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ABSTRACT
In this paper, we study the problem of scheduling arbitrary-

deadline real-time sporadic task sets on a multiproces-
sor system under global fixed-priority scheduling. Two
contributions are made in this paper. First, it has been
shown that the existing response time analysis in arbitrary-
deadline systems is flawed: the response time may be
larger than the derived bound. This paper provides a
revised analysis resolving the problems with the original
approach, and then propose a corresponding schedulability
test. Secondly, we derive a linear-time upper bound on the
response time of arbitrary-deadline tasks in multiprocessor
systems. To the best of our knowledge, this is the first work
presenting a linear-time response time upper bound for
arbitrary-deadline sporadic tasks in multiprocessor systems.
Empirically, this linear-time response time bound is shown
to be highly effective in terms of the number of task sets
that are deemed schedulable.

1. INTRODUCTION
Analyzing the worst-case response time is one of the most

important issues for designing hard real-time systems to
ensure the timeliness of tasks, especially for safety-critical
embedded systems. There have been extensive results in
such a general direction since the seminal paper by Liu and
Layland [24]. A well-adopted real-time task model is the
sporadic task model, in which a sporadic task τi defines an
infinite sequence of task instances, also called jobs: (1) Any
two consecutive jobs of task τi should be temporally sepa-
rated by at least Ti. (2) The execution time of a job of task τi
is at most Ci (also known as the worst-case execution time).
The response time of a job of task τi is its completion time
minus its arrival time. Therefore, the worst-case response
time of task τi is (an upper bound of) the maximum response
time among all the jobs of task τi.

Typically, for real-time systems, a sporadic task τi also
has an associated relative deadline Di. To ensure that the
relative deadline of task τi is met, we essentially have to
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verify whether the worst-case response time of task τi is at
most Di. Verifying whether a set of sporadic tasks can meet
all the relative deadlines by a scheduling algorithm is called a
schedulability test. The difficulty of the schedulability tests
also depends on the relationship of the relative deadlines
and the periods of the tasks, which are typically classified
with the following cases: (1) implicit deadlines if the relative
deadlines of the sporadic tasks are equal to their minimum
inter-arrival times, i.e., Ti = Di, ∀τi, (2) constrained dead-
lines if the minimum inter-arrival times are no less than their
relative deadlines, i.e., Di ≤ Ti, ∀τi, and (3) arbitrary dead-
lines, otherwise. It is evident that the case with arbitrary
deadlines is the most general one.

For uniprocessor fixed-priority scheduling in arbitrary-
deadline task systems, the exact schedulability tests and
the (tight) worst-case response time using time-demand
analysis (TDA) are proposed by Lehoczky [23, 30]. Such
results may suffer from their high time-complexity because
of the explosion of busy interval in arbitrary-deadline
systems. From the designers’ perspective, a fast test is
more applicable during design space exploration, even at
a price of the accuracy. Several approaches have been
proposed for reducing the computational complexity of
the TDA [13, 27]. Lehoczky proposes a utilization upper
bound for a set of periodic arbitrary-deadline tasks under
fixed-priority scheduling [12]. Bini proposes a quadratic
bound by considering some information about the task
periods [12]. The linear-time response-time bound for
fixed-priority systems has been first proposed by Davis
and Burns [17]. This bound has been later improved by
Bini et al. [15].

To schedule real-time tasks on multiprocessor platforms,
there are three widely adopted paradigms: partitioned,
global, and semi-partitioned scheduling [19]. In this paper,
we consider global scheduling, in which a job can migrate
from one processor to another processor during its execu-
tions. But, a job cannot be simultaneously executed on
more than one processor.

Unfortunately, deriving exact schedulability tests under
multiprocessor global scheduling is extremely harder than in
uniprocessor due to the non-existence of critical instant. The
first brute force approach regarding the exact response time
is proposed by Baker and Cirinei [5]. The analysis consists
in solving reachability problem in a finite state machine
that represents all possible combinations of arrival times
and execution sequences for a task set. In addition, some
results are recently proposed to reduce the number of states
to be analyzed in the reachability analysis [21, 28]. Gen-



erally speaking, these approaches are so complex that only
task sets with very small integer periods can be tractably
solved. Alternatively, most of the research in the literature
focus on finding approximate upper bounds to the response
time. The response time analysis for implicit-deadline spo-
radic task systems has been studied by Andersson et al. [1].
The fixed-priority scheduling of constrained-deadline spo-
radic task systems has been studied in the literature [3,6,11].

