
Time-Triggered Communication Scheduling
Analysis for Real-Time Multicore Systems

Matthias Freier
Corporate Sector Research Renningen

Robert Bosch GmbH, Germany
Email: matthias.freier@de.bosch.com

Jian-Jia Chen
Department of Computer Science

TU Dortmund University, Germany
Email: jian-jia.chen@cs.uni-dortmund.de

Abstract—The demand for more computing power in current
real-time systems carries on the development and research on
multicore devices. Especially for hard real-time applications, like
an engine control system, the software needs to be distributed
and scheduled effectively. These applications consist of many
tasks, which communicate data among each other. Considering a
multicore system, communication between cores may require a lot
of time. A bus architecture becomes a communication bottleneck
with an increasing number of cores. Therefore, we consider a
scalable communication structure like a Network-on-Chip (NoC).
This paper studies the schedulability analysis of tangled tasks by
resolving the communication dependencies with a Time-Triggered
Constant Phase (TTCP) scheduler. A TTCP scheduler assigns
periodic time slots for each computation and each communication
entity. With the TTCP approach, we can highly utilize the
NoC and the cores considering a tangled task model. However,
this approach requires a method getting a feasible set of these
time slots. We provide a schedulability analysis and a heuristic
algorithm, that runs in pseudo-polynomial time complexity, for
assigning the time slots. Experiments confirm this result and show
the effectiveness of our heuristic algorithm for assigning the time
slots for our approach. For typical industrial task sets with 1000
tasks, our approach can utilize the NoC by around 60%, while
holding all real-time constraints.

I. INTRODUCTION

Current and future real-time embedded systems apply multi-
core devices to satisfy the demand for more computing power.
Considering an engine control unit, new features need to be
implemented in order to tackle for example the reduction
of CO2 emissions and fuel consumption. Due to the power
wall [7], the multicore system is the most promising way
to get more computing power than a single-core platform.
Unfortunately, the resources of hard real-time platforms are
limited, such that the platform has to be used efficiently.
Especially, the software distribution and the schedule need to
be adjusted to the platform appropriately.

Most researchers assume independent tasks for distribution
and scheduling, but industrial applications indicate that tasks
often communicate with each other. For example, Figure 1
shows a part of the task graph of a current engine control ap-
plication for demonstrating the dependencies among the tasks.
The communication between tasks composes a tangled task
set, which is difficult to partition and to schedule. Regarding
a multicore platform connected by a bus, the communication
between cores may require much more time and causes a

Figure 1: Part of the task graph of a current engine control ap-
plication with 206 computational tasks and 334 dependencies
among them.

bottleneck with an increasing number of cores. Therefore,
we consider a scalable communication structure, namely a
Network-on-Chip (NoC).

There exist several approaches to schedule a NoC with
real-time constraints [5], [11], [12]. The Æthereal NoC [5]
approach inserts slot tables for switching the packets at each
switch. Therefore, Lu and Jantsch [8] propose a global time-
division multiplex schedule, which they apply on the Æthereal
NoC to get a predictable and contention-free communication
schedule. For a large application, which highly utilizes the
platform, these slot tables would exceed its hardware limita-
tions.

By using a time-triggered scheduling approach [4], [14],
each task is statically scheduled in a time slot defined a
priori. Considering a deterministic NoC, like the DSPIN NoC
[11], the packets are sent at a certain time and traverse the
NoC also at a certain time. The schedule is constructed,
such that no contention neither in the cores nor in the NoC
occurs. Therefore, only the sending times of the packets are
required to be scheduled and analyzed in the communication
entities. But, another problem is to represent the schedule
for a large application with a lot of tasks (100–1000) and978-1-4673-7711-9/15/$31.00 c© 2015 IEEE

to verify the feasibility by an algorithm with polynomial
runtime complexity. Therefore, the concept of a time-triggered
scheduler with pure periodic time slots [4], [10], [15] is able
to conquer this complexity issue.

If the applications only consist of independent clusters, it is
possible to partially construct and analyze the time-triggered
schedule, named divide and conquer method [16]. We assume
that our application is fully tangled like shown in Figure 1, in
which the divide and conquer method is not applicable.

The time-trigged scheduling analysis with pure periodic
tasks is presented by Marouf and Sorel [10] for tasks placed
on the same core. Kermia and Sorel [6] propose a heuristic
algorithm to assign time slots based on a computational task
set with precedence constraints. This model does neither
include communication between tasks nor a communication
fabric like a NoC.

Closely related, some works [1], [2], [9], [16], [17] propose
to determine and verify the schedule by a solver. They for-
mulate the problem of determining a feasible time-triggered
schedule as a set of equations and use a solver to calculate
the schedule. With regard to our application size, the solver-
based approach does not scale to larger task sets because of
the exponential time complexity of this method.

This paper studies the schedulability analysis of these
fully tangled real-time tasks to adjust the typical industrial
application effectively to the platform with a NoC. We re-
solve these dependencies with a predictable Time-Triggered
Constant Phase (TTCP) scheduler. A TTCP scheduler assigns
periodic time slots for each task and each communication
entity, such that these constraints are satisfied. The benefit
of these periodic a priori known time slots is to easily store
them and to be able to analyze the system very tightly, because
no over-approximation, like the worst-case communication
pattern needs to be assumed [13]. Therefore, a TTCP scheduler
can schedule packets in a NoC with a high utilization. The path
for each packet is preserved a priori without unrolling till the
hyper-period. However, this approach requires a method to
determine a feasible set of these time slots. Regarding typical
industrial applications with 100–1000 tasks and much more
communication relations between them, a scalable analysis
algorithm is needed to handle this complexity.

