaded. In order to reduce the blocking
effects, we decrease the injection rate by adding instruc-
tions between two injections (11 NOPs). This decreases the
load of the NoCs and the latency of all transmissions of
source ng 3 is reduced to 88 cycles. Since the CPU is not
stalled, more instructions are inserted as compared to the
synchronous NoC.

C. Worst-Case Traversal Latency Evaluation

Next, we calculate the WCTL and compare it to the
measured values of different traffic patterns. We use the
parameters of the simulation platform and (2) to calculate
the WCTL [*¢ = 176 cycles. According to the deﬁnltlon
of the injection rate f, we define f = lwc = m
Due to disabled caches and the local memory latency, each
NOP takes 7 cycles, so 176 cycles relate to 26 NOPs. In
Figure 4, the measured WCTLs for different traffic patterns
are plotted. With a delay of 26 NOPs between consecutive
injections, none of the simulated traffic patterns had a WCTL
higher than 176 cycles. Hence, the calculated WCTL is
indeed an upper bound for all simulated traffic patterns.

The latency traffic pattern results in large latencies, es-
pecially if the injection rate is not limited and the NoCs
are asynchronous, as shown in Figure 4a. We performed
800 simulations with a random traffic pattern in which each

source injects 1,000 transmissions to random destinations
but not to itself. The mean, the standard deviation, and the
maximum latencies are plotted in Figure 4b. However, none
of the 800 runs with the random traffic pattern resulted
in a latency in the range of latency traffic pattern. The
throughput traffic pattern leads to a minimization of the
measured latencies, as shown in Figure 4c.

The results show that the calculated WCTL !¢ and
the respective injection rate f are pessimistic compared to
the measured WCTLs. The reasons are manifold: i) The
simulated latency traffic pattern only results in the worst-
case latency of some request packets, as explained in Sec-
tion IV-A. ii) The worst-case behavior is assumed for each
collision, i.e., a packet is always assumed to be blocked for
the duration to forward an entire packet. In reality, a packet
might win the arbitration or be blocked only be the last flit of
another packet. iii) In the worst-case, a packet is blocked by
packets from all other sources. In our implementation of the
latency traffic pattern, all sources start injecting packets at
the same time. Hence, the packet p; “? with src(p;“?) = ns 3
is blocked by only 9 packets since the other packets are
transferred before they could interfere with the packet p;“?.
iv) The latency of a router d, is only 2 cycles if the link
was free before. We calculated with 3 cycles, since it takes
one additional cycle to detect whether a previously occupied
link is free again.

D. Load Measurements

In this experiment, we compare the load of the NoCs
generated by the calculated and the measured injection
rates. We calculate the load of each link by dividing the
number transferred flits by the number of cycles of the entire
experiment. The load of the NoCs is the sum of the loads
of all links in both NoCs divided by the number of links.

Figure 5 shows the measured load of the latency traffic
pattern with different injection rates. With an injection rate
f= #ydcs and 26 NOPs between consecutive injections,
respectively, the load is 1.06% in asynchronous NoCs and
0.869% in synchronous NoCs. The first experiment shows
that a delay of 11 NOPs between consecutive injections
in asynchronous NoCs and 8 NOPs in synchronous NoCs,



3,000 —& : —

I

” ° @ Asynchronous 65 |- i < % N o o
i 2000 @ O Synchronous | | x &ixxgsxxxx 521 o |
: g 60 - xx xx s % RO |
= o X xx X ><><Xx§§ o o o o
2 1,000 |- ° . 55 |- x
g ° 50 o oo 0o o

W | | ‘ ‘ ‘ W

0 10 20 30 0 0 20 30 0 10 20 30

NOPs NOPs NOPs

(a) 50 injections per source under latency traffic
pattern

(b) Mean, std. deviation, and maximum of
800 repetitions of the random traffic pattern

(c) 1,000 injections per source under
throughput traffic pattern

Figure 4. Measured WCTL of various traffic patterns with different injection rates in synchronous and asynchronous NoCs.

| T | | : ‘
4 - ‘.. ® Asynchronous ||
...
< O Synchronous
s b o0 Y |
5 OOOo .°.
=4 [ () -
s 2 OOO ®
-~ OOOOOO.......
jele} [l
1 °000008888sses |
| | | | | \
0 5 15 20 30
NOPs
Figure 5. Measured load of the synchronous and asynchronous NoCs for

different injection rates under the latency traffic pattern.

respectively, is sufficient to achieve a bounded WCTL. With
a delay of 11 NOPs and 8 NOPs, respectively, the load is
2.27% in asynchronous NoCs and 1.81% in synchronous
NoCs. Thus, for the latency traffic pattern our approach is
pessimistic by a factor of 2.14 in asynchronous NoCs and
2.08 in synchronous NoCs. However, our approach considers
an unknown traffic pattern that leads to higher latencies as
the simulated latency traffic pattern. Furthermore, our ap-
proach allows the online modification of the traffic pattern.