Regarding arbitrary-deadline task systems, several results
have been proposed in the literature [4, 7, 22, 29]. Baker [4]
designs a test based on some deep insights, in that if a
task τk misses its deadline, then the load in the analyzed
interval, called problem window, must satisfy some necessary
conditions on the parameters of all the tasks. Baruah and
Fisher [7] use another annotation to extend the analysis
window and derive a corresponding pseudo-polynomial-time
schedulability test. The first worst-case response-time anal-
ysis for arbitrary-deadline task systems is proposed by Guan
et al. [22], in which the authors use the insight proposed
by Baruah [8] to limit the number of carry-in tasks, and
then apply the workload function proposed by Bertogna et
al. [11] to quantify the requested demand of higher-priority
tasks. Unfortunately, it has recently been shown in [29] that
the analysis by Guan et al. [22] is optimistic for arbitrary-
deadline tasks. The assumption that each carry-in task
has only one carry-in job in [22] is in fact problematic,
as a carry-in task can be shown to carry more than one
carry-in job [29]. Sun et al. [29] derive a complex carry-in
workload function for the response time analysis where all
possible combinations of carry-in and non-carry-in functions
have to be explicitly enumerated. However, such a method
is computationally intractable since the time complexity is
exponential.

Contributions. We focus in this paper on providing worst-
case response time analyses by using the concept that has
been adopted by Guan et al. [22] with proper annotations.
Even though the assumption that each carry-in task has only
one carry-in job is problematic in [22], we can safely bound
the interference from the carry-in task by means of proper
definitions of the analysis window and annotations, to be
shown in Section 4. We summarize the significance of this
work as follows:

• The proper annotation of the number of carry-in jobs
of a carry-in task results in a revisited response time
analysis, in Section 4. Our analysis is distinct from
other analyses [4,7] in that our analysis quantifies the
carry-in function more precisely.

• In Section 6, we derive the first known linear-time
response time bound on arbitrary-deadline multipro-
cessor systems. To the best of our knowledge, this is
the first work presenting a linear-time response time
bound on arbitrary-deadline multiprocessors.

• We evaluate our results in Section 7 by comparing
to the state-of-the-art results for both constrained-
deadline systems [3, 6, 11, 22] and arbitrary-deadline
systems [4,7]. The experimental results show that our
time-demand analysis is comparable to the state of
the art [22] and superior to the others [3, 6, 11] for
constrained-deadline systems. Regarding arbitrary-
deadline systems, our TDA is much better than the

existing results [4, 7]. Moreover, compared to the
existing analyses [3, 4, 6, 7, 11], the proposed linear-
time upper bound on the worst-case response time is
shown to be highly effective, especially for large ranges
of periods, for which the time-demand analysis suffers
from its high computational complexity.

2. SYSTEM MODEL AND PROBLEM SET-
TING

This paper considers a set of n independent arbitrary-
deadline sporadic real-time tasks τ = {τ1, τ2, ..., τn} upon a
system comprised of m identical processors, where m ≥ 1 is
an integer. Each task can release an infinite number of jobs
(also called task instances) under the given minimum inter-
arrival time (temporal) constraint. We consider the sporadic
task model [25], where Ci denotes the worst-case execution
time (WCET) of task τi, the minimum inter-arrival time
or period Ti represents the minimum temporal distance be-
tween consecutive arrivals of task instances, and the relative
deadline Di represents the response time constraint for ex-
ecuting the job. If a task instance arrives at time θa, the
execution of this instance must be finished no later than its
absolute deadline θa +Di and the next instance of the task
must arrive no earlier than θa plus the minimum inter-arrival
time, i.e., θa + Ti. We assume that all task parameters are
positive integers. Since all the m processors are identical,
the execution time of a job of a task does not depend on the
processors that execute the job.

Task system τ is an implicit-deadline system if each task
τi ∈ τ has its relative deadline Di equal to its period Ti,
and a constrained-deadline system if each task τi ∈ τ has
relative deadline Di no larger than its period Ti. Otherwise,
task system τ is an arbitrary-deadline system. In this paper
we consider the most general arbitrary-deadline system.

We assume that the system is fully preemptive, and allows
for global inter-processor migration. We assume that the
cost of preemption and migration has been subsumed into
the worst-case execution time of each task. In this paper
each task is assumed to be preemptively scheduled on m
identical multiprocessor systems according to a global fixed-
priority scheduling, in which each task is associated with
a unique priority level. We assume that the jobs of the
same task are served by the first-come first-serve (FCFS)
policy; hence, a job becomes eligible to be executed only if all
previous jobs from the same task have been completed. At
any time point, the jobs of the (at most) m-highest priority
tasks in the ready queue are executed on the processors.
Moreover, intra-task parallelism is forbidden; hence, each
task may have at most one job executing on at most one
processor at any time. Due to the prohibition of intra-task
parallelism, we may have more than m jobs available to be
executed, but less than m jobs are executed.

Throughout this paper, we refer to the utilization factor
of task τi as Ui = Ci/Ti. We further assume the total
utilization UΣ =

∑n
i=1 Ui ≤ m and Ui ≤ 1. We let hp(i)

denote the set of tasks with priority higher than that of
task τi. For the simplicity of presentations, we define the
following terms:
• A legal sequence of jobs of the task system τ : The

arrival times of any two consecutive jobs of task τi ∈ τ
are separated by at least Ti.
• A legal schedule of a legal sequence of jobs: All the



temporal and scheduling constraints (except the dead-
lines) are met.
• Worst-case response time RTk of task τk: An upper

bound of the response times of all the jobs of task
τk ∈ τ under the legal execution for any legal sequence
of jobs of τ .

