
Plasmon-based Virus Detection on Heterogeneous
Embedded Systems

Olaf Neugebauer, Pascal Libuschewski, Michael Engel,
Heinrich Müller, Peter Marwedel

TU Dortmund University
Dortmund, Germany

{firstname}.{lastname}@tu-dortmund.de

ABSTRACT
Embedded systems, e.g. in computer vision applications, are
expected to provide significant amounts of computing power
to process large data volumes. Many of these systems, such
as used in medical diagnosis, are mobile devices and face
significant challenges to provide sufficient performance while
operating on a constrained energy budget.

Modern embedded MPSoC platforms use heterogeneous
CPU and GPU cores providing a large number of optimiza-
tion parameters. This allows to find useful trade-offs be-
tween energy consumption and performance for a given ap-
plication. In this paper, we describe how the complex data
processing required for PAMONO, a novel type of biosensor
for the detection of biological viruses, can efficiently be im-
plemented on a state-of-the-art heterogeneous MPSoC plat-
form. An additional optimization dimension explored is the
achieved quality of service. Reducing the virus detection
accuracy enables additional optimizations not achievable by
modifying hardware or software parameters alone.

Instead of relying on often inaccurate simulation models,
our design space exploration employs a hardware-in-the-loop
approach to evaluate the performance and energy consump-
tion on the embedded target platform. Trade-offs between
performance, energy and accuracy are controlled by a ge-
netic algorithm running on a PC control system which de-
ploys the evaluation tasks to a number of connected embed-
ded boards. Using our optimization approach, we are able to
achieve frame rates meeting the requirements without losing
accuracy. Further, our approach is able to reduce the energy
consumption by 93% with a still reasonable detection qual-
ity.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Evolutionary prototyping ; D.2.8 [Software Engi-
neering]: Metrics—complexity measures, performance mea-
sures; J.3 [Life and Medical Sciences]: Biology and Ge-
netics

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SCOPES ’15, June 01 - 03, 2015, Sankt Goar, Germany
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3593-5/15/06...$15.00
DOI: http://dx.doi.org/10.1145/2764967.2764976

Figure 1: PAMONO biosensor. Samples are
pumped through a flow cell. Viruses in the sam-
ple attach to antibodies on a gold layer, which is
illuminated with a laser through a prism. The re-
flected light is recorded with a CCD camera. Each
single virus, although only some tens of nanometers
in scale, changes the amount of reflected light on the
micrometer scale, which is automatically detected.

General Terms
Measurement, Algorithms, Design, Performance

Keywords
MPSoC, Parallelization, Heterogenity, Design Space Expo-
ration, Embedded Systems, GPGPU

1. INTRODUCTION
In our globalized world, diseases can spread easily over the

whole planet. To contain the spread of viruses, devices to
enable fast and reliable virus detection are required. Most
available systems based on computer vision approaches re-
quire complex computations and, consequentially, are large
and heavy and thus bounded to specific locations like hos-
pitals. Portable detection devices would drastically increase
the versatility of such detection systems. High-performance,
state-of-the-art embeddedmulti-core systems, combined with
powerful detection algorithms, are a promising platform to
enable battery-driven mobile usage of these systems. Appli-
cations from the computer vision domain, such as the virus
detection discussed in this paper, are emerging more and
more into the embedded systems domain. Additional ex-

SCOPES 2015

48

amples include collision avoidance and autonomous driving
systems in cars and other mobile robotics applications. All
these examples expose new challenges to embedded systems
in terms of computation power and energy consumption.

In recent years, the performance of embedded systems
has improved significantly. Today, multiple processors, often
providing different characteristics, are combined onto a sin-
gle chip. These modern embedded multiprocessor systems
on chip (MPSoC), such as ARM’s big.LITTLE platform,
are often bundled with dedicated graphic processing units
(GPU) enabling the usage in the computer vision domain.
MPSoCs are then still very energy efficient, e.g., they are
also used in currently available mobile phones. Combining
fast and powerful processors with slower and more energy
efficient processors and GPU cores allows to achieve good
trade-offs between performance and energy. However, the
large design space offered by these heterogeneous multi-core
systems poses a significant challenge to embedded systems
developers in order to find good parameters to achieve the
necessary performance for a given application.

