
Multi-Objective Aware Communication Optimization
for Resource-Restricted Embedded Systems

Olaf Neugebauer, Peter Marwedel
TU Dortmund University

Dortmund, Germany
firstname.lastname@tu-dortmund.de

Michael Engel
Leeds Beckett University
Leeds, United Kingdom

M.Engel@leedsbeckett.ac.uk

Abstract—Creating efficient parallel software for current em-
bedded multicore systems is a complex and error-prone task.
While automatic parallelization tools help to exploit the perfor-
mance of multicores, most of these systems waste optimization
opportunities since they neglect to consider hardware details
such as communication performance and memory hierarchies.
In addition, most tools do not allow multi-criterial optimization
for objectives such as performance and energy. These approaches
are especially relevant in the embedded domain.

In this paper we present PICO, an approach that enables
multi-objective optimization of embedded parallel programs. In
combination with a state-of-the-art parallelization approach for
sequential C code, PICO uses high-level models and simulators
for performance and energy consumption optimization. As a
result, PICO generates a set of Pareto-optimal solutions using
a genetic algorithm-based optimization. These solutions allow an
embedded system designer to choose a parallelization solution
which exhibits a suitable trade-off between the required speedup
and the resulting energy consumption according to a given
system’s requirements.

Using PICO, we were able to reduce energy consumption by
about 35% compared to the sequential execution for a heteroge-
neous architecture. Further, runtime reductions by roughly 55%
were achieved for a benchmark on a homogeneous platform.

Index Terms—Parallel programming, Parallel processing, Mul-
tiprocessing systems, Embedded software

I. INTRODUCTION

Creating efficient parallel software for current embedded
multicore systems is a complex and error-prone task. Numer-
ous approaches that try to parallelize and map sequential appli-
cations to a multicore platform waste significant optimization
potential. Parameters critical for the performance of software
on such a platform, like communication performance between
cores and the speed of different memories in the memory
hierarchy, are often not considered in existing publications.

One reason for this negligence is that precise cost models for
critical hardware components, such as latencies, throughput,
and energy consumption of memories or other communica-
tion channels, were either not available or far too costly
to evaluate. An optimization approach should be integrated
into development cycles. Thus, an approach is required which
constrains the required evaluation overhead for large numbers
of hardware parameters by using high-level cost models.

In this paper we present a Parallelism Implementer and
Communication Optimizer (PICO) infrastructure that enables
the multi-criterial optimization of parallelized sequential C

programs using a set of configurable high-level performance
and energy models for the most performance-critical com-
ponents of a given embedded multicore system. This use
of high-level models enables its integration into state-of-the-
art embedded software development toolflows and allows the
evaluation of numerous potential parallelization configurations
for a sequential program w.r.t. relevant system parameters.

The work presented in this paper concentrates on multi-
objective optimization especially relevant for embedded sys-
tems. Apart from the achievable execution speed on a parallel
platform, energy is the most important optimization criterion,
especially for mobile platforms. Thus, in general there is no
single optimal solution. Rather, each solution fulfilling a nec-
essary minimal criterion, e.g., a required speedup, comes with
one or more additional criteria, such as energy consumption.
As detailed later in this paper, our multi-objective optimization
approach employs genetic algorithm-based techniques to deter-
mine a Pareto-front of possible solutions for a given platform
and parallelized application, which allows a developer to select
the configuration most suitable for the task at hand.

Using PICO in conjunction with the PAXES parallelizer [1],
[2] we detail the advantage of integrated multi-objective op-
timization in this paper. We use a set of standard embedded
systems benchmarks, e.g. JPEG2000, and multiple platforms
of homogeneous and heterogeneous nature to evaluate our
approach. We observed that generated solutions utilize differ-
ent data exchange capabilities of the platform which improve
performance in terms of runtime and energy consumption.