Problem Definition: The objective of this paper is to find
the worst-case response time of every task τk ∈ τ under the
given priority assignment. Throughout the paper, we will
implicitly only analyze a specific task τk under the assump-
tion that the worst-case response time RTi ≤ Di of every
higher-priority task τi in hp(k) has been already analyzed.
We will implicitly focus on the cases when |hp(k)| ≥ m,
since the cases with |hp(k)| < m can be trivially solved by
RTk ≤ Ck (under the assumption Ck ≤ Tk).

3. PRELIMINARY RESULTS AND DEFI-
NITIONS

This section reviews some results in the literature with
respect to the worst-case response-time analysis. We will
first explain the level-k busy interval (period) concept by
Lehoczky [23] in uniprocessor systems and extend the con-
cept for multiprocessor systems. As our analysis also ex-
ploits the workload function, as defined in [10, 15], we also
provide its definition at the end of this section.

3.1 Level-k Busy Interval for Task τk

For the special case with uniprocessor systems when m =
1, the response-time analysis for sporadic arbitrary-deadline
task systems under fixed-priority scheduling has been de-
veloped in [23]. The analysis utilizes a level-k busy interval
concept to evaluate the worst-case response time. For such
a case, we release all the higher-priority tasks in hp(k) to-
gether with task τk at time 0 and all the subsequent jobs are
released as early as possible by respecting to the minimum
inter-arrival time. The level-k busy interval finishes when a
job of task τk finishes before the next release of a job of task
τk.

For the h-th job of task τk in the level-k busy interval, the
finishing time Rk,h is the minimum t such that

hCk +
∑

τi∈hp(k)

⌈
t

Ti

⌉
Ci ≤ t,

and, hence, its response time is Rk,h−(h−1)Tk. The level-k
busy interval of task τk finishes at the h-th job if Rk,h ≤ hTk.

The above analysis works on one processor. However, it
requires quite some annotations for the general cases when
m ≥ 2. There are some difficulties for multiprocessor sys-
tems. In general, we are unaware of the worst-case release
pattern of the higher-priority tasks in hp(k) when m ≥ 2.
The level-k busy interval of task τk may have different arrival
patterns to create the worst-case response time for different
hs. As a result, all possible cases with some unfinished jobs
before the arrival of a job have to be considered!

Towards this, we need more precise definitions to capture
all the busy intervals for task τk and use them to safely
bound the worst-case response time. The first definition
defines whether a task is busy at time θ in a legal schedule.

Definition 1 (Task Busy). A task is said busy at
time instant θ in a legal schedule if at least one job of the
task that arrives earlier than θ has not yet completed its

execution at time instant θ.

Note that, by the definition, even if a task is busy at time
θ, it may not be executed at time θ. From Definition 2 to
Definition 3, we will look at a specific time interval starting
from time θa in a legal schedule of a legal sequence of jobs
of τ .

Definition 2 (A Level-k Busy Interval). A level-
k busy interval of task τk in a legal schedule is an interval
[θa, θa + t) of time in which, in the legal schedule, (1) task
τk is busy at all the time points in the interval, and (2) task
τk is not busy right prior to θa.

Definition 3 (An h-Incomplete Busy Interval).
A level-k busy interval [θa, θa + t) in a legal schedule is an
h-incomplete busy interval if the hth-job of task τk released
in the busy interval [θa, θa+ t) has not completed yet at time
θa + t.

The above definitions are general forms of the level-k busy
interval in [23], i.e., θa is 0 for the case when m is 1. If θa is
given, the maximum h-incomplete busy interval [θa, θa + t∗)
(under the assumption to start from θa) in a legal schedule
happens when task τk is not busy at time θa + t∗ or task τk
is (h + 1)-incomplete at time θa + t∗. Moreover, according
to the above definition, for a given θa as a fixed left point in
the busy intervals, an (h+ 1)-incomplete busy interval (if it
exists) completely covers an h-incomplete busy interval.

Definition 4 (Maximum h-Incomplete Length).
The maximum h-incomplete length Rk,h is the maximum
interval length among all the h-incomplete busy intervals in
the legal schedules of all the legal sequences of the jobs of
task system τ .

According to the above definitions, we can reach the fol-
lowing lemma regarding the worst-case response time RTk,h
of the hth-job released in a level-k busy interval.

Lemma 1. Suppose that Rk,h is known. The worst-
case response time RTk,h of the hth-job released in an
h-incomplete busy interval is at most Rk,h − (h − 1)Tk,
i.e.,

RTk,h ≤ Rk,h − (h− 1)Tk

Proof. According to Definition 4, we know that the
length of any h-incomplete busy interval of task τk is at
most Rk,h. For an h-incomplete busy interval, starting at
time θa, this implies that the finishing time of the h-th job
released no earlier than θa is at most θa + Rk,h. In a legal
sequence of jobs of task system τ , we also know that the
arrival time of the h-th job released no earlier than θa is at
least θa+(h−1)Tk. Therefore, we reach the conclusion.