In this paper we present a hardware-in-the-loop, multi-
objective Design Space Exploration (DSE) approach for em-
bedded systems, focusing on applications from the computer
vision domain (cf. Section 3). Our approach, based on an
existing DSE [9] method, takes execution time, energy con-
sumption and detection quality into account. As a real world
use case, the software processing pipeline of the PAMONO
(Plasmon-Assisted Microscopy of Nano-Objects) sensor [18]
is used. This biosensor can detect and count single viruses
within less than three minutes. Due to the nature of com-
puter vision applications, adjusting the detection quality
is possible without loss of expressiveness. This enables a
large optimization potential, particularly if the computation
power provided by an embedded platform is constrained. In
the embedded domain, optimization approaches commonly
do not consider this opportunity, as discussed in Section 7.
However, in the computer vision domain, varying the de-
tection quality is quite common. Considering this trade-off
enables an additional optimization dimension for our DSE
approach.

The optimization objective for the PAMONO application
is to find solutions with low energy consumption, sufficiently
fast evaluation speed, and acceptable virus detection qual-
ity. Our extended DSE enables to analyze the optimization
opportunities on a number different dimensions:

• How much energy or execution time can we save if we
adapt hardware configuration parameters only?

• How much energy or execution time can we save if we
optimize software parameters?

• What is the gained benefit of combining the optimiza-
tion of hardware and software parameters?

• Can we save additional energy and execution time by
decreasing the quality of service, i.e. detection accu-
racy?

The rest of this paper is structured as follows. Details of
the PAMONO sensor are described in Section 2. Section 3
describes of our DSE framework, followed by an overview of
the PAMONO application in Section 4. Section 5 describes
the embedded heterogeneous MPSoC platform used to ob-
tain the evaluation results presented in Section 6. Section 7

Odroid-XU3

A7

Mali

T628
RAM

A15

Odroid-XU3

A7

Mali

T628
RAM

A15
Master PC

Genetic

Algorithm

Figure 2: Distributed evaluation process. New indi-
viduals are generated on the master PC and trans-
ferred to the Odroid systems. The fitness evalu-
ation uses the ARM Cortex-A15 cores, the Mali-
T628 GPU and the RAM. The energy consumption
of these components is measured by an energy mea-
surement program, which runs on the Cortex-A7
cores.

discusses related work and, finally, Section 8 concludes the
paper and gives an outlook onto our future research ideas.

2. PAMONO BIOSENSOR
Detecting physical structures on the nanometer scale, like

viruses, is usually not possible using optical methods. Such
structures have to be observed using an indirect approach.
The PAMONO sensor technique allows the indirect obser-
vation of these small particles. The overall structure of the
PAMONO biosensor is shown in Figure 1. The main part
of the PAMONO sensor is a thin gold layer, which is coated
with antibodies on top. The sample is continuously flow-
ing through the flow cell, so that viruses in the sample can
attach to the antibodies. Once a virus is attached to the
antibodies it will stay on the gold layer. The gold layer is
illuminated from the bottom side with laser light, which is
reflected through a prism to the CCD camera. The laser
light excites so called plasmon waves within the gold layer.
As this excitement of the plasmon waves highly depends on
the thickness of the layer, small changes in the thickness,
like a virus attaching to the antibodies, strongly affect the
plasmon waves and the amount of reflected light. As a re-
sult, the effects of an attaching virus can be seen on the
micrometer scale as a small, faint spot appearing in the im-
ages. Only viruses that match the antibodies are attaching
to the sensor, which is why only the desired virus stems are
detected.

In contrast to rapid tests for virus infections like the flu or
HIV, the PAMONO sensor detects and counts the viruses in
the sample and does not test for antibodies in the sample.
Antibodies can only be detected in the sample if the patient’s
immune system has already reacted to the infection. The
PAMONO sensor, however, can detect the viruses as soon
as they show up in the sample and therefore it closes the gap
between the time the patient is becoming contagious and the
patient’s immune system is developing the first antibodies.