To summarize, the main contributions of this paper are:
• A multi-objective communication optimization of paral-

lelized C programs considering various communication
mechanisms provided by the target platforms

• Optimization of performance and energy consumption
using high-level cost models

• Integration of the optimization into a state-of-the-art
parallelization and compiler toolflow

The rest of this paper is structured as follows. Section II
presents related work. Section III describes the fundamentals
of our approach. Detailed insight into our optimization algo-
rithm is given in Section IV. Section V describes our frame-
work. We evaluated our algorithm and provide a discussion
of the results in Section VI. Section VII concludes this paper
with a summary and gives directions for future work.

ARCS 2015, March 24 – 27, 2015, Porto/Portugal

ISBN 978-3-8007-3657-7 1 © VDE VERLAG GMBH, Berlin, Offenbach

II. RELATED WORK

Application creation and parallelization techniques have
been investigated in the last decades. Park et al. [3] presented
a survey on software development approaches for multicore
platforms. Ceng et al. published a semi-automatic user con-
trolled parallelization framework [4] for sequential C code.
Communication is modeled as logical channels between pro-
cessing elements and the cost for communication is calculated
by the size of the data and the estimated transfer time. Only
a fixed communication type is used.

Process networks, especially Kahn process networks (KPN),
are a common technique to model parallel applications in the
embedded system domain. Processes communicate through
unbounded FIFO queues. Verdoolaege et al. [5] presented a
method to extract process networks for static affine nested loop
programs. The tool is able to determine FIFO capacities and to
optimize communication by removing channels and reducing
the communication volume. Automatic buffer sizing was also
analyzed by Cheung et al. [6]. Their approach determines the
required channel size in KPNs to improve the performance.

In the last years research especially in the embedded system
domain focused on heterogeneous multiprocessor systems on
chip (MPSoC). Cordes et al. [1], [2] proposed several ap-
proaches to parallelize legacy C applications. The extraction of
parallelism is able to consider the heterogeneity and resource-
restrictions of embedded systems. Nevertheless, this approach
only considers communication as a fixed overhead.

Modern MPSoCs provide several ways to exchange data
between processors, e.g. hardware FIFOs or different types of
memories. Nadezhkin et al. [7] presented an approach to map
KPN applications onto a Cell BE platform. They analyzed
different software implementations for FIFO communications
in absence of hardware FIFOs. Realizing communication
efficiently using windowed FIFOs was proposed by Haid et
al. [8]. Their approach reduces the copy operations required
to exchange data between processors.

Ferrandi et al. [9] presented a combined heuristic for
mapping and scheduling of tasks and communication onto
heterogeneous multiprocessor systems. The main objective
is make-span and energy is not considered. Castrillon et
al. [10] presented a KPN mapping technique onto heteroge-
neous MPSoCs. The Group-Based Mapping (GBM) heuristic
is able to consider different communication resources and
maps processes and communication at the same time. By ana-
lyzing different communication techniques in a state-of-the-art
MPSoC, Odendahl et al. proposed a new communication cost
model [11]. They split the communication cost into a sender
and a receiver value and compared their approach with the
single-cost model of the GBM heuristic.

In the area of design space exploration, Erbas et al. [12] pro-
posed a genetic algorithm-based mapping approach which also
considers communication between tasks. This approach uses
a high-level representation of the application for optimization
and simulation. In addition, only on specific communication
type is modeled.

III. SYSTEM MODEL

This section describes the target platform architecture used
in this paper. Further, the programming model we apply
is presented. Finally, the automatic parallelization algorithm
is sketched and the drawbacks in case of communication
optimization between tasks are discussed.

A. Target Platform

Modern MPSoCs comprise different memory types like fast
and small scratch pad memories (SPM) or large DRAMs.
In addition, some systems provide hardware support for data
exchange like hardware FIFOs. To further increase the per-
formance or to fulfill special requirements, processors with
different characteristics are nowadays combined into a het-
erogeneous system. To abstract from real systems and to
create platform-independent approaches, we use a high-level
representation. Processing elements are connected through a
communication infrastructure among themselves and the mem-
ories. Processors or accelerators are examples for processing
elements and a bus or a NoC is an example for a communica-
tion infrastructure. In case of heterogeneous systems, we group
processing elements by characteristics into logical groups.