The contributions of this paper are
• an approach of timely preserving the path in a NoC for

each packet such that the NoC and the core can be highly
utilized,

• an efficient and tight feasibility analysis for a NoC
without unfolding to the hyper-period,

• a heuristic algorithm to calculate a feasible set of time-
slots for all tasks in pseudo-polynomial time complexity.

Experiments confirm that the NoC with a feasible TTCP
schedule can be utilized with much more traffic than the
maximum possible shared bus load. Furthermore, our heuristic
finds a feasible slot assignment even for applications with a
high utilization. For typical industrial task sets with 1000 tasks,
our approach can utilize a 3× 3 NoC by around 60%, i.e. on
average a core sends 60% of its time data to another core
without interfering other packets.

Outline. In Section II, we define our tangled task model
including our platform. Section III presents the feasibility
analysis of the computational and communication tasks. Our
phase assignment approach of determining the time slots
for each task is presented in Section IV. We examine our
experiments in Section V to show the effectiveness of our
heuristic algorithm. Finally, Section VI concludes this paper.

II. SYSTEM MODEL

In this section, we present our tangled task model, which
consists of a computational task set T and a communication
task set C. Furthermore, the time-triggered scheduling ap-
proach is presented, which can schedule the system efficiently.

A. Platform model

We assume a platform described by a graph, as shown
in Figure 2, in which each node is either a core Cc ∈ C
for computation or a switch Ss ∈ S for communication,
c ∈ {0, 1, . . . |C| − 1}, s ∈ {0, 1, . . . |S| − 1} ⊂ Z+

0 . Each
edge between two nodes is depicted as an unidirectional link
Ll ∈ L, l ∈ {0, 1, . . . |L| − 1} ⊂ Z+

0 . |C|, |S|, |L| are the
number of cores, the number of switches and the number of
links, respectively.

A Network-on-Chip (NoC) is composed of these switches
S and links L. Furthermore, we assume that each core Cc
is connected via two links (one for each direction) with its
corresponding switch Ss. The NoC establishes a 2D-mesh
structure, as shown in Figure 2, thus |C| = |S|. Each switch
has the same arbiter, like the DSPIN NoC [11] implementation,
such that multiple paths can be established simultaneously.

Furthermore, the bandwidth of each link is upper-bounded
by a specified constant bL. Each link delays the data by a
certain amount of time, namely link delay dL. Similarly, to
forward data via a switch, we assume an upper-bounded switch
delay dS . We assume an inner switch architecture, as shown
in Figure 3, which allows a full connectivity between the input
and output ports like that used in the DSPIN NoC [11]. Each
output port has its own arbiter and each input port has its own
queue.

L1

L0

S0

C0

L18

L19

L23 L22

L3

L2

S1

C1

L20

L21

L25 L24

L5

L4

S2

C2

L29 L28

L7

L6

S3

C3

L26

L27

L33 L32

L9

L8

S4

C4

L30

L31

L35 L34

L11

L10

S5

C5

L39 L38

L13

L12

S6

C6

L36

L37

L15

L14

S7

C7

L40

L41

L17

L16

S8

C8

Figure 2: Example of a platform with 9 cores connected by a
3× 3 2D-mesh NoC

2

RR
RR
RR
RR
RR

Iin

Nin

Sin

Win

Ein

Iout

Nout

Sout

Wout

Eout

Figure 3: Inner switch structure: Each output port has its own
arbiter (e.g. round robin (RR)) and each input port has its own
queue. This type is used in the DSPIN NoC [11]. The ports
are named based on their direction with inner (I), north (N),
south (S), west (W) and east (E).

τ1 τ2 τ3

τ4 τ5τ7

τ6

τ8

κj with precedence

κj without precedence

Figure 4: Example DAG of an application with 8 tasks and 17
communication tasks

Each core has a Network Adapter (NA) to handle incoming
and outgoing data. The NA is able to shift outgoing data by
a certain delay, which is used by our approach later on. Each
core owns sufficient local memory for storing its program
code and temporally data. This local memory is only directly
accessible by the assigned core and the corresponding NA.

B. Computational task model

A computational task τi ∈ T is defined by its worst-
case execution time (WCET) Wτi , its period Pτi , its rela-
tive deadline Dτi , its assigned core ci and its predecessor
tasks Qi = {τv1 . . . τvq} ∈ T, i ∈ {0, 1, . . . |T|} ⊂ Z+

0 . The
computational task set T contains |T| computational tasks.
Each task τi releases an infinite number of jobs Jτi,k with
Jτi,k+1 = Jτi,k +Pτi , which arrive at their arrival time aτi,k,
k ∈ Z+

0 . Each job Jτi,k starts its execution at its starting time
Sτi,k. The periods of the tasks are harmonic, i.e. each period
is an integer multiple of the lower periods in the task set T.
Due to the real-time constraints, each job has to be completed
before its absolute deadline aτi,k + Dτi , whereas we assume
implicit relative deadlines Dτi = Pτi . In this paper, we assume
a given task to core mapping, which is given by the parameter
ci.

A task can have a set of predecessor tasks Qi, but all
precedence relations between the tasks must be resolvable in
a directed acyclic graph (DAG). An example of a simple DAG
is given in Figure 4.

Definition 1. (Precedence) If τi is a predecessor of τj , then
Jτi,l needs to complete its execution and transmits its data,
before Jτj ,k starts, if aτi,l ≤ aτj ,k, where aτi,l and aτj ,k are
the corresponding arrival times of the jobs, ∀l, k.

τ8
time

aτ8,0 aτ8,1 aτ8,2

τ1
time

aτ1,0 aτ1,1 aτ1,2 aτ1,3 aτ1,4

τ4
time

aτ4,0 aτ4,1 aτ4,2 aτ4,3 aτ4,4 aτ4,5 aτ4,6 aτ4,7 aτ4,8

Figure 5: Example of precedence and non-precedence com-
munication tasks. If the communication task is κj precedence,
the destination jobs to handle the data are indicated with solid
lines. If the communication task is κj non-precedence, the
destination jobs to handle the data are indicated with dashed
lines.