The PAMONO sensor has the abilities to be used as a fast
and reliable virus sensor. But it still lacks a downsizing of

SCOPES 2015

49

Sensor Data Acquisition
 Feature Extraction on

Volumes of Images
Segmentation Classification

Figure 3: Simplified virus detection software workflow

the whole system to be portable. It has been shown [10, 8]
that an automatic virus detection can be done on desktop
and laptop systems using the graphics processing unit (cf.
Section 4). If the automatic virus detection can be done on
an embedded system, the whole system can be downsized
to a portable device running on battery. Even the usage for
area monitoring with multiple devices is then possible.

3. DESIGN SPACE EXPLORATION FRAME-
WORK

Software running on an embedded system has to con-
sider several restrictions, such as energy consumption and
execution time. For embedded software developers, deter-
mining good software and hardware parametrization is of-
ten difficult, especially if the objectives are conflicting and
additional constraints have to be fulfilled. In this section
we describe our design space exploration (DSE) framework,
which can be used to automatically identify hardware and
software parametrization. Multiple and possibly conflicting
objectives can be investigated. The presented framework is
an extension of our previous GPU design space exploration
framework [9]. It has already been shown that the frame-
work can be used for different kinds of applications. We
evaluated it for 20 different programs from three different
benchmark suites, with a wide variety of industrial, physical
and biological applications.

The framework is based on a heavily modified version of
ECJ (Java-based Evolutionary Computation Research Sys-
tem) [11]. The design space exploration uses a genetic al-
gorithm (GA) to explore the highly non-linear design space.
The multi-objective evaluation is done with NSGA-II [6],
which is part of ECJ.

We extended the framework to a more general approach.
The previous framework is strongly coupled to a GPU sim-
ulator and a specialized fitness evaluation method. These
limitations were removed. For example, the previous design
required that the fitness calculation is done in a single fit-
ness evaluation method. If new fitness values should be cal-
culated the method had to be adjusted. The new framework
can integrate fitness values from arbitrary sources. There-
fore, new objectives can be examined easily. Also, the pre-
vious framework was designed to use a PC cluster for the
parallel simulation of the GPUs, here arbitrary target plat-
forms can be easily integrated.

To measure real hardware, instead of simulated GPUs, we
integrated our own measurement tool, which is described in
Section 6.1. We also modified the fitness evaluation in such a

way that it does not influence the energy or execution time
measurements on the target platform. The details of this
modification are presented in Section 6.1. The used target
platform, see Section 5, also made it possible to integrate
the energy consumption of the GPU, CPU and RAM in our
measurements.

Another peculiarity of the presented DSE framework is
that it can handle a lot of different types of parameters and
parameter dependencies. For example, it is common that
software or hardware parameter values must lie in a partic-
ular range, like powers of two values for GPU work group
sizes or frequencies that can only be changed in 100 kHz
steps. These restrictions can be directly modeled within the
input specification of the DSE. Complex parameter depen-
dencies can also be modeled. One example is, if two param-
eters should be optimized and a third parameter needs to
adapt to the first two parameters. The third parameter can
therefore be set as a dependency and derived from the other
parameters. A second example is, if parameters have logical
dependencies, such as one parameter needs to be in a certain
range only if another parameter is set. This, too, can be eas-
ily specified. All these features keep the search space small
and prevent that invalid solutions are generated, resulting
in a faster evaluation time.

The procedure to set up the DSE is as follows: A master
PC is used to distribute and coordinate the DSE. All target
platforms are attached to the master PC, e.g. via network.
The sources that should be used for the fitness calculation
are set as dependencies. All required data files and the pro-
gram that should be evaluated can also be specified as a
dependency. The command line calls and the order of the
execution need to be specified. Finally, it must be declared
how the different fitness values can be obtained after the
programs were executed.