B. Programming Model

In this paper parallel applications follow the fork-join model
where a task can fork child tasks and suspends its own
execution until all child tasks have finished their execution.
Data is exchanged at the beginning and end of the tasks.
Further, it is possible to transfer data between concurrently
running tasks with a FIFO-style communication.

Fig. 1. Graphical representation
of a parallel program

In the following, we use a high-
level representation of a parallel
program as shown in Figure 1.
The graph consists of computa-
tions (circles), task management
(triangles), task input and out-
put, and communication nodes.
Control flow is represented by
solid directed edges whereas data
which is communicated between
tasks is drawn in dashed lines.
For each variable which needs
to be transferred a data edge is
inserted. As shown in the exam-
ple, the first computation node
produces data used by a subtask.
The concurrently executed tasks
exchange data through commu-
nication nodes and one subtask
generates data used in the com-
putation of its parent task. For
the optimization presented in this
paper, a unique identifier is as-
signed to all task input/output and

communication nodes. To simplify this model, communication
in and out nodes share the same properties like FIFO size.

ARCS 2015, March 24 – 27, 2015, Porto/Portugal

ISBN 978-3-8007-3657-7 2 © VDE VERLAG GMBH, Berlin, Offenbach

C. Parallelization Process

For our parallelization approaches [1], [2] we use a hierar-
chical task graph to extract parallelism from sequential pro-
grams employing ILP-based and evolutionary algorithm-based
approaches which can be applied to heterogeneous systems
as well. During the parallelization process, communication
is considered in a static FIFO-style. Thus, only one type of
communication is used and the process cannot benefit from
modern MPSoC communication optimization opportunities
which might lead to infeasible or suboptimal solutions. A
set of Pareto-optimal parallel solutions following the fork-join
model (see Section III-B) is returned to the user.

In this paper we investigate opportunities of modern hetero-
geneous MPSoCs communication mechanisms coupled with
this state-of-the-art parallelization process. We assume a par-
allelized application and analyze how various communication
techniques influence the performance on different platforms.
Thus, we identify the main problem of choosing communica-
tion techniques and their mapping onto the system. Transferred
to the high-level representation, the challenge is to find a good
mapping of task input/output and communication nodes to
available hardware/software implementations with respect to
resource restrictions. In the following, we present a genetic
algorithm-based optimization approach using different com-
munication mechanism prototypes.

IV. GENETIC ALGORITHM-BASED COMMUNICATION
OPTIMIZATION

To improve parallel application performance this paper
investigates how various communication techniques influence
performance on resource-restricted systems. First, we present
the analyzed communication mechanisms followed by a de-
tailed description of our optimization algorithm.

A. Communication Mechanism Prototypes

To analyze the benefits of using various communication
mechanisms we implemented a set of different software FIFO
prototypes distinguished by unique identifiers. All implemen-
tations use a common API which makes it easy to add new
communication techniques into our approach. In the following,
a brief overview of the characteristics is given.

In our model, global data structures encapsulate data trans-
mitted from a parent task to its child and back. FIFO queues re-
alize the communication between concurrently running tasks.
We are using four different implementation prototypes but our
approach is not limited to those implementations. Currently,
all prototypes copy data from the sender to the FIFO and
then to the receiver. Reading/writing is blocking if the FIFO
is empty/full. The first implementation is very simple and
performs busy polling on the FIFO status to check if access
to a FIFO is possible. The second prototype utilizes a com-
munication mechanism provided by the operating system. In
our case RTEMS [13] is used which provides message queues
to exchange data between threads. Those queues can only
transport small data objects but FIFO management is done by
the operating system. The third implementation is based on the

first prototype and uses interrupts to check if data and space in
the queue are available, respectively. This allows the processor
to go to idle state which reduces energy consumption. Up
to now all implementations only transmit one variable and
multiple FIFOs are used to exchange variables between tasks.
Transmitting each variable with its own FIFO implies a lot
of management overhead. The last prototype implementation
bundles the communication channels if possible.

As mentioned above we assume systems with different
memories, which can be used for data exchange. Our approach
can be extended easily to consider hardware supported com-
munication mechanisms as well. During the implementation of
the communication, a good mapping of channels onto memory
with respect to resource-restrictions like available memory
space is necessary. Thus we employ a genetic algorithm which
finds good solutions for this problem.