Based on Lemma 1, we can now obtain the worst-case
response time of task τk by evaluating all possible RTk,h:

RTk ≤ maxh=1,2,... {RTk,h}

3.2 Workload Functions
The concept of workload function has been widely used in

real-time schedulability analysis [10,15]. Briefly, for a given
interval length t, the workload function of task τi is defined
to be the largest accumulative execution time of the legal
sequence of the jobs of task τi over an interval of length
t that could be legally executed within the interval. We
provide the formal definition as follows:



θa + Bk,hθaθ0

some proc. idled

Ak,h Bk,h

a 3-incomplete busy interval

Figure 1: An example of an h-incomplete busy interval and the downward extension to θ0.

Definition 5 (Workload Function [10,15]). For
any interval length t, the workload function Wi(t) of a
sporadic task τi bounds the maximum cumulative execution
requirement by jobs of τi that are released and may execute
within any interval of length t.

Wi(t) =

⌊
t

Ti

⌋
Ci +min(t mod Ti, Ci) (1)

It has been shown in [15] that the workload function is
upper-bounded by the following linear function:

Wi(t) ≤ Uit+ Ci(1− Ui) (2)

4. RESPONSE TIME ANALYSIS
Based on the observations in Section 3, we will first an-

alyze a safe upper bound of Rk,h for a given h. Then,
the worst-case response time of task τk can be obtained by
evaluating all possible values of h. Although the analysis
by Guan et al. [22] is optimistic for arbitrary-deadline task
systems, some observations can still be applied. Throughout
the section, we will implicitly only analyze a specific task
τk under the assumption that the worst-case response time
RTi ≤ Di of every higher-priority task τi in hp(k) has been
already analyzed.

4.1 Safe Bound of Rk,h for A Given h

We will first shortly review the analysis by Guan et al.
[22] and then explain how we plan to conquer the problem
to safely derive Rk,h. Suppose that an h-incomplete busy
interval of task τk begins at time-instant θa. Suppose that
this h-incomplete busy interval finishes at time θa + Bk,h.
That is, at time θa +Bk,h, the hth-job in this h-incomplete
busy interval finishes. Throughout this section, we only
focus on this interval [θa, θa + Bk,h) under a legal schedule
of a legal sequence of jobs of task system τ .

We first remove some unnecessary jobs in the legal se-
quence of jobs of task system τ . From this legal sequence
of jobs, we first discard all those jobs that have priority
lower than task τk. Since those jobs with priority lower than
τk have no effect on the scheduling of the jobs generated
by hp(k) and task τk, this removal does not change the
scheduling for tasks τk and hp(k) in the interval [θa, θa +
Bk,h). Moreover, we also remove the jobs of task τk that are
released strictly before θa. Similarly, due to the definition
of the h-incomplete busy interval, these jobs also have no
influence on the scheduling of the jobs generated by hp(k)
and task τk in the interval [θa, θa+Bk,h). For the rest of our
analysis in this subsection, we will consider only the above
reduced legal sequence of jobs.

4.1.1 Extending the h-Incomplete Busy Interval

The technique for extending the h-incomplete busy inter-
val is needed for precisely bounding the amount of work
resulting from higher-priority tasks τi in hp(k). Here, we
will use the techniques proposed by Baruah [8] and also
adopted by Guan et al. [22]. Let θ0 denote the latest time-
instant ≤ θa at which at least one processor is idle in the
legal schedule of the reduced legal sequence of jobs. For
notational brevity, let Ak,h = θa − θ0.
Example: Figure 1 illustrates a 3-incomplete busy interval
[θa, θa + Bk,h) and a downward extension of the interval
to time θ0. Task τk is not busy prior to the arrival of the
first of these 3 jobs, the first job completes its execution
after the second job arrives, and the second job completes
its execution after the third job arrives. Thus, the task is
continuously busy after the arrival of the first job shown,
and θa is hence set equal to the arrival time of this job.

We then have the following observations:

• θa is the arrival time of some job of task τk.

• Over [θ0, θa), all the processor must be busily execut-
ing jobs having priority higher than τk.

Whenever we shift the release time of the job arriving at
θa to θ0, this job cannot be executed over [θ0, θa), and this
task that is being h-incomplete at θa+Bk,h previously is still
being h-incomplete at θa +Bk,h afterwards. In other words,
we can consider the more pessimistic case where the release
time of the job arriving at θa is shifted such that θ′a = θ0,
without decreasing the response time of task τk. Meanwhile,
the amount of work executing prior to θ0 can still be more
precisely quantified than that without extending the busy
interval. Thus, we assume θa = θ0 in the rest of this paper.

θ0 θ0 + Bk,h

Bk,h

higher-priority jobs

τk ’s exeuction

Figure 2: All processors are executing other
higher-priority tasks whenever τk is not exe-
cuting. Let θa = θ0.