V. RELATED WORK

Several approaches to support GS communication on
NoCs have been proposed. Most of them are based on hard-
ware support or perform an extensive theoretical analysis.
Only few solutions focus on the injection rate.

1) NoCs with Hardware Support: Most solutions that
allow GS communication on NoCs are implemented in hard-
ware. A common approach is to employ TDM [10], [11].
Typically, the time slots are assigned statically, depending
on a specific traffic pattern. Shi and Burns [12] provide
an offline schedulability analysis for priority-based NoCs
with wormhole switching and the dimension-ordered (XY)
routing policy. Based on this, several NoCs provide different
priority levels to allow GS communication [13], [14]. Both
the TDM and the priority level solution do not allow a
dynamic modification of the traffic pattern without a new
analysis of the slot or priority level assignment.

Algorithms for an online allocation of time slots in a
TDM NoC have been presented by Kavaldjiev et al. [15] and
Stefan et al. [16]. Another approach to enable dynamic GS
communication is to provide an application programmable
interface (API) to control the Quality of Service (QoS)

features of the NoC by software, as proposed by Ruaro et
al. [17] and Carara et al. [18]. Liu et al. [19] and Kranich
and Berekovic [20] propose to use free bandwidth to send
configuration packets that try to reserve resources for a new
GS communication.

In contrast to all the above mentioned approaches, our
approach does not require special hardware support like
TDM, priority levels, multiple physical channels, or central
configuration unit to support GS communication.

2) Analytic WCTL Derivation: Dasari et al. [21] concen-
trate on a very similar system model, namely commercially
available NoCs without timing support in hardware. The
authors propose the Branch Prune and Collapse algorithm
to determine the WCTL. The algorithm is based on existing
approaches that recursively analyze the contention at each
router on the path of the analyzed flow of packets. The
authors enhance these approaches by leveraging the input
arrival patterns. Due to the blocking semantics, they identify
a minimum inter-release time of packets and incorporate this
into the recursive algorithm. However, the proposed analysis
is very complex and depends on the traffic pattern.

Network Calculus is a powerful methodology to derive
worst-case latencies. It uses an elegant abstraction with
arrival curves and service curves on top of a min-plus alge-
bra [22]. However, backpressure is hard to be integrated in
network calculus that is designed for forward networks [21].

Qian et al. [23] propose a method to calculate the end-
to-end delay bound of a flow on an NoC with wormhole
switching and flow control. The method is based on network
calculus and operates based on a contention tree, that cov-
ers direct and indirect contention by constructing complex
contention scenarios from three basic contention patterns.

Network calculus does not support dynamic modification
of the traffic pattern, i.e., the analysis is only valid for one
specific traffic pattern. Hence, our approach and network
calculus are inverse. Network calculus models one traffic
pattern by arrival curves and allows to determine an upper
bound of the latency of each transmission. Our approach
shapes the traffic pattern by enforcing an injection rate in
order to guarantee an upper bound of the WCTL.

3) Rate-Controlled NoCs: Ogras and Radu [24] address
the congestion problem in NoCs by introducing a flow
control mechanism that controls the injection rate at the



traffic sources. The authors propose an ON/OFF model,
where packets are sent in a bursty manner during the ON
phase and no packet is sent during the OFF phase. The
distribution of the ON phases depends on the application.
A state space model of the routers allows to predict the
availability of the routers and is used to control the injection
at source level. In contrast to our work, Ogras and Radu
focus only on best-effort traffic.

Nychis et al. [25] examine congestion in a bufferless NoC.
The authors propose a congestion control mechanism by
measuring and influencing the injection rate per applica-
tion. Similar to our approach, the key mechanism is the
instructions-per-flit ratio. However, Nychis et al. focus on
enhancing the system’s performance and do not consider
GS communication.

Compared with computer networks, our approach is sim-
ilar to bandwidth management, traffic shaping, and rate
limiting, which influence the injection rate in order to
provide QoS guarantees. While such methods are common
e.g., in industrial Ethernet, to the best of our knowledge,
they have not been applied to NoCs.

VI. CONCLUSION

Considering a hardware model that is applicable to com-
mercially available NoCs, we have proven that an upper
bound of the latency of all transmissions can be guaranteed
if all sources obey a maximum injection rate. This injection
rate can be controlled entirely in software. If the application
supports the limited injection rate, our approach enables GS
communication on NoCs without explicit hardware support
for guaranteed end-to-end latencies. Furthermore, we have
proven that dynamic modification of GS communication is
possible, as long as the common injection rate is not vio-
lated. Hence, our approach contributes to enabling adaptive
features such as task migration on many-core processors un-
der real-time constraints. Experiments evaluate our approach
under different traffic patterns.

We plan to evaluate our approach on Adapteva’s Epiphany
and under real-world mixed-critical applications. Further-
more, we want to improve the load of the NoCs and the
scalability of our approach by tightening the upper bound
of the injection rate. NoCs with multiple VCs allow to map
a subset of the traffic pattern to one VC and increase the
injection rate. The proposed approach contributes to our
long-term objective, the usage of many-core processors in
dynamically reconfigurable real-time systems.
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