B. Optimization Algorithm

We developed a genetic algorithm-based (GA) approach
to evaluate possible communication-dependent optimization
opportunities in our parallelization process. GAs are a method
to find solutions (individuals) for a multi-objective optimiza-
tion problem. As input, a GA requires a comprehensive
representation of the structure of the individual called chromo-
some. Further, methods implementing mutation, recombination
(cross-over) and evaluation of possible solution candidates
are needed. Then, the GA creates an initial population which
is evaluated for the considered objectives. Solutions with
good results are selected and moved into a new generation.
Some of them are then mutated or two promising individuals
are combined and also added to the new generation. This
generation is then evaluated again. This process is repeated
until a certain stopping criterion is reached resulting in a set
of Pareto-optimal individuals. We utilize the PISA framework
[14] to implement the required functions for the GA.

1) Chromosome Structure: We modeled the previously
presented decision problem (see Section III-C) of choosing
communication techniques and their mapping with a single
chromosome representation. The structure is shown in Figure
2. The chromosome consists of two parts. The first part
describes the mapping of task input and output nodes onto
a specific memory. Each available memory in the system has
a unique identifier and the value of the gene determines onto
which memory the node should be mapped. The second part of
the chromosome defines the properties for each communica-
tion out node of the program graph. As described before, com-
munication in nodes inherit their properties indirectly from the
corresponding communication out node. Each communication
out node is represented by four genes. The first gene indicates
which type of FIFO should be used. The second defines
onto which device or memory this FIFO should be mapped.
In our case, the target platform does not provide hardware
supported communication mechanisms. But those can be easily
integrated in our algorithm as described in Section IV-A. The
third and fourth genes describe properties of the employed
communication mechanism. Here, the third gene represents the

ARCS 2015, March 24 – 27, 2015, Porto/Portugal

ISBN 978-3-8007-3657-7 3 © VDE VERLAG GMBH, Berlin, Offenbach

Fig. 2. Chromosome structure

capacity in terms of the number of elements this FIFO should
have. In case of a combined FIFO where multiple variables are
transmitted simultaneously, a set of feasible combinations of
FIFOs is calculated during the setup of the whole optimization
process. Thus, the last gene identifies one solution out of this
solution space. If the GA creates an individual, where a node
is mapped to a combined FIFO, the algorithm takes care that
all nodes of the combined solution have the same properties
and become a combined FIFO.

2) Chromosome Operations: Our GA-based algorithm re-
quires a mutation and a cross-over function. The mutation
function randomly changes the values of one or more genes
(position in chromosome) of an individual. Increasing the
FIFO capacity has a linear effect on the solution’s runtime in
case of blocking/stall time. In case of the FIFO size we only
allow new values to vary by δ around the old capacity before
the mutation process. We observed that an interval of ±5 is a
good value for δ. In addition, we limit the maximum FIFO size
to 255 entries. This behavior can be disabled by the algorithm’s
user. If the type of communication out node is mutated to a
combined FIFO, a default solution for this node out of the
previously calculated solution space is selected. To keep the
individual valid, all nodes inside this combined solution will
be assigned to combined FIFO type and the FIFO capacity is
also set to the same value. During the recombination (cross-
over), two individuals are combined into a new individual.
The algorithm takes care that the new individual is valid and
repairs genes if necessary, e.g. in case of combined FIFOs.

3) Individual Evaluation: The evaluation of an individual
is split up into three phases: normalization, static and dynamic
evaluation. In the following, we describe the three phases of
our evaluation algorithm:

a) Normalization: As mentioned above not every gene
is required for the evaluation process, e.g. the combined FIFO
identifier is not used for the other FIFO types. Therefore,
we normalize the individuals which makes them easily com-
parable. This normalization process masks unused positions
keeping the semantic of this individual.

Our algorithm uses a database where evaluation results
of the normalized individuals are stored. If an individual
has already been evaluated, the evaluation function loads
the results from this database which drastically reduces the
evaluation time. This database technique can be applied for
deterministic target systems where two executions of the same
application with the same input data and starting point results
in the same behavior. For a nondeterministic system, each
individual must be evaluated.