Another insight on multiprocessors is the lower bound on
the workload of the higher-priority tasks in hp(k) in the h-
incomplete busy interval, as used in most of analysis in the
literature [4,8,22,26]: Due to the h-incomplete busy interval
of task τk in the interval [θ0, θ0 +Bk,h) and the definition of
θ0, for any 0 < t < Bk,h, the sum of the length in interval
[θ0, θ0 + t) in which τk does not execute must be strictly
larger than t − hCk. The situation is illustrated for m = 3



τi
yi yi + Di

Ti

carry-in jobs

Di

θ0 − yi Bk,h

θ0 θ0 + Bk,h

Figure 3: An illustration of releases of a higher-priority task τi over [yi, θ0 + Bk,h). The release time of the
first job of τi released before θ0 and having an absolute deadline (or worst-case completion time) after θ0 is
denoted as yi.

processors in Figure 2. The striped rectangles indicate the
execution of task τk during the h-incomplete busy period.
The dashed rectangle indicates the intervals in which all m
processors execute higher-priority jobs.

Let us denote by Γk a collection of intervals, not nec-
essarily contiguous, of cumulative length Bk,h − hCk over
[θ0, θ0 +Bk,h), during which all m processors are executing
jobs other than τk’s jobs in the legal schedule.

Definition 6 (Higher-Priority Interference).
We denote Ω(t) as the maximum total amount of execution
times of the higher-priority interference from the tasks in
hp(k) in the time interval [θ0, θ0 + t).

From the above observations, an h-incomplete busy inter-
val [θ0, θ0 +Bk,h) of task τk requires that

∀0 < t < Bk,h,Ω(t) > m× (t− hCk) (3)

Therefore, we can reach the following lemma.

Lemma 2. For a given h, the maximum h-incomplete
length Rk,h is upper bounded by the minimum value Bk,h
satisfying the following equation

Ω(Bk,h) ≤ m× (Bk,h − hCk) (4)

Note that Lemma 2 can be thought of as a generalized
result of Theorem 2 in [8], where h = 1 and Bk,h = Dk.

4.1.2 Calculating Higher-Priority Interference
The treatment up to here is identical to the analysis by

Guan et al. in [22]. As long as we can safely bound Ω(Bk,h)
for an h-incomplete busy interval of task τk defined above,
we can use Lemma 2 to get Rk,h. However, calculating
Ω(Bk,h) is not trivial. The derivation in [22] was not safe
enough.

To derive the contribution of task τi in hp(k) to the inter-
ference Ω(Bk,h), the contribution from higher-priority task
τi can be considered by two parts in the interval [θ0, θ0 +
Bk,h) (see Figure 3): (i) carry-in jobs: the jobs (portion)
from task τi that arrive prior to θ0 and have not yet com-
pleted their execution by θ0, and (ii) body jobs: the jobs
of τi that have the release time within the interval [θ0, θ0 +
Bk,h).

By the definition of θ0, at most (m − 1) tasks are with
carry-in jobs at time instant θ0. Consequently, Lemma 3
follows immediately:

Lemma 3 (Guan et al. [22]). There are at most (m−
1) tasks having carry-in jobs in the interval [θ0, θ0 +Bk,h].

A higher-priority task τi in hp(k) can be considered as either
with or without carry-in jobs. We now introduce some
notations by considering two cases for the amount of ex-
ecution time executed for a higher-priority task τi in the
time interval [θ0, θ0 +Bk,h] in the legal schedule:

1. the maximum work done by task τi without carry-in
jobs over [θ0, θ0 +Bk,h) is denoted by I1

i (Bk,h), and

2. the maximum work done by task τi with carry-in jobs1

over [θ0, θ0 +Bk,h) is denoted by I2
i (Bk,h).

Then we explain how to compute a safe interference up-
per bound on these two functions I1

i (Bk,h) and I2
i (Bk,h),

provided that h and Bk,h are given.

Computing I1
i (Bk,h). First, if a task τi contributes no

carry-in jobs, then its contribution to the work over [θ0, θ0 +
Bk,h) must arrive no earlier than θ0 and no later than θ0 +
Bk,h, and the total amount of work is bounded from above
by the workload function with an interval of length Bk,h.
Consequently, I1

i can be sufficiently computed by Wi(Bk,h),
as defined in Section 3.2.

Secondly, the total amount of executed work cannot ex-
ceed the total length of the interval in Γk. The reason behind
this is that any work that exceeds the total length of the
interval in Γk cannot be parallelly executed with the other
work from τi that have contributed to Γk, in which the total
interference by all tasks busily executes on m processors.

Since both are safe upper bounds, we can safely choose the
minimum one between them as the maximum interference.
Notice that the total length of Γk is equal to (Bk,h−hCk) and
”+1”models the minimum interference that prevents τk from
executing in the integer time-domain [9, 22]. Consequently,

I1
i (Bk,h) = min (Wi(Bk,h),max(0, Bk,h − hCk + 1)) (5)

Computing I2
i (Bk,h). Now, consider the case that a

higher-priority task τi contributes carry-in jobs over [θ0, θ0+
Bk,h). Let yi denote the arrival time of the first job of τi
released before θ0 and having an absolute deadline (or
worst-case completion time) after θ0. Under the assumption
that a higher-priority task τi has worst-case response time
RTi ≤ Di, the work of task τi executed in the interval
[θ0, θ0 + Bk,h) must arrive no earlier than yi and no later
than θ0 + Bk,h. Consequently, the total amount of work
I2
i (Bk,h) is bounded from above by the workload function