C. Communication task model

A communication task κj ∈ C is defined by a traversal
time Wκj , a period Pκj , a route Rj through the network, a
source task τSRCj for producing communication packets, and a
destination task τDSTj for consuming communication packets,
j ∈ {0, 1, . . . |C|} ⊂ Z+

0 . The communication task set C
contains |C| communication tasks.

Each communication task κj releases an infinite number of
packets pj,l, l ∈ Z+

0 , one packet in each period Pκj . Each
packet pj,l generates m flow control units (flits), which will
be individually passed through the network via a store-and-
forward policy. Each flit has a fixed size F regardless of
the traversal time Wκj of κj . The maximum amount of data
transmitted by each packet is m·F , which defines the traversal
time

Wκj =
m · F
bL

(1)

through a link, where bL is the upper-bounded link bandwidth.
For defining a period Pκj of a communication task κj , the
common approach is to send the data to the destination after
the execution of each job. If the periods of the source and
destination task are not equal PτSRCj

6= PτDSTj
, we define

Pκj = max(PτSRCj
, PτDSTj

) (2)

to avoid futile communication and allow to communicate more
packets. In order to keep the communication predictable, the
system designer can choose a certain sending and receiving job
for communication. Otherwise the first jobs would be used for
communicating, which is explained in the following. If always
the same specific job sends data to its specific destination job,
the communication is deterministic.

There exist two types of communication tasks, namely κj
precedence and κj non-precedence, depending on whether
τSRCj is a predecessor of τDSTj . Only certain jobs of τSRCj
have data to be sent to τDSTj . Due to harmonic periods of T
and the setting that the first job of each task arrives at the
same time 0, the jobs of task τSRCj are indexed as the h-th
jobs of τSRCj sending data to its destination with

h =

⌈
PτDSTj

PτSRCj

⌉
g, g ∈ Z+

0 . (3)

3

The corresponding job JτDSTj ,k
to receive the packet of the

sending job JτSRCj ,h
is defined as the earliest job of task τDSTj

that
• starts its execution at time SτDSTj ,k

no earlier than aτSRCj ,h

if κj precedence, or
• starts its execution at time SτDSTj ,k

no earlier than
aτSRCj ,h

+ PτSRCj
if κj non-precedence.

An example for the precedence definition and the correspond-
ing timing in the destination jobs is shown in Figure 5.

For ensuring a feasible communication, each packet pj,l
needs to be completely transmitted before its absolute deadline
dκj,l = SτDSTj ,k

, which is the starting time of the job of τDSTj
for processing the packet. If the source task τSRCj and the
destination task τDSTj are placed on the same core, we assume
the communication can be done in zero time. Nevertheless, a
precedence relation might even exist between these tasks.

The route Rj of a communication task κj is defined by
a list of the nodes beginning with the first switch, some
intermediate switches Ss and the destination core CcDSTj

. For
the 2D-mesh structure of the NoC, the routes are calculated
by an X-Y routing policy [12]. The number of links on the
route is denoted as |Rj |. Under a X-Y routing policy, a packet
is sent at first to the switch with the same X position like the
destination and secondly it goes directly on the Y-axis to the
destination.

D. Time-Triggered Constant Phase (TTCP) scheduling

This section presents the scheduling approach, which is
used to schedule both the computational and communication
tasks. We assume a time-triggered scheduler, which assigns
a constant phase to each task τi and κj , which is implicitly
presented in [10], [15] and explicitly in [4] without considering
NoCs. A phase determines the a priori known time shift
between the start of a task and their arrival time. The TTCP
scheduler assigns a certain periodic time slot for each task
such that the task is only allowed to be executed in this slot.
For the definition of the phases, the TTCP scheduler assumes
that all tasks arrive synchronized at time 0 for releasing their
first job Jτi,0.

The idea of the constant phase is to reduce the number of
timing parameters to define the starting times of the jobs. The
phases can be stored very efficiently and the schedulability
analysis can be performed efficiently as well. Furthermore,
due to the time-triggered scheduling principle, the starting
times are known a-priori, which ensures a tight and reliable
scheduling analysis. The TTCP scheduler is a contention-
free scheduler, i.e. the phases are set such that a resource is
requested by at most one task at any time.

Each computational task τi and communication task κj have
a phase, Φτi and Φκj , respectively. For the feasibility analysis,
additional constraints are defined based on the combination of
τi and κj . The phase of a communication task can only start
after the computational task finishes, thus Φκj ≥ ΦτSRCj

+
WτSRCj

need to be fulfilled.
We will define the corresponding timing parameters of κj

based on the arrival time aτSRCj ,h
of a job from τSRCj , which

triggers κj . For a defined phase Φκj of κj , the communication

in the NoC is done through the X-Y routing protocol. Suppose
the z-th node on the X-Y routing path Rj of κj , according
to the NoC and the time-triggered schedule. Thus, the z-th
node is used for this communication task in time interval
[aτSRCj ,h

+Φκj+z(dS+dL), aτSRCj ,h
+Φκj+z(dS+dL)+Wκj).

Therefore, according to the above definitions, the communica-
tion task illegally transmits the packet to the destination later
than aτSRCj ,h

+ Φκj + |Rj |(dS + dL) + Wκj , if there is no
conflict in the path.