TABLE I
FREQUENCY-DEPENDENT HIGH-LEVEL PROCESSOR ENERGY MODEL

Frequency

State 100 MHz 250 MHz 500 MHz

Active Cycle 917.007 fJ 918.127 fJ 921.729 fJ
Stall Cycle 605.340 fJ 606.460 fJ 610.063 fJ
Idle Cycle 92.007 fJ 93.127 fJ 96.729 fJ

b) Static Evaluation: The next step in the evaluation pro-
cess analyzes the individual’s genes in a static way. Here, the
required memory size for the communication implementation
is calculated and validated whether this solution is feasible. If
a solution can not be implemented on the actual system, the
individual is invalidated and the result is stored in the database
which ends the evaluation process for this individual.

c) Dynamic Evaluation: Finally, runtime behavior of an
individual is evaluated by execution on the target system. Key
objectives (runtime and energy consumption) are measured
and collected. The performance indicators of an individual are
the required memory size, runtime and energy consumption
and those values are also stored into the database for faster
lookup and reduced optimization time.

V. FRAMEWORK

This section covers the used software infrastructure support-
ing our optimization algorithm. We implemented our approach
in a tool called Parallelism Implementer and Communication
Optimizer (PICO) utilizing the MACC [15] framework. The
parallelization tool PAXES [2] passes a Pareto-front of par-
allelized solutions of a sequential application to PICO. By
utilizing ICD-C [16], a C compiler front-end, our algorithm
extracts data dependencies and implements the required data
exchanges. Task creation and management is implemented
using a lightweight runtime library utilizing R2G [17]. As
operating system we use RTEMS [13]. PICO operates fully
parallelized such that all individuals of a generation can be
evaluated in parallel to reduce the optimization time. Finally,
a set of Pareto-optimal solutions is returned to the user.

The homogeneous and heterogeneous platforms composed
of ARM processors are created and simulated using Synopsys
Virtualizer [18]. Runtime measurements start at the beginning
of the application and end after termination of the application.
Thus, booting and shutting down the operating system is
not considered. Energy consumption is evaluated utilizing a
high-level model. For this purpose we implemented a Metrix
component attached to our simulation environment which is
triggered on every instruction, bus, cache and memory access
and accumulates the corresponding energy values during eval-
uation. For the processor we use energy values depending on
the current processor’s frequency as shown in Table I. The
energy consumption for the bus is a static value for each
access. Memory values were obtained from CACTI [19].

VI. EVALUATION

This section presents our evaluation environment and the
results we obtained. First, we describe the test platform and

ARCS 2015, March 24 – 27, 2015, Porto/Portugal

ISBN 978-3-8007-3657-7 4 © VDE VERLAG GMBH, Berlin, Offenbach

Fig. 3. Target platform (Caches and memory controllers hidden)

benchmarks used. Following, the results of the communication
optimization are presented. Finally, implications from these
results are discussed.

A. Evaluation Environment

To evaluate our multi-objective GA-based communication
optimization we used applications from the UTDSP bench-
mark suite [20] and other representative applications which
are often used on MPSoCs, like a JPEG encoder. We created a
platform containing four ARM processors and four memories
connected through a bus as depicted in Figure 3. For sim-
plicity, memory controllers and caches are not included in the
figure. In the homogeneous case, all processors are running
at the same frequency of 500Mhz. For the heterogeneous
case, we employ a single-ISA platform inspired by ARM’s
big.Little [21] paradigm where a system is composed of pro-
cessors with different performance. To achieve a comparable
behavior, we adjust the frequencies of the processors such that
the heterogeneous platform consists of 2 processors running at
500Mhz, one at 250Mhz and one at 100Mhz. As mentioned
before, our systems have four memories. The first memory
(8MB) is reserved for the operating system and thus not usable
for communication. For each processor a fixed partition is
reserved in the second memory (64MB) where usually private
data like stacks are stored. A small scratch pad memory (SPM)
(1MB) is partially used by the operating system and free space
can be used for communication. The last memory is a 512MB
DRAM where communication channels can be mapped to.