The evaluation works as follows: All dependent files are
automatically distributed to the target platforms. This en-
sures that the same data and code base is used on all the
target platforms. The parameters that need to be optimized
and their dependencies are resolved. New parameter files are
generated within the GA and are automatically distributed
to the target platforms. The measurement can be automat-
ically repeated several times to decrease inaccuracies. The
(averaged) fitness results are gathered and transferred back
to the master PC. Then a new evaluation is scheduled. If a
generation is finished, the new generation is created on the
master PC, a checkpoint and all partial results are stored
and the evaluation for the next generation is executed.

SCOPES 2015

50

Signal Restoration

4 Integer Parameters

1 Float Parameter

6 Hardware Parameters

Feature Extraction

2 Integer Parameters

5 Float Parameters

2 Hardware Parameters

Classification

2 Float Parameters

1 Harware Parameter

Preprocessing

2 Hardware Parameters

Segmentation

3 Integer Parameters

2 Float Parameters

7 Hardware Parameters

Figure 4: Pipeline for the automatic virus detection. For each pipeline step, the number of parameters to be
optimized are given.

Figure 2 illustrates the distributed evaluation process used
in this paper. A master PC controls the evaluation process
and generates new individuals. The individuals are trans-
ferred to the Odroid target platforms, which are connected
via network. The multi-objective fitness is then evaluated
on the target platform. The evaluation includes the run of
the program, the execution time and energy measurement
and the calculation of the detection quality. For details on
the Odroid target platform see Section 5.

To summarize, we extended our existing GPU design space
exploration [9] in the following parts:

• The presented design space exploration measures real
hardware, whereas the previous approach uses a GPU
simulator.

• It is extended to optimize software parameters in con-
junction with hardware parameters, whereas the pre-
vious is a hardware design space exploration only.

• An embedded system is used as target platform, whereas
in the previous approach (simulated) NVIDIA desktop
or mobile GPUs are used as target platforms.

• The GPU, CPU and RAM energy consumptions are
measured, whereas the previous approach only mea-
sures the energy consumption of the (simulated) GPU.

• The DSE was extended to a more general approach,
where arbitrary sources can easily be integrated to co-
operatively calculate the desired fitness values.

• A reduction of the quality of service is used to explore
solutions with a reduced detection quality but better
energy consumption and/or execution time.

4. USE CASE: AUTOMATIC VIRUS DETEC-
TION SOFTWARE

As a real world use case the automatic virus detection
software for the PAMONO sensor (cf. Section 2) was cho-
sen. This is a typical future application for embedded sys-
tems. Being a computer vision application, it has huge per-
formance demands. In this case, several hundred images
must be processed to obtain a reliable result in a short pe-
riod of time. The use case has soft real time requirements, as
it is desired, but not required, to process the sensor images
with a frame rate of at least 25 frames per second, which is
the frame rate of the used camera. By meeting this soft real
time requirement, buffers between the camera and the detec-
tion software can be removed. This enables a theoretically
infinite execution without the risk of buffer overflows. It
has been shown (cf. Section 6) that this application is com-
plex enough to enable the DSE to explore and solve some of
the problems which are exposed through embedded systems.

The program is written in C for the CPU code and OpenCL
for the GPU code. It consists of 14, 000 lines of C code and
4, 000 lines of OpenCL code (source lines of code).

A brief overview of the work flow of the virus detection
is shown in Figure 3. The images taken by the PAMONO
sensor are analyzed by the software. A feature extraction
process, e.g. noise reduction, works on a volume of images.
In the resulting images, a segmentation process identifies
structures by applying polygon structures around prominent
areas. Finally, a classification process determines if the poly-
gons correspond to viruses or not.

Figure 4 shows the detailed pipeline structure for the auto-
matic virus detection [10]. In the pre-processing step, 16-bit
gray-scale images are uploaded to the GPU and converted
to floating point arrays. In the signal restoration step, the
physical signal model of the PAMONO sensor is used to
restore the signal of the attaching virus particles and to re-
move the constant background signal and noise. Within the
feature extraction step, different per-pixel and per-polygon
features are calculated. The per-pixel features can be under-
stood as the degree of membership of the pixel to the class
of pixels corresponding to a virus adhesion, while the per-
polygon features represent a degree of membership of the
whole polygon to the class of a virus adhesion. In the best
case, for each virus adhesion in the images, a corresponding
polygon is identified. In addition, the polygon size should
match the size of the virus adhesion.