According to the definition of the two computational jobs
that are communicating, represented by κj in Section II-C, we
have the following three cases to set the absolute deadline of
the communication job:
• aτSRCj ,h

+ ΦτDSTj
if κj precedence, or

• aτSRCj ,h
+ ΦτDSTj

if κj non-precedence and
PτSRCj

≤ PτDSTj
and PτSRCj

≤ ΦτDSTj
, or

• aτSRCj ,h
+ΦτDSTj

+PτSRCj
if κj non-precedence and PτSRCj

>
PτDSTj

or PτSRCj
> ΦτDSTj

.
As a result, we can define the relative deadline of a commu-
nication task κj with respect to the arrival time of a job of its
source computational task as follows:

Dκj =

ΦτDSTj
if κj precedence

ΦτDSTj
+PτSRCj

⌈
PτSRCj

−ΦτDSTj
PτDSTj

⌉
otherwise.

(4)

III. FEASIBILITY ANALYSIS AND PROBLEM DEFINITION

In this section, we present the feasibility analysis for a
TTCP scheduled system. We propose to use a TTCP scheduler
on each core and to arbitrate the communication in a time-
triggered manner, too. A time-triggered NoC implies that a
packet of κj is delayed by the NA such that no contention
occurs in the NoC. Furthermore, the schedule on each core is
predictable and contention-free as well.

For determining conflicts in the TTCP scheduler the follow-
ing theorem can detect a conflict between two tasks.

Theorem 1. For two periodic time-triggered constant phase
scheduled tasks τi and τj with known Φτi and Φτj , suppose
a hypothetical phase Ψ with Ψτi = Φτi mod gcdi,j , Ψτj =
Φτj mod gcdi,j and Ψτi ≥ Ψτj . These two tasks are feasibly
scheduled by TTCP if, and only if,

(Ψτi ≥ Ψτj +Wτj)and (Ψτj ≥ Ψτi +Wτi − gcdi,j) (5)

Proof: This has been proven [4], [10].
Focusing on the communication, a conflict between two

communication tasks can be analyzed similar to computational
tasks. Based on the X-Y routing protocol in the NoC, there
exists at most one switch where two communication tasks can
collide. Therefore, to detect the collision, we need to evaluate
whether a link is used by two communicating tasks at the same
time. Suppose two communicating tasks κi and κj . According
to the X-Y routing, they collide on the switch SC before the
first shared link. Furthermore, suppose that SC is the zi,j-th
node in the routing path Ri. The two communicating tasks do
not collide with each other, if their intervals to use the switch
SC do not overlap with each other. For notational brevity, let
the conflict matrix Mi,j be defined as follows:

4

L1

L0

S0

C0

L8

L9

L11 L10

L3

L2

S1

C1

L13 L12

L5

L4

S2

C2

L14

L15

L7

L6

S3

C3

(a) (b)

κ2

κ1

time
0 5 10 15 20 25

C1
S1

S0

C0
S3

S2

C2

Figure 6: Example forMi,j : The routing (a) and the schedule
(b) are presented for κ1 and κ2 colliding at switch S1, with
R1 = {S0,S1, C1}, R2 = {S2,S3,S1, C1}, z1,2 = 2, z2,1 = 3,
dS + dL = 2ms, M1,2 = 4ms, M2,1 = 6ms, Wκ1

= 7ms,
Wκ2

= 10ms, Φκ1
= 0, Φκ2

= 5.

Mi,j =

{
zi,j(dL+dS) if Ri overlaps with Rj
∅ otherwise.

(6)

The example in Figure 6 demonstrates the usage of Mi,j .

Theorem 2. Suppose two periodic time-triggered constant
phase scheduled communication tasks κi and κj withMi,j 6=
∅ and with known Φκi and Φκj . Let Ψκi = (Φκi +Mi,j) mod
gcdi,j , Ψκj = (Φκj + Mj,i) mod gcdi,j with Ψκi ≥ Ψκj .
These two tasks are feasibly scheduled by TTCP (in X-Y
routing), if

(Ψκi ≥ Ψκj +Wκj)and (Ψκj ≥ Ψκi +Wκi − gcdi,j) (7)

Proof: With X-Y routing and no back pressure in the
NoC, two packets can collide at most once at a particular
switch. Otherwise, this particular switch would sequentialize
the packets such that no further conflict can occur. The elapsed
time getting to the critical switch is represented by Mi,j

after the communicating task is started. Therefore, we can
consider that this critical switch is the resource that may be
used by more than one tasks in the time-triggered manner. The
collision detection on this critical switch is hence the same as
that in Theorem 1.

Problem statement: For a given system, consisting of a
platform with a NoC communication fabric, a computational
task set T and communication task set C, which are scheduled
by a TTCP scheduler, the problem is to
• determine computational task phases Φτi , and
• determine communication task phases Φκj ,

such that all real-time and precedence constraints hold and the
system is schedulable. Note that this is a satisfiability problem
where each feasible solution has the same quality.

A feasible phase remains in a certain range,

0 ≤Φτi ≤ Pτi −Wτi (8)
ΦτSRCj

≤Φκj ≤ Dκj −Wκj − |Rj |(dS + dL), (9)

where Dκj is the deadline for κj depending on κj is prece-
dence or κj non-precedence (Equation (4)).

Additionally, each τi and κj task needs to be executed
without any conflict with other tasks. All tasks are tested
for conflicts to each other by using Theorems 1 and 2. If
no conflict occurs and (8) and (9) hold, then our system can

Estimate
WCTRT ρj

Analyze
T

Analyze
C feasible?

Update
WCTRT ρj

feasible

infeasible

ρj Φτi
Φτi

Φκj

a←a+1ρj a>n

Figure 7: The workflow for solving the cyclic dependencies
among each T and C.

time
job Ji,k another jobpacket pj,l

aτi,k

Blowi

Wτi ρj Wκj

Φτi Bmj Φκj Dκj

aτi,k+1 = aτi,k + Pτi

Figure 8: Additional parameters for TTCP scheduled tasks τi
and κj , namely: Bmj , Blowi , ρj , Wκj

feasibly be scheduled under the given phases Φτi and Φκj .
Note that the precedence constraints are not explicitly included
in the equations. They are implicitly ensured by limiting the
feasible range for each Φκj .