B. Results

In this section we present results generated by our GA-based
communication optimization approach. We present two appli-
cations (Spectral, JPEG2000) from our investigated benchmark
set which benefit from our optimization. Both applications
use a pipeline structure to process data which requires data
transfer between concurrently running tasks. For demonstra-
tion purposes in this paper, we selected one parallelization
solution for each application and platform from the Pareto-
front generated by the automatic parallelizer. We chose a
population size of 30 individuals and 15 generations. We
allow mutation of already evaluated individuals to increase the
search space of our algorithm by reducing the number of equal
solutions. To compare our results with a naive communication
implementation, we added two predefined solutions to the
results. The first solution (ID 1) implements all communication
with standard (polling) FIFOs of capacity one mapped to
DRAM. In addition, all data transmitted between parent and
children is stored in the SPM. The second solution (ID 2) is

equal to solution ID 1 except for the FIFO size. Here, we
use a high capacity (255 elements if possible) to reduce stalls.
We limited the available SPM memory for communication to
ensure that enough space on the SPM is left for the operating
system. We conducted 3 runs for each benchmark with SPM
size of 1kB and 2kB for both benchmarks, 512 bytes for
JPEG and 3kB for Spectral. These configurations investigate
the algorithm’s performance for resource-restricted systems. A
SPM capacity of 512 bytes is not insightful for the Spectral
benchmark because the communicated data do not fit onto
the SPM in this configuration. In the following, only Pareto-
optimal solutions are presented.

1) Performance: Figure 4(a) shows the results for simulated
runtime and energy consumption for the JPEG2000 benchmark
on the heterogeneous and homogeneous platform and Figure
4(b) for the Spectral benchmark. Results show the deviation
from the sequential solution for each individual indicated by
a red line at 100%. Thus, values under the red line mean
performance increases and values above decreases compared
to the sequential solution. Only one processor is active for
the sequential solution and the other three are disabled and
not considered in terms of energy consumption. As men-
tioned before, solutions 1 and 2 describe the corner cases
of a naive communication implementation and give a good
impression of possible speedups for the parallelizations which
were generated by the PAXES parallelizer. Solution 2 usually
performs best in case of runtime because it eliminates all FIFO
stalls resulting from insufficient capacity, but this solution
drastically increases the memory requirements (cf. Figure 6).
For the JPEG benchmark, the results show that our algorithm
is able to optimize multiple objectives simultaneously. For
example, a reduction of energy consumption is achieved by
about 25% and runtime reduction of about 28% for the
heterogeneous platform with 512 bytes SPM (solution 3). If
energy consumption is more important for a developer, our
algorithm is able to generate a solution with reduction of about
35% for the energy consumption (SPM 2kB, solution 8).

The results of runtime and energy consumption for Spec-
tral are depicted in Figure 4(b). For this benchmark, the
parallelization does not achieve high speedups as indicated
by solutions 1 and 2 but our approach was able to reduce
the energy consumption compared to these solutions. Small
runtime reductions were also achieved for some solutions.

2) Communication Mapping: The GA-based communica-
tion optimization algorithm presented in this paper chooses
between four different communication prototypes to transmit
data between concurrently running tasks as described in Sec-
tion IV-A. Figure 5(a) and Figure 5(b) show the applied pro-
totypes for the JPEG and Spectral benchmarks. The algorithm
implemented communication with standard FIFO or interrupt-
based FIFO for JPEG. For solution 3 on the heterogeneous
platform with 512 bytes shown in Figure 4(a), the interrupt-
based FIFO prototype leads to the energy savings because a
task goes to idle state if it is blocking, which also allows the
processor to idle which reduces energy consumption.