1The assumption by [22] that at most one carry-in job of a
task contributes to the interval [θ0, θ0 +Bk,h) is optimistic,
as shown in [29].
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(a) The workload function in [11,22]
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Figure 4: Comparison between the workload function in [11,22] and ours for a carry-in task, assumed Ri = Di

with an interval length of θ0 − yi + Bk,h (see Figure 3).
Since θ0 − yi ≤ RTi ≤ Di, consequently, I2

i (Bk,h) can be
sufficiently computed by Wi(Di +Bk,h). Together with the
bounded length of the interval in Γk, we therefore have that

I2
i (Bk,h) = min (Wi(Di +Bk,h),max(0, Bk,h − hCk + 1))

(6)
Moreover, it is not difficult to see that given an upper

bound on the worst-case response time RTi, the workload
function for carry-in task τi can be more precisely bounded
from above by Wi(RTi + Bk,h). Hence, a tighter I2

i (Bk,h)
can be computed as follows:

Î2
i (Bk,h) = min (Wi(RTi +Bk,h),max(0, Bk,h − hCk + 1))

(7)

For simplifying the analysis, we only use I2
i (Bk,h) as the

maximum work of a higher-priority task τi with carry-in
jobs in the following presentation.

From the discussion above, we have seen how to suffi-
ciently quantify the interference from these two types of
higher-priority tasks. By Lemma 3, there are at most (m−1)
tasks with carry-in jobs at time instant θ0. Hence, there
are at most (m − 1) tasks contributing to I2

i (Bk,h), and
the remaining (k − m) tasks in hp(k) must contribute to
I1
i (Bk,h).

Computing Ω(Bk,h). With the above settings of I1
i (Bk,h)

and I2
i (Bk,h), we can now compute Ω(Bk,h). Let us de-

note by IDIFFi (Bk,h) the difference between I2
i (Bk,h) and

I1
i (Bk,h):

IDIFFi (Bk,h) = I2
i (Bk,h)− I1

i (Bk,h)

Therefore, by Lemma 3, we know that

Ω(Bk,h) =
∑

τi∈hp(k)

I1
i (Bk,h)

+
∑

the (m− 1) largest
τi ∈ hp(k)

IDIFFi (Bk,h) (8)

where hp(k) denotes the set of tasks that are assigned higher
priority than τk. Note that Eq. (8) can be computed in linear
time by using linear-time selection [16] when Bk,h is given.

4.2 Worst-Case Response Time of Task τk

Once having the upper bound on the interferences from
higher-priority tasks Ω(Bk,h), we can compute the maximum
h-incomplete length Rk,h by using Time Demand Analysis.
Compute Rk,h using TDA. By Lemma 2 and the derived
Ω(Bk,h), Rk,h is upper bounded by the smallest t satisfying

the following inequality:

Ω(t) ≤ m× (t− hCk) (9)

By the above analysis, we can now derive the worst-case
response time of task τk by the following theorem.

Theorem 1. The worst-case response time RTk of task
τk is at most:

RTk ≤ RT ∗k = maxh∈{1,...,H}{R∗k,h − (h− 1)Tk}

where H = min{h ≥ 1|Ω(hTk)
m

+ hCk ≤ hTk}, and R∗k,h is
defined as the minimum t satisfying Eq. (9).

Proof. Roughly speaking, H represents the maximum h
to have h-incomplete busy intervals for task τk. Therefore,
by Lemmas 1 and 2, we reach the conclusion.

Even though H may become infinite, the TDA can be
terminated whenever a deadline miss occurs:

Ω((h− 1)Tk +Dk)

m
+ hCk > (h− 1)Tk +Dk (10)

Corollary 1 (TDA). An arbitrary-deadline sporadic
task system τ is schedulable on m identical processors under
fixed-priority scheduling if for all tasks τk ∈ τ ,

RT ∗k ≤ Dk (11)

where RT ∗k is as defined in Theorem 1.

5. COMPARISON BETWEEN CARRY-IN
WORKLOAD FUNCTIONS

The carry-in workload function derived in [11, 22] shows
that the worst-case scenario in constrained-deadline systems
occurs when some job of τi executing Ci units precedes the
end of a contiguous interval of length t and the earliest
job having absolute deadline within the interval finishes its
execution at the end of its deadline (also see Figure 4a). This
scenario may accord with the work executing in the schedule
as long as the worst-case response time is equal to its relative
deadline. On the other hand, our carry-in workload function
overly counts the carry-in job that is assumed to arrive Di
time-units prior to t (also see Figure 4b), even if such a
job cannot effectively execute over the interval. Hence, our
carry-in workload function for constrained-deadline tasks is
inferior to that in [11,22]: at most Ci may be overestimated.
Nevertheless, empirical results show that the difference is
insignificant in terms of schedulability, as will be seen later.
On the other hand, the assumption that there is at most one
carry-in job of a carry-in arbitrary-deadline task is problem-
atic for the carry-in workload function derived in [11,22]. A
corresponding counterexample can be found in [29]. Hence,
the revised workload function is the first one proved correct
for arbitrary-deadline tasks.