IV. PHASE ASSIGNMENT

This section provides an overview of the method, we pro-
pose to solve the problem described above. Either a heuristic
algorithm or the Satisfiability Modulo Theories (SMT) solver
can determine the phases of our problem. Our approach
is to perform the computational and communication phase
assignment in a cyclic structure with a heuristic algorithm.

Figure 7 shows the iteration between the computation and
communication analysis. Unfortunately, both analyses depend
on each other. The idea is to analyze the computational and
communication task sets separately. Preliminary experiments
point out that a small number of iterations n is sufficient to
get stable phases. Hence, we limited our heuristic to n = 10
iterations in the experiments. In the following subsections, the
communication analysis and the computational analysis are
presented. We introduce additional parameters, as shown in
Figure 8, for assigning the phases to each task.

Each computational task τi gets a lower bound Blow, which
limits the range of the phase. Similarly, each communication
task κj gets a minimal communication phase Bmj = aτSRCj ,h

+
ΦτSRCj

+WτSRCj
. Considering the network delays, the network

traversal time Wκj = Wκj + |Rj |(dS + dL) is the maximum
time between sending and receiving of a packet. As presented
in Figure 8, the packet delay ρj = ΦτSRCj

− Bmj determines
the delay between the arrival of a communication task and
the starting time of sending to the destination. For the first
iteration, we estimate each ρj = 0, but further iterations can
increase them.

A. Phase assignment Φτi under given ρj
This subsection explains the computational phase assign-

ment Φτi for each computational task τi under given packet
delays ρj . Since we have to satisfy the precedence constraints,
we first perform topological ordering Ωτ of the given task

5

graph (by ignoring all the non-precedence communication
tasks in this step). Note that Ωτ is an order of all τi.

Suppose that task τi is the i-th task in Ωτ . Our heuristic
assigns each Φτi of τi one by one following Ωτ . For the i-th
task τi, we first check the lower bound Blowi for executing
τi. For verification, we have to consider κj precedence and κj
non-precedence that may affect the phase assignment of τi.

For defining this lower bound, let Eprec,τi be the set of
κj , consisting of κj precedence, in which τi is τDSTj of κj ,
i.e., Eprec,τi =

{
κj | κj precedence and τDSTj = τi

}
. For the

precedence constraint, we cannot assign the phase Φi of τi
before the predecessors finish and their corresponding packets
are received. Therefore, Φi cannot start before

bprec,i = max
κj∈Eprec,τi

(ΦτSRCj
+WτSRCj

+ ρj +Wκj). (10)

Similarly, Enp,τi only considers κj non-precedence. So,
let Enp,τi be the set of communication tasks κj , consisting
of κj non-precedence, in which τi is τDSTj of κj , i.e.,
Enp,τi =

{
κj | κj non-precedence and τDSTj = τi

}
. For the

non-precedence constraint, we know that we cannot assign
the phase Φi of task τi before the required packets from the
sources have received. Therefore, Φi cannot start before

bnp,i = max
κj∈Enp,τi

(Bmj − PτSRCj
+ ρj +Wκj). (11)

Hence, by respecting both precedence and non-precedence
communication tasks, we cannot legally assign the phase of
task τi less than Blowi , where

Blowi = max(0, bnp,i, bprec,i). (12)

After Blowi is calculated, we search chronologically through
the time to get a feasible phase Φτi , starting from Blowi . We
verify whether a phase assignment for computational tasks is
feasible or not by using Theorem 1.

B. Phase assignment Φκj for given Φτi

In this subsection, we present our approach to assign the
communication phases Φκj for each κj scheduled in a NoC
under given Φτi . Similar to the task order Ωτ , we define a com-
munication phase assignment order Ωκ for the communication
tasks. Since the phases of the computational tasks are already
specified, we can define the urgency of the communication
tasks by their relative deadlines defined in (4), i.e., Ωκ starting
with the tasks with the shortest relative deadline.

Our greedy approach (Algorithm 1) assigns the communica-
tion phases Φκj according to the defined order Ωκ. Therefore,
we first try to set the phase Φκj to Bmj , which represents the
completion of the source task τSRCj .

By using Theorem 2, if the current assignment of Φκj is not
feasible, we resolve the conflict by delaying this communica-
tion task for a certain amount of time such that this conflict
is resolved, shown in Algorithm 2.

C. Time complexity of our heuristic

We now analyze the complexity of the workflow presented
in Figure 7 for one iteration of phase assignments for C and
T. The time complexity of determining the conflict matrixM
is O(|C|2 · |S|). Thus, the time complexity for Algorithm 2 is

Algorithm 1 Heuristic algorithm for assigning the phases of
the communication task set C
Input: C, T, Ωκ, and platform;
Output: Phases Φκj , packet delay ρj and feasibility;

1: ∀κj Bmj ← ΦτSRCj
+WτSRCj

;
2: Calculate a route conflict matrix M for given platform;
3: for ` = 1, · · · , |C| stepped by 1 according to Ωκ do
4: Φκ` ← Bm` ;
5: feasible ← false;
6: while (Φκ` < Pκ`) and (feasible = false) do
7: feasible ← true;
8: for each κj with j < ` do
9: δ` ← ResolveCommConflict(κ`,κj ,M);

10: if δ` 6= 0 then
11: Φκ` ← Φκ` + δ`;
12: feasible ← false;
13: if (feasible = false) then
14: return “not feasible”;
15: ρ` ← Φκ` −Bmj ;
16: return “feasible”;