For the Spectral benchmark, the algorithm created solu-

ARCS 2015, March 24 – 27, 2015, Porto/Portugal

ISBN 978-3-8007-3657-7 5 © VDE VERLAG GMBH, Berlin, Offenbach

(a) JPEG2000

(b) Spectral

Fig. 4. Performance

tions which use all communication prototypes as depicted in
Figure 5(b). Combined FIFO solutions are preferred subse-
quently, leading to reduced management overhead. In addition,
solutions exist which use the communication mechanisms
provided by the operating system. The optimization algorithm
also creates a good mapping for data transmission between
parent and child tasks which can be observed indirectly in the
memory footprint presented in the following.

3) Memory Footprint: The memory requirements for the
generated solutions of the optimization algorithm are shown
in Figure 6(a) for JPEG and Figure 6(b) for Spectral respec-
tively. As expected, solution 2 has a large memory footprint.
The actual values for the maximum capacity FIFOs are not
shown to increase the visual comparability of the generated
solutions. The results show that our algorithm is able to utilize
the restricted SPM. The presented GA-based communication

ARCS 2015, March 24 – 27, 2015, Porto/Portugal

ISBN 978-3-8007-3657-7 6 © VDE VERLAG GMBH, Berlin, Offenbach

(a) JPEG2000

(b) Spectral

Fig. 5. Communication Types

optimization algorithm uses runtime, energy consumption and
SPM utilization as objectives. Solutions with large RAM
requirements are valid, e.g. solution 3 of the Spectral for 3kB
SPM. If communication mapped onto DRAM should also be
reduced, the evaluation function of the GA can be extended
easily to fulfill this requirement. The results prove that consid-
eration of various communication techniques is necessary to
further optimize applications parallelized by PAXES. Runtime
reductions by roughly 55% and energy consumption reductions
of about 35% were achieved. At the moment the approach
introduced here does not provide feedback information to
PAXES. This information could improve the results of the
parallelization process as indicated by the obtained results pre-
sented before. In general, our results emphasize that utilizing
communication capabilities of modern MPSoCs is crucial to
execute applications efficiently.

All (cycle-accurate) simulation-based approaches have the
drawback of long simulation runs for the evaluation. Static
models could reduce the evaluation time. Creating accurate
static models for runtime and energy consumption for modern
MPSoCs is a complex task. Thus, simulation-based approaches
are a good way to find solutions or optimization directions.

VII. CONCLUSION

Creating software for modern embedded heterogeneous and
resource-restricted multiprocessor systems is a complex task.
Parallel applications require efficient data exchange between

concurrently running tasks. Today’s MPSoCs provide various
ways to transmit data between processing units, like memories
or hardware FIFOs. To improve the performance utilizing these
techniques is crucial.

We created a multi-objective aware communication opti-
mization of parallelized C programs which is able to exploit
various communication mechanisms. Our approach is able to
optimize runtime, energy and memory performance using a
high-level cost model by using genetic algorithms. We com-
bined our algorithm with PAXES, a state-of-the-art automatic
parallelizer, and evaluated our approach with real-world bench-
marks for two platforms. The results show that our algorithm
is able to optimize parallelized applications and to provide
more detailed performance numbers compared to PAXES. We
were able to reduce the energy consumption by around 35%
for JPEG compared to the sequential application. Furthermore,
runtime reductions of roughly 55% were achieved for this
benchmark on the homogeneous platform. The optimization al-
gorithm achieves a reduction of energy consumption by about
15% compared to the naive communication implementation
even for suboptimal parallelized applications like the presented
Spectral benchmark.

Further investigation in providing feedback regarding com-
munication costs to the parallelization process could enable
new parallelization opportunities which might lead to better
performance. Static models could be used to generate solution
candidates without time consuming simulation.

ARCS 2015, March 24 – 27, 2015, Porto/Portugal

ISBN 978-3-8007-3657-7 7 © VDE VERLAG GMBH, Berlin, Offenbach

(a) JPEG2000

(b) Spectral

Fig. 6. Memory Consumption

ACKNOWLEDGMENT

The authors would like to thank DFG for supporting part
of this work within the Collaborative Research Center SFB
876 “Providing Information by Resource-Constrained Data
Analysis”, project B2, and Synopsys for the provision of the
virtual prototyping IDE Virtualizer [18].