The parameters for the signal restoration are mainly used
for noise reduction. The feature extraction parameters are
detection thresholds and parameters for switching between
different feature extraction algorithms. The segmentation
parameters influence how the polygons are created and how
the extracted features per pixel are combined to features per
polygon. Finally, the classification parameters are used to
sort out false detections.

The virus detection quality is measured with the F1 score
(also F-measure), which is defined as the harmonic mean
of precision p and recall r: F1 := 2 p·r

p+r
. The precision p

is defined as p := TP
TP+FP

and the recall r is defined as

r := TP
TP+FN

. TP are the true positives (correctly detected

viruses), FP the false positives (falsely detected viruses) and
FN the false negatives (missed viruses).

The detection quality indicates how accurately the detec-
tion program counts the number of viruses in the sensor
images. It should be made clear that the detection using
the virus detection program is more precise than a simple
virus test with just a positive or negative result. If a F1

score of 100% is reached, this means that every individual
virus appearing in the images was detected and no falsely
detected particle is in the result.

In cases where a F1 score of 100% is not necessary, new
optimization opportunities arise. For example, the detection

SCOPES 2015

51

Odroid-XU3
IN

A
2

3
1

IN
A

2
3

1

IN
A

2
3

1
IN

A
2

3
1

Low Power BUS - AMBA ACE

ARM

Mali-T628

MP6

Low Power

DDR3

Cortex-A15

Core Core

Core Core

Cortex-A7

Core Core

Core Core

Exynos 5442Exynos 5442

Figure 5: Key features of the Odroid-XU3. The
Exynos 5442 chip consists of a quad-core Cortex-
A15 CPU, a quad-core Cortex-A7 CPU, a Mali-
T628 GPU and a low power RAM. The INA231 sen-
sors are used for measuring the energy consumption
of the two CPUs, the GPU and the RAM.

quality can also be used as a measurement for the Quality of
Service (QoS). The experiments in Section 6.2 will use vari-
ations in the F1 score to identify trade-offs between energy
consumption and execution time.

5. TARGET PLATFORM
Modern multiprocessor systems on chip (MPSoC) using

the ARM big.LITTLE [13] architecture are entering today’s
market. Those heterogeneous embedded systems contain
processors running at different clock frequencies, featuring
differing pipeline structures, cache sizes, bus systems, or
memory hierarchies. By utilizing the different capabilities
efficiently, energy and performance trade-offs can be found
to satisfy the requirements of mobile embedded devices and
their applications. Thus, today’s MPSoCs with integrated
dedicated powerful graphics processing units (GPU) are good
candidates as target platforms for our DSE approach. The
first available systems were limited in terms of task schedul-
ing, preventing real heterogeneous multi-processing (HMP).
However, current systems provide true HMP; one of the first
available MPSoCs was the Exynos 5442 application proces-
sor used, e.g., on the Odroid-XU3 board [7] and Samsung’s
S5 mobile phone. The Odroid-XU3 board is used as the
target platform in this paper.

A brief overview of the Odroid-XU3 platform is given in
Figure 5. The system is composed of an Exynos 5442 ap-
plication processor with four ARM Cortex-A15 and four
Cortex-A7 processors. Furthermore, the Mali-T628 MP6
GPU with full OpenCL 1.1 profile support is integrated.
In addition, a shared 2GB low power DDR3 memory is
available. All components are connected through an energy-
efficient bus. To measure the energy consumption of these

key components, four INA231 [17] sensors are used to mea-
sure current and power separately for “big” cores, “little”
cores, the GPU, and the DDR3 memory. The sensors are
connected via an I2C interface to the MPSoC. This system,
with its powerful GPU, enables the exploration of the uti-
lization of such heterogeneous embedded systems for mobile
virus detection as described earlier.