Algorithm 2 ResolveCommConflict() - algorithm
Input: κ`, κj , M;
Output: time shift t;

1: t ← 0;
2: if ∃ conflict between route R` and Rj via M then
3: Calculate gcd`,j of Pκ` and Pκj ;
4: Ψa ← (Φκ` +M(`, j) · (dL + dR)) mod gcd`,j ;
5: Ψb ← (Φκj +M(j, `) · (dL + dR)) mod gcd`,j ;
6: if (Ψa < Ψb) then
7: if Ψb < Ψa+Wκa then
8: t ← Ψa +Wκa −Ψb

9: else if Ψa+gcd`,j < Ψb+Wκb then
10: t ← Ψa + gcd`,j +Wκa −Ψb;
11: else
12: if Ψa < Ψb+Wκb then
13: t ← Ψa +Wκa −Ψb;
14: else if Ψb+gcd`,j < Ψa+Wκa then
15: t ← Ψa +Wκa −Ψb − gcd`,j ;
16: return t;

O(1). The time complexity of the phase assignment ordering
is O(|C|2), because for each κj , we need to find the lowest
Dκj . Each Ωκa assignment takes at most |C| iterations.

With regard to Algorithm 1, one while-loop has time
complexity O(|C|) for detecting a conflict with another com-
munication task. The while-loop is executed at most ν times,
with ν = |C|(

⌈
Pκ`
Pκ0

⌉
+
⌈
Pκ`
Pκ1

⌉
+ . . .+

⌈
Pκ`

Pκ(`−1)

⌉
), because each κ`

collides at most once with another job, in which
⌈
Pκ`
Pκj

⌉
jobs

for each κj exists. Thus, ν ≤
⌈
Pmax
Pmin

⌉
|C|2. Therefore, the time

complexity of Algorithm 1 is O(
⌈
Pmax
Pmin

⌉
|C|3|S|). Similarly, the

time complexity for the computational phase assignment is
O(
⌈
Pmax
Pmin

⌉
|T|3).

Hence, the time complexity of our workflow for assigning
the phases of C and T is O(n

⌈
Pmax
Pmin

⌉
(|T|3+|C|3|S|)), where n

is the number of iterations defined in the workflow (Figure 7).

D. Phase assignment by an SMT solver

Another approach is to solve the feasibility test with the Sat-
isfiability Modulo Theories (SMT) solver, which is described

6

in this section. The problem to determine a feasible set of
computational and communication phases can be formulated
into a set of equations, called SMT problem. In the Appendix
is the detailed Algorithm 3, which represents the formulated
SMT problem for our task model.

In general, there exist two different ways to formulate the
SMT problem. On one hand, the problem can be formulated
on the task level by using all equations from the feasibility
test, see Section III. On the other hand, the schedule can
be unfolded to the job level. Preliminary experiments point
out, that the job level formulation of the SMT problem re-
quires significally less runtime than the task-level formulation.
Therefore, Algorithm 3 in Appendix shows only the job
level formulation, as a base-line for comparison, though both
formulations were implemented in the experiments.

V. EXPERIMENTS

In this section, we present experiments to explore the
capabilities of our phase assignment algorithm getting feasible
results.

A. Experimental set up

We generate randomized synthetic system sets based on our
system model with typical industrial application characteris-
tics, like an engine control system to get reliable results with
harmonic periods and a large number of tasks, i.e. 100–1000
tasks with appropriate communications. Note that arbitrary
periods would lead to a lower system utilization and the
sending and receiving jobs becomes inconsistent.

The generator performs the following steps for one system
including a platform with computational and communication
task sets.

1) Platform generator: Build a 3×3 platform like in Figure 2
with all cores, switches and links.

2) Random computational task set: Generate 100–1000 task
with harmonic periods and no heavy tasks.

3) Random communication task set: Generate 2 × |T| to
4× |T| communication tasks that connects τi with each
other. Each κj has a chance of 20% to get a precedence
constraint, if not specified.

4) Task to core mapping: Worst-fit bin packing, minimizing
the communication utilization by placing tasks to the
same core.

In each experiment and particular parameter setting, 100
randomized system sets are generated and the feasibility is
evaluated for different algorithms. We calculate an upper
bound for the feasibility, which is done based on utilization
tests on an individual core under the task mapping.

For the SMT solver, we use the Z3 solver (version 4.3.2.0)
[3] with a 10 min timeout, i.e. after this time the solution is
neither feasible nor infeasible. The time out results are shown
as gray areas in the plots. In order to get a solution from the
SMT solver, the size of a task set in the experiments is set to
|T| = 100 tasks with |C| = 300, whereas other experiments
use |T| = 250 tasks with |C| = 750. Note that the SMT solver
failed for larger system sets due to its memory requirement.
Our heuristic algorithm returns also a solution in larger sets,

shown in Section V-B5. The complexity of the SMT solver
based solution takes exponential time complexity in terms of
tasks, whereas our heuristic is executed in pseudo-polynomial
time complexity.

B. Experimental results

This section presents several experimental results, showing
the capabilities of our approach.

1) Reachable utilization: In this experiment, we present
the reachable system utilization of the TTCP approach in
conjunction with our heuristic algorithm. The results are
shown in Figure 9a and 9b with |T| = 100 and |C| = 300.

On the abscissa is the core utilization Uτ or communication
utilization Uκ with Uτ =

∑
∀τi(

Wτi

Pτi
) and Uκ =

∑
∀κj (

Wκj

Pκj
),

which represents the utilization summation of the computa-
tional or communication tasks, respectively. We compare our
heuristic against the SMT solver based approach, which takes
much more time to compute. As both figures show, the TTCP
scheduling approach is capable to effectively utilize the cores
and the NoC for larger applications. Note that the single
core utilization bound is Uτ ≤ 1 and the single shared bus
utilization bound is Uκ ≤ 1. In the experiment run time
and solver feasibility (Section V-B5), we focus more on the
comparison between the SMT solver and our heuristic.