6. LINEAR-TIME UPPER BOUND UNDER
FP

In this section we present a linear-time response time anal-
ysis. This test determines the upper bound on the response
time under global fixed-priority scheduling upon the values
of the tasks’ parameters, i.e., the worst-case execution time,
the relative deadline, and the period.

We first linearize the upper interference function Ω(t) by
using Eq. (2) in the following lemma:

Lemma 4. For all t > 0

Ω(t) ≤

(
ZΣ +

∑
τi∈hp(k)

(tUi + Ci(1− Ui))

)
(12)

where ZΣ denotes the sum of the (m − 1) largest UiDi’s
among the tasks in hp(k).

Proof. Let S denote the set of the (m − 1) largest
IDIFFi (t).

Ω(t) =
∑

τi∈hp(k)

I1
i (t) +

∑
the (m− 1) largest

IDIFFi (t)

=
∑

τi∈hp(k)\S

I1
i (t) +

∑
τi∈S

I2
i (t)

(5) and (6)

≤
∑

τi∈hp(k)\S

Wi(t) +
∑
τi∈S

Wi(t+Di)

(2)

≤ ZΣ +
∑

τi∈hp(k)

(tUi + Ci(1− Ui))

Subsequently, the following lemma provides an upper
bound on the maximum length of the h-incomplete busy
periods of task τk.

Lemma 5.

Rk,h ≤ R†
k,h

def
=

hmCk + ZΣ +
∑

τi∈hp(k)
Ci(1− Ui)

m−
∑

τi∈hp(k)
Ui

(13)

where ZΣ denotes the sum of the (m− 1) largest DiUi’s.

Proof. Substituting Ω(t) in the recurrence Eq. (9) by the
one in Lemma 4, we can find the point t of the intersection,
which leads to the statement.

By Lemmas 1 and 5, RTk,h is bounded from above by

RTk,h ≤ RT †k,h
def
= R†k,h − (h− 1)Tk (14)

where R†k,h is defined in Lemma 5. Intuitively, one may
examine all possible h in the above equation to ensure that
the upper bound on the worst-case response time. Our ob-
servation is that RT †k,h defined by Eq. (14) is monotonically
decreasing with respect to h, under certain condition. We
state this with the following lemma:

Lemma 6. Suppose that

mUk +
∑

τi∈hp(k)

Ui < m (15)

Then, for any integer h ≥ 1,

RT †k,1 ≥ RT
†
k,h

where RT †k,h is as defined in Eq. (14).

Proof. We now prove that R†k,h−(h−1)Tk is maximized

when h is 1, under Condition (15). Differentiating R†k,h −
(h− 1)Tk with respect to h, we have that

∂

∂h

(
R†k,h − (h− 1)Tk

)
=

mCk
m−

∑
τi∈hp(k) Ui

− Tk

=Tk

Å
mUk

m−
∑

τi∈hp(k) Ui
− 1

ã
=Tk

Å
mUk +

∑
τi∈hp(k) Ui −m

m−
∑

τi∈hp(k) Ui

ã
which is negative due to our assumptionmUk+

∑
τi∈hp(k) Ui <

m. Since R†k,h − (h − 1)Tk is decreasing with respect to h,
the maximum occurs when h = 1.

Putting these pieces together, Theorem 2 provides the re-
sponse time upper bound of arbitrary-deadline tasks on mul-
tiprocessor systems.

Theorem 2. The worst-case response time RTk of task
τk is at most

RTk ≤ RT †k =

ß
Rupk if mUk +

∑
τi∈hp(k) Ui < m,

∞ otherwise.

where Rupk =
mCk+ZΣ+

∑
τi∈hp(k)

Ci(1−Ui)

m−
∑

τi∈hp(k)
Ui

and ZΣ denotes

the sum of the (m − 1) largest DiUi’s among the tasks in
hp(k).

Proof. By Lemmas 5 and 6, we can conclude this theo-
rem by setting h = 1 in Eq. (14).

Subsequently, we provide our linear-time upper bound
(LTUB) on the worst-case response time in the follow
corollary:

Corollary 2 (LTUB). An arbitrary-deadline spo-
radic task system τ is schedulable on m identical processors
under fixed-priority scheduling if for all tasks τk ∈ τ ,

RT †k ≤ Dk (16)

where RT †k is as defined in Theorem 2.

7. EXPERIMENTS
In this section, we conduct extensive experiments using

synthesized task sets for evaluating the proposed tests. The
metric to compare results is to measure the acceptance ratio
of the above tests with respect to a given goal of task set
utilization. We generate 100 task sets for each utilization
level, from 0.01 to 0.99, in steps of 0.01. For brevity, the
tickers were set every three steps. The acceptance ratio
of a level is said to be the number of task sets that are
schedulable divided by the number of task sets for this level,
i.e., 100.