6. EVALUATION
The mobile usage of the virus detection sensor requires a

powerful yet energy-efficient computing platform. With the
presented approach, we try to find good trade-offs to achieve
the necessary precision with respect to energy consumption
and execution time. To evaluate the abilities of our DSE
approach, we analyzed three different evaluation scenarios:
A design space exploration of the software parameters only, a
design space exploration of the hardware configuration only
and a combined hardware/software design space exploration.

For each evaluation during the optimization, three objec-
tives were measured, namely: virus detection quality (QoS),
energy consumption and execution time. All energy and
execution time measurements are repeated three times and
are averaged to reduce noise in the results, which has been
shown in our previous measurements to be a good compro-
mise between precision of the measurement and evaluation
time. Further, the measurements were done in a tempera-
ture controlled room and with the system’s cooling fans run-
ning at full speed to reduce the influences of temperature on
the energy consumption. By keeping a constant tempera-
ture during the whole evaluation, the energy consumptions
of all solutions are comparable.

6.1 Measurement Setup
This section describes the experimental setup for the eval-

uation environment. The measured key characteristics are
detection quality, energy consumption and execution time.
An overview of the general setup is given in Figure 2. Here
we will focus on the technical aspects, for a general overview
see Section 3.

An Ubuntu 14.04 LTS1 OS with a modified Linux kernel
is running on the Odroid-XU3 platforms. We enabled the
use of all available governors which control the frequencies of
the processors. With the performance/powersave governor,
the systems run at the highest/lowest possible frequency.
With userspace, the frequency is controlled by the user re-
spectively the algorithm. Using interactive, ondemand or
conservative, the CPU frequency is set depending on the
current workload, where interactive is the most aggressive
strategy, conservative changes the frequencies gracefully and
ondemand is in between the two other strategies. The set-
tings of the INA231 sensor are depicted in Table 1. We chose
to measure shunt and bus voltage in continuous mode, thus
measurement is done continuously and not triggered by an
event. The sensor samples 16 values and builds an average
value for both shunt and bus. Each sample measurement
takes 4.156 ms. This leads to an update period of 132.992
ms. A more precise measurement is not possible due to
limitations of the I2C interface which connects the INA231
sensors with the Exynos 5442. Thus, new values can be
observed with a frequency of about 8Hz. To verify the cor-
rect INA231 configuration, we extended the provided Linux

1Based on kernel version 3.10.63 provided by Hardkernel

SCOPES 2015

52

140

120

Energy in Joule

100

80

60

40
1

0.8
Detection Quality

0.6

0.4

0.2

dominated

non-dominated

40

0

30

60

20

10

50

70

E
x
e

c
u

ti
o

n
 T

im
e

 i
n

 S
e

c
o
n

d
s

(a) Experiment Exp2sw

140

120

Energy in Joule

100

80

60

40

201

0.8
Detection Quality

0.6

0.4

0.2

dominated

non-dominated

40

0

30

60

20

10

50

70

E
x
e
c
u
ti
o
n
 T

im
e
 i
n
 S

e
c
o
n
d
s

(b) Experiment Exp3hw&sw

Figure 6: Pareto fronts and dominated points for two of the three experiments. The non-dominated points are
plotted on top of the dominated points for better visualization. For execution time and energy consumption
lower values are better and for detection quality higher values are better. An excerpt of the points of the
Pareto fronts can also be found in Table 2.

Table 1: INA231 [17] Configuration

Number Of Averages 16
Bus Voltage Conversion Time 4.156 ms
Shunt Voltage Conversion Time 4.156 ms
Operation Mode continuous
Update Period 132.992 ms

driver to make the configuration register of the sensor ac-
cessible through the driver.

In the following, we describe the developed energy mea-
surement tool, which we made publicly available [12]. The
tool is running on the Odroid-XU3 and directly interfaces
with the drivers of the INA231 sensors (cf. Figure 5) to ex-
tract the energy values with the correct timing. The mea-
surement can be controlled with signals (via named pipes).
As the measured program takes some time to initialize, e.g.
to build the OpenCL kernels and fill all the queues, the sig-
nals were used to measure exactly the main part of the pro-
gram, skipping all of the pre- and post-processing. Thus,
only the real execution times of the individuals are mea-
sured. Finally, the tool generates a summary with all key
values which is then transferred to the master PC.