Additionally, we run another experiment with |T| = 1000
and |C| = 3000, where the solver was unable to provide
a solution. Here, the heuristic algorithm returns a feasible
solution with Uκ = 60% for 50% of the tested task sets in
around 12s. A communication utilization of Uκ = 60% means
that a core sends on average in 60% of its time a packet to
other cores without interfering other packets or violating the
real-time constraints.

2) NoC scalability: This experiment examines different
NoC platform sizes. The structure and the policies of the
NoC are unchanged except the platform size from 4 to 64
cores. We evaluate the computation and the communication
utilization for different NoCs, which are shown in Figure 10a,
10b. We can effectively utilize larger NoCs with our method.
In the experiments the number of computational tasks is set
to |T| = 250. With a platform of 36 cores the task set reaches
its limits, so more cores do not enable more computation
nor more communication resources. Additionally, the upper
bound drops down Uτ > 25 under less than 30%. Hence,
no feasible schedule could be found regardless of the NoC
size. The reason is that the precedence constraints reduce the
parallelizability, which is examined in Section V-B4.

3) Communication phase assignment order: For the com-
munication phase assignment, we define an order Ωκ based
on deadline monotonic (DM) in our heuristic algorithm. There
exist other possibilities to define the Ωκ, which are evaluated in
this experiment. The lower periods first (LPF) heuristic assigns
the order based on the period. If the periods are equal, then
the lower Bmj is assigned first.

The DAG heuristic analyzes the DAG to define Ωκ. Each
path in the DAG gets a score such that κj on a higher
scored path is assigned before in Ωκ. For the understanding
of the importance of the communication ordering, we add

7

Fe
as

ib
le

so
lu

tio
ns

/
%

Core utilization Uτ
(a)

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

Heuristic
Feasibility upper bound

SMT solver

Fe
as

ib
le

so
lu

tio
ns

/
%

Communication utilization Uκ
(b)

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

Heuristic
Feasibility upper bound

SMT solver

Figure 9: Reachable utilization: Different computational (a) and communication (b) utilization on a 3× 3 NoC

Fe
as

ib
le

so
lu

tio
ns

/
%

Core utilization Uτ
(c)

0 5 10 15 20 25 30
0

20

40

60

80

100
2× 2
3× 3
4× 4
5× 5
6× 6
7× 7
8× 8

Fe
as

ib
le

so
lu

tio
ns

/
%

Communication utilization Uκ
(d)

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100
2× 2
3× 3
4× 4
5× 5
6× 6
7× 7
8× 8

Figure 10: NoC scalability: Computational (a) or communication (b) utilization for different sized mesh NoCs are presented
here. The dashed lines represent corresponding upper bound.

Fe
as

ib
le

so
lu

tio
ns

/
%

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

Core utilization Uτ

Heuristic DM
Heuristic DAG
Heuristic LPF

Random Order
Upper bound

Figure 11: Communication phase assignment orders: Different
methods to define the order Ωκ are compared to each other.

pure randomized assignments. Figure 11 shows that the DM
heuristic for the phase assignment ordering outperforms the
other approaches.

4) Precedence rate influence: In this experiment, we eval-
uate the influence of the precedence constraints given by the
application. Figure 12 shows that the reachable utilization
strongly depends on the precedence rate. Therefore, an appli-
cation full of precedence constraints is hard to be parallelized.
Furthermore, applications with no precedence relations, but
communication relations can be parallelized quite well.

5) Run time and solver feasibility: Based on Figure 9a,
it seems obvious that the SMT solver is better to determine
the phases for the computational and communication tasks.
On one hand, the maximum feasibility of the SMT solver is
higher, but not much higher than our heuristic algorithm. On

Fe
as

ib
le

so
lu

tio
ns

/
%

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

Core utilization Uτ

0%
20%
40%
60%
80%

Figure 12: Precedence rate influence: Different precedence
rates significally determine the reachable core utilization Uτ .

the other hand, the time complexity of our heuristic is more
affordable, which makes it capable for handling large-scaled
applications. In Figure 13 and 14, we evaluate the SMT solver
and our heuristic under different sized sets. The experiment
runs on a 3 × 3 NoC with |C| = 3|T| such that both task
sets increase their size. The computational utilization is set
to Uτ = 4.5 = 50%Umax and the communication utilization
is set to Uκ = 1. With |T| = 100 the SMT solver was able
to solve the given problem, but later the solver returns no
feasible solution, because the problem size exceeds its limits.
For instance, with |T| = 1000, the SMT problem would result
in approximately 8 · 109 ASSERT statements for describing
the problem. Considering typical industrial cases, of 100–1000
tasks only our heuristic is able to provide a feasible solution.

8

R
un

tim
e

24 42 75 133 237 422 750 1334
1ms

10ms

100

1s

10s

100s

1000s

area of interest

time out border of 10 min

Number of tasks |T|

Heuristic
SMT solver

Figure 13: Run time and solver feasibility: Double logarithmic
plot of the runtime for different phase assignment methods.

Fe
as

ib
le

so
lu

tio
ns

/%

24 42 75 133 237 422 750 1334
0

20

40

60

80

100

Number of tasks |T|

Heuristic
SMT solver

Figure 14: Run time and solver feasibility: Semi-logarithmic
plot of the feasibility of assignment methods. With more than
|T | > 133 tasks, the solver reached its limits depending on
the hyper-period, such that no solution can be found.