7.1 Simulation Environment
We first generated a set of sporadic tasks. The cardinality

of the task set was 5 times the number of processors. The
UUniFast-Discard method [14] was adopted to generate a set
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Figure 5: Acceptance ratio comparison with different p on 8-multiprocessor, constrained-deadline systems
where Di

Ti
∈ [0.8, 1].

of utilization values with the given goal. We here used the
approach suggested by Davis and Burns [20] to generate the
task period according to the exponential distribution. The
order of magnitude p to control the period values between
largest and smallest periods is parameterized in evaluations.
(E.g., 1− 10ms for p = 1, 1− 100ms for p = 2, etc.).

We evaluate these tests in 8 multiprocessor systems with
p ∈ [1, 2, 3]. Similar results can be seen in different numbers
of processors. The priority of task is assigned according
to deadline-monotonic (DM) scheduling: the smaller the
relative deadline, the higher the priority level.

We note that deadline-monotonic (DM) scheduling is not
optimal on multiprocessor systems. Alternatively, one can
use the laxity-monotonic (LM) scheduling: the smaller the
laxity Di − Ci, the higher the priority level [2]. Also, it
is not difficult to see that the proposed TDA analysis and
the linear-time response bound comply with the required
conditions for the optimal priority assignment (OPA) com-
patibility provided in [18]. Hence, our proposed tests are
compatible with OPA: if there exists feasible priority as-
signments by our test, OPA returns one of them. It is also
worth noting that Davis and Burns have suggested that be-
ing OPA-compatible is as important as being effective since
priority assignment is an important factor in determining
the schedulability of tasksets under global fixed priority pre-
emptive scheduling [18]. Consequently, applying the tighter
test but not OPA-comptiable, e.g. maximum work function
Î2
i (Bk,h), by using DM, may not yield better performance

than the less effective but OPA-comptiable test using OPA
priority assignment. Nevertheless, we here focus on showing
the effectiveness of the tests themselves, and similar results
can be seen under different priority assignment policies.

7.2 Constrained-Deadline Systems & Results
The execution time was set accordingly, i.e., Ci = TiUi.

Task relative deadlines were uniformly drawn from the in-
terval [0.8Ti, Ti].

The tests evaluated are shown as follows:

• BCL: the polynomial-time test in Theorem 4 in [11].

• FF : the force-forward (FF) analysis in Eq. (5) in [6].

• BAK : the O(n3) test in Theorem 11 in [4].

• Guan: the TDA analysis by Guan [22].

• TDA: Corollary 1 in this paper.

• LTUB : Corollary 2 in this paper.

Results. Figure 5 presents the evaluation result in constrained-
deadline systems. We first notice that the response time
analysis with limited carry-in tasks, namely Guan and TDA,
can admit the most number of task sets. Overall, these two
tests achieve similar performance, even though our TDA is
inferior than Guan due to the over-approximate workload
function, as mentioned earlier. As shown in Figure 5, BCL,
FF, and BAK perform poorer than LTUB, even though their
computational complexity is higher than LTUB. (pseudo-
polynomial time for FF and O(n3) for BAK ). It is noticeable
that TDA is only slightly advantageous to LTUB in case
of p = 2 and p = 3 (Figure 5(b) and (c)) where the TDA
essentially suffers from its high computational complexity.
Hence, in practice, one would expect that the TDA be
adopted in the low order of magnitude of task periods and
the linear-time response time bound in the high order of the
magnitude.

7.3 Arbitrary-Deadline Systems & Results
The execution time was set accordingly, i.e., Ci = TiUi.

Task relative deadlines were uniformly drawn from the in-
terval [0.8Ti, 2Ti]. The tests evaluated are shown as follows:

• LOAD : the load-based analysis [7].

• BAK : the O(n3) test in Theorem 11 [4].

• LTUB : Corollary 2 in this paper.

• TDA: Corollary 1 in this paper.

Results. Figure 6 presents the result in arbitrary-deadline
systems where Di

Ti
∈ [0.8, 2]. Due to the overly opti-

mistic workload function, Guan’s analysis becomes unsafe
for arbitrary-deadline tasks. The proposed TDA is the
best TDA with limited carry-in interferences in arbitrary-
deadline systems, as can be seen in Figure 6. Also, in terms
of schedulability and time complexity, the proposed linear-
time upper bound LTUB is superior to LOAD and BAK,
where the time complexity is pseudo-polynomial for LOAD
and O(n3) for BAK.
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Figure 6: Acceptance ratio comparison with different p on 8-multiprocessor, arbitrary-deadline systems where
Di
Ti
∈ [0.8, 2].

8. CONCLUSIONS
In this work, we propose the response time analysis for

sporadic arbitrary-deadline tasks on multiprocessor systems
under fixed-priority scheduling. Further, we derive a linear-
time response time bound that provides an amenable solu-
tion for the the admission control and the interactive system
and prototyping. To the best of our knowledge, this is the
first work presenting a linear-time response time bound on
multiprocessor systems. We further conclude that the linear-
time response time bound yields high performance compared
to the state-of-the-art TDA tests, especially in case of large
task periods, where time-demand analysis tests suffer from
their computational complexity.
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