REFERENCES

[1] D. Cordes, M. Engel, O. Neugebauer et al., “Automatic Extraction
of Pipeline Parallelism for Embedded Heterogeneous Multi-Core
Platforms,” in Proc. of CASES, 2013.

[2] D. Cordes, O. Neugebauer, M. Engel et al., “Automatic Extraction of
Task-Level Parallelism for Heterogeneous MPSoCs,” in Proc. of ICPP,
2013.

[3] H.-W. Park, H. Oh, and S. Ha, “Multiprocessor SoC design methods
and tools,” IEEE Signal Processing Magazine, vol. 26, no. 6, 2009.

[4] J. Ceng, J. Castrillon, W. Sheng et al., “MAPS: An Integrated
Framework for MPSoC Application Parallelization,” in Proc. of DAC.
ACM Press, 2008.

[5] S. Verdoolaege, H. Nikolov, and T. Stefanov, “pn: A Tool for Improved
Derivation of Process Networks,” EURASIP Journal on Embedded
Systems, vol. 2007, no. 1, 2007.

[6] E. Cheung, H. Hsieh, and F. Balarin, “Automatic buffer sizing for
rate-constrained KPN applications on multiprocessor system-on-chip,”
in Proc. of HLDVT, 2007.

[7] D. Nadezhkin, S. Meijer, T. Stefanov et al., “Realizing FIFO communi-
cation when mapping kahn process networks onto the cell,” in Proc of.
SAMOS, 2009.

[8] W. Haid, L. Schor, K. Huang et al., “Efficient execution of Kahn
process networks on multi-processor systems using protothreads and
windowed FIFOs,” in Proc. of ESTIMedia, 2009.

[9] F. Ferrandi, P. L. Lanzi, C. Pilato et al., “Ant Colony Heuristic for
Mapping and Scheduling Tasks and Communications on Heterogeneous
Embedded Systems,” IEEE TCAD, vol. 29, no. 6, Jun. 2010.

[10] J. Castrillon, A. Tretter, R. Leupers et al., “Communication-aware
mapping of KPN applications onto heterogeneous MPSoCs,” in Proc.
of DAC, 2012.

[11] M. Odendahl, J. Castrillon, V. Volevach et al., “Split-cost communication
model for improved MPSoC application mapping,” in Proc. of SoC,
2013.

[12] C. Erbas, S. Erbas, and A. Pimentel, “A multiobjective optimization
model for exploring multiprocessor mappings of process networks,” in
Proc. of CODES+ISSS, 2003.

[13] RTEMS, “RTEMS Operating System — Real-Time and Real Free,” http:
//www.rtems.com/, 2014.

[14] S. Bleuler, M. Laumanns, L. Thiele et al., “PISA—A Platform and
Programming Language Independent Interface for Search Algorithms,”
in Proc. of EMO, 2003.

[15] R. Pyka, F. Klein, P. Marwedel et al., “Versatile System-level Memory-
aware Platform Description Approach for embedded MPSoCs,” in Proc.
of LCTES, 2010.

[16] R. Pyka and J. Eckart, “ICD-C Compiler framework,” http://www.icd.
de/es/icd-c/icd-c.html, June 2014.

[17] A. Heinig, “R2G: Supporting POSIX like semantics in a distributed
RTEMS system,” TU Dortmund, Faculty of Computer Science 12,
Dortmund, Tech. Rep. 836, Dec. 2010.

[18] Synopsys, “Virtualizer, Virtual Prototyping Solution,” http : / /www.
synopsys.com, 2014.

[19] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI
6.0: a tool to model large caches,” HP Laboratories, Tech. Rep., 2009.

[20] C. G. Lee, “UTDSP Benchmark Suite,” http://www.eecg.toronto.edu/
∼corinna/DSP/infrastructure/, 2014.

[21] Peter Greenhalgh, ARM, “Big.LITTLE Processing with ARM Cortex-
A15 & Cortex-A7,” http://www.arm.com/files/downloads/big LITTLE
Final Final.pdf, 2013.

ARCS 2015, March 24 – 27, 2015, Porto/Portugal

ISBN 978-3-8007-3657-7 8 © VDE VERLAG GMBH, Berlin, Offenbach