VI. CONCLUSION

In this paper, we show that a tangled task model, which
is typical for industrial applications, can be scheduled by a
time-triggered constant phase (TTCP) scheduler on a multicore
system with NoCs. This approach is capable to highly utilize
both the cores and the NoC for typical industrial applications
with a large amount of tasks. We provide a feasibility analysis
to verify the real-time constraints by a given set of time-
triggered parameters. Furthermore, we present an iterative
algorithm to determine a feasible set of the TTCP scheduling
parameters running in pseudo-polynomial time complexity for
our tangled task model. Experiments show the maximum pos-
sible utilization of large and tangled applications. Additionally,
we confirm that the task precedence constraints limit the
parallelizability of typical industrial applications.

REFERENCES

[1] A. Biewer, J. Gladigau, and C. Haubelt. A novel model for system-level
decision making with combined ASP and SMT solving. In DATE, 2014.

[2] S. S. Craciunas and R. S. Oliver. Smt-based task-and network-level static
schedule generation for time-triggered networked systems. In RTNS,
page 45, 2014.

[3] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS,
2008.

[4] M. Freier and J.-J. Chen. Time triggered scheduling analysis for
real-time applications on multicore platforms. In RTSS workshop on
REACTION, pages 48–53, 2014.

[5] K. Goossens, J. Dielissen, and A. Radulescu. Æthereal network on chip:
Concepts, architectures, and implementations. IEEE D & T, 2005.

[6] O. Kermia and Y. Sorel. A rapid heuristic for scheduling non-preemptive
dependent periodic tasks onto multiprocessor. In ISCA PDCS, 2007.

[7] T. Kuroda. Low-power, high-speed cmos vlsi design. In Computer
Design: VLSI in Computers and Processors, pages 310–315, 2002.

[8] Z. Lu and A. Jantsch. TDM virtual-circuit configuration for network-
on-chip. VLSI Systems, ’08.

[9] M. Lukasiewycz, R. Schneider, D. Goswami, and S. Chakraborty. Mod-
ular scheduling of distributed heterogeneous time-triggered automotive
systems. In ASP-DAC’12, pages 665–670, 2012.

[10] M. Marouf and Y. Sorel. Schedulability conditions for non-preemptive
hard real-time tasks with strict period. In RTNS’10, 2010.

[11] I. Miro Panades, A. Greiner, and A. Sheibanyrad. A low cost network-
on-chip with guaranteed service well suited to the gals approach. In
NanoNet, 2006.

[12] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost. Hermes: an
infrastructure for low area overhead packet-switching networks on chip.
Integration, the VLSI Journal, 2004.

[13] P. Munk, M. Freier, J. Richling, and J.-J. Chen. Dynamic guaranteed ser-
vice communication on best-effort networks-on-chip. In 23rd Euromicro
International Conference on Parallel, Distributed, and Network-Based
Processing (PDP), 2015.

[14] C. Paukovits and H. Kopetz. Concepts of switching in the time-triggered
network-on-chip. In RTCSA, 2008.

[15] F. Reimann, M. Lukasiewycz, M. Glass, C. Haubelt, and J. Teich. Sym-
bolic system synthesis in the presence of stringent real-time constraints.
DAC, 2011.

[16] F. Sagstetter, S. Andalam, P. Waszecki, M. Lukasiewycz, H. Stähle,
S. Chakraborty, and A. Knoll. Schedule integration framework for time-
triggered automotive architectures. DAC, 2014.

[17] K. Schild and J. Würtz. Scheduling of time-triggered real-time systems.
Constraints, 2000.

APPENDIX

Algorithm 3 SMT formulating of a TTCP scheduling problem
Input: computational task set T, communication task set C;
Output: SMT problem;

1: for each τi ∈ T do
2: DEFINE t(i,0);
3: ASSERT t(i,0)≥ 0;
4: for each predecessor τp of τi do
5: if ci = cp then
6: ASSERT t(i,0)≥t(p,0);
7: else
8: ∀ κ` | κDST` = τi;
9: ASSERT t(i,0)≥c(`)+Wκ` ;

10: ASSERT t(i,0)< Dτi −Wτi ;
11: for each job Jτi,k , k = 1, · · · h

Pτi
stepped by 1 do

12: DEFINE t(i,k);
13: ASSERT t(i,k) = t(i,0)·k·Pτi ;
14: for each κj ∈ C do
15: DEFINE c(j,0)
16: ASSERT c(j,0)≥t(SRCj ,0);
17: if κj precedence then
18: ASSERT c(j,0)≤t(DSTj ,0)−Wκj ;
19: else
20: if PτSRCj

≥ PτDSTj
then

21: ASSERT c(j,0)≥t(DSTj ,0)+PτSRCj
−Wκj ;

22: else
23: ASSERT (c(j,0)≤ t(DSTj ,0) −Wκj and t(DSTj ,0) ≥ PτSRCj

) or (c(j,0)≤ t(DSTj ,0)+PτSRCj
− Wκj and t(DSTj ,0) <

PτSRCj
);

24: ASSERT c(j,0)≥t(SRCj ,0);
25: for each packet pj,l, l = 1, · · · h

Pκj
stepped by 1 do

26: DEFINE c(j,l);
27: ASSERT c(j,l) = c(j,0)·l·Pκj ;
28: for i = 1, · · · , |t| stepped by 1 do
29: for k = 1, · · · , |t| stepped by 1 (k 6= i) do
30: ASSERT (t(i) ≥ t(k) + Wτk) or (t(k) ≥ t(i) + Wτi);
31: for j = 1, · · · , |c| stepped by 1 do
32: for l = 1, · · · , |c| stepped by 1 (l 6= j) do
33: ASSERT (c(j) ≥ c(l) + Wκl) or (c(l) ≥ c(j) + Wκj);

9