In order to not influence the measurement through its
own execution or through the fitness calculation, these parts
run on the Cortex-A7 cores and the energy consumption
of the Cortex-A7 cores is excluded from the results. The
program that should be measured runs on the Cortex-A15
cores and the Mali-T628 GPU. With this configuration, a
precise energy measurement is possible.

6.2 Experiments
Three experiments were conducted, named Exp1hw, Exp2sw

and Exp3hw&sw. For the first experiment we chose to only
optimize the hardware configuration and to not modify the
parameters of the virus detection. For the second exper-

iment we chose to only optimize the software parameters
for the virus detection. Finally, for the third experiment,
both software parameters and hardware configurations were
modified in a combined hardware/software design approach.

The hardware parameters are:

• Used governor on the Odroid: performance, power-
save, userspace, interactive, ondemand or conserva-
tive,

• Frequency of the Cortex-A15 core, if the governor is
set to userspace,

• Work group sizes of the Mali-T628 GPU, and

• Memory allocation size for some buffers on the Mali-
T628 GPU.

The work group sizes on the Mali-T628 GPU affect the
number of threads concurrently running on the GPU. For
example, if a work group size of 16 × 16 is used for noise
filtering in the second pipeline step in Figure 4, the sensor
images are partitioned into 16 × 16 blocks. Then, 16 × 16
threads on the GPU are used to calculate the filter out-
put. Partial results within the work group are shared by
synchronizing using the shared memory on the streaming
multiprocessor on the Mali-T628 GPU.

The memory allocation size for some of the buffers on the
Mali-T628 GPU can affect the detection quality. Within
the different pipeline steps, ring buffers on the GPU store
some of the previously processed images. Depending on
the ring buffer sizes, the number of available images varies,
e.g. for noise reduction or the feature extraction, which in-
creases/decreases the quality of the results.

The software parameters for the different pipeline steps,
shown in Figure 4, are:

• 6 parameters for the signal restoration, mainly param-
eters for the noise reduction,

SCOPES 2015

53

• 7 parameters for the feature extraction, like detection
thresholds and for switching different detection algo-
rithms,

• 5 parameters for the segmentation, mainly thresholds,
and

• 2 parameters for the classification, which affect which
polygons get sorted out.

As data sets for the virus detection program we used a
training and a testing data set, each consisting of 1,000
16-bit gray scale sensor images with size 706 × 167 pixels.
The positions and corresponding polygons of the appearing
viruses within the images are labeled. Within each eval-
uation, the virus detection program generates a file which
contains the positions and corresponding polygons of the
viruses found. These polygons can be matched to the poly-
gons of the labeled data and the F1 score can be calculated.
The training data set is used within the optimization, while
the previously unseen testing data set is used afterward for
measuring the quality of the found solutions. The data sets
are publicly available [16] under the Open Database License.

For the evolutionary algorithm, the parameters that should
be optimized are coded as integer vector genes. All floating
point parameters, e.g. the detection thresholds for the virus
detection, are converted to fixed point numbers and also
coded as an integer gene. For each floating point parame-
ter, the accuracy of the fixed point number is chosen to meet
but not exceed the accuracy requirements. This saves some
amount of evaluation time.

The mutation rate for the NSGA-II algorithm was set to
0.1 with a likelihood of 1.0. The crossover was set to a
tournament selection with a likelihood of 0.9. For each of
the three evaluations, 4,000 individuals were created and
measured. Each measurement was repeated three times to
average out noise, resulting in 36,000 single measurements.
The population size for the evolutionary algorithm was 100
and the number of generations was 40. The evaluation time
for each experiment was approximately four days, with two
Odroid systems. The evaluation time can easily be reduced
by adding more Odroid boards. Also the number of eval-
uated individuals can be reduced, as 500 evaluations show
already good results.

6.3 Results
In Figure 6, results for experiment Exp2sw and Exp3hw&sw

are shown. Good solