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I. INTRODUCTION

Due to the architectural design, process variations and aging,
individual cores in many-cores systems exhibit heterogeneous
performance. In terms of the architectural design, such as
ARM big.LITTLE architecture [1], [3] integrates different
types of cores with the same instruction sets but different
frequencies in the system to accommodate the performance
requirement with tolerable chip temperature or power con-
sumption. When considering the countermeasure for soft errors
on many-cores, a commonly adopted technique is Redundant
Multithreading (RMT) [9] that achieves error detection and
recovery through redundant thread execution on different cores
for an application. However, with the performance heterogene-
ity, how to achieve the resource-efficient reliability becomes
a non-trivial problem, since Task mapping and Determining
the task execution mode (i.e. a task executes in a reliable
mode with RMT or unreliable mode without RMT) both are
susceptible to the resiliency of tasks and the performance of
cores. A straight-forward solution could be a greedy mapping
of reliability-critical task onto a high-frequency core like we
adopted in dTune [7]. However, such a greedy approach would
lack efficiency as it suffers from its local decisions because
the reliability degradation for each task does not necessarily
proportional to the cores’ frequency degradation. In addition, it
cannot provide any guarantee with respect to the satisfaction of
deadline miss rate. We provide an example and demonstrate
that it is not always reliability-wise beneficial to assign the
reliability-critical task to the highest-frequency core.

As shown in Fig. 1, in this paper we explore how to
efficiently allocate the tasks onto many-cores by using RMT to
improve the overall dependability, with respect to both timing
and functional correctness while also accounting for applica-
tion tasks with multiple compiled versions. Such multiple re-
liable versions can be generated by using the reliability-aware
compilers like [2] and [8], exhibiting diverse performance and
reliability properties. By applying multiple reliable task ver-
sions and RMT, we are able to exploit the optimization space
at both software and hardware-levels while exploring different
area, execution time, and achieved reliability tradeoffs. The
timing correctness can be defined as the deadline miss rate,
which is typically adopted as the quality of service (QoS)
metric in many practical real-time applications.
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Fig. 1: Overview of interplay among performance heterogene-
ity, multiple task versions, and redundant multithreading. An
example illustrates improper assigned cores group or version
may lead to the deadline missing.

II. PROBLEM DEFINITION

Assume we are given a many-cores processor, which only
has single thread per core, with ISA-compatible homogeneous
RISC cores, and a set of tasks with multiple versions. The
studied problem can be divided into two sub-problems, task
mapping and execution mode adaptation. For the task map-
ping, assume we are given the execution modes and tolerable
timing constraints, we consider how to select the execution
version and allocate the cores with different frequencies, so
that the overall reliability penalty is minimized. We observe
that the problem can be connected to the well-known minimum
weight perfect bipartite matching problem (MWPBM) and
solved efficiently. The second sub-problem is the execution
modes adaptation. The objective is to determine the task execu-
tion modes without violating the satisfaction of deadline miss
rate. Without checking all the combinations, we propose an
iterative mode adaptation to efficiently determine the execution
modes of tasks with our mapping approaches so that the
overall reliability penalty is minimized.

For the simplicity of presentation, the above approaches are
all presented without data dependencies. After going through
the approaches ideally, we discuss about how to incorporate
the overhead of execution time for the data dependencies
and communication with the model enhancement. Under the
resource-constrained scenarios, the discussed scope of problem
limits that the number of available cores is greater than or
equal to the number of tasks without loss of generality.



III. METHODS

For the systems which require only a homogeneous execu-
tion mode for all the tasks (i.e. either all tasks with RMT or
without RMT), we reveal that this problem can be connected to
MWPBM. According to the perfect matching property, we can
adopt Hungarian Algorithm to deliver a feasible mapping for
the tasks and cores, where each core only be assigned to one
task. When the tasks have the heterogeneous execution modes
(i.e., some tasks can execute with RMT and some cannot be
supported in RMT due to the resource-constraint), we propose
an efficient approach to assign the tasks onto the cores to
achieve the higher system reliability.

After addressing the task-mapping problem, we consider
how to decide the suitable execution modes under the resource-
constraints. Again, the greedy strategy is not that beneficial.
Some of tasks may suffer from their higher vulnerability,
whereas some may suffer from their tighter tolerance of timing
constraint. As it is not possible to check all the combinations of
execution modes, we propose an iterative approach exploiting
our task mapping approaches as the subroutine to guarantee the
feasibility and efficiency of execution modes. We also consider
how to model the communication between the individual tasks
and in the redundant threads. By using software pipelining, we
can quantify the maximum communication overhead among
all the dependent tasks under the communication fabric with
XY routing on 2-Dimension mesh, in which all the redundant
cores are utilized concurrently.

IV. RESULTS AND DISCUSSION

To evaluate the performance of our schemes fairly, we use
the same setting in dTune [7] to obtain the reliability penalty of
tasks by using a a real-world embedded benchmark MiBench
and many-cores simulator for LEON3 ISA. The value of
reliability penalties are obtained under fault rate 10−6 (in the
unit of #fault/cycles) to realize the high fault scenarios
as adopted by the related works [4, 5]. We set the timing
constraints as miss rate ρ. We normalize our results to the
greedy mapping and compare the efficiency with the same
set of tasks versions and core configurations, in which the
normalized ratio is calculated as the resulting solution divided
by the result of greedy mapping. By definition, the lower
normalized penalty ratio is better.

The preliminary evaluation is performed by Grouping Fre-
quency Levels with variations ω for evaluating architectures
with heterogeneous performance, e.g., ARM big.LITTLE ar-
chitecture [1]. We evaluated four different frequency levels in
a multi-core processor. Assume the performance variation is ω,
where the cores are with frequencies f1, (1−ω)f1, (1−2ω)f1,
and (1− 3ω)f1, in which ω is up to 30% [3] due to the real-
word scenarios on performance variations. As shown in Fig.2,
we can observe that our approach outperforms the greedy map-
ping significantly. If the task mapping is not decided properly,
the total reliability penalties will be increased dramatically.
Since the difference of frequencies between different grouping
levels is large enough, the greedy mapping may suffer from
the sequential assignment of cores, in which the RMT tasks
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Fig. 2: Comparing the reliability penalty ratio by normalizing
our result to the greedy mapping under 10−6 fault rates.
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Fig. 3: Evaluation of the execution modes adaptation with
variation ω = 0.14 under 10−6 fault rates.

may have serve performance degradation. For the execution
mode adaptation, we can see that the trends in Fig. 3 with the
delivered execution modes still follow the previous observation
in the task mapping. If the frequencies variation among the
cores is not negligible as the case of grouping frequency levels,
the effectiveness of proposed mapping approach is illustrious.

After all, we can conclude our proposed approaches provide
a better overall reliability in terms of greedy strategy without
violating both software and hardware-levels constraints.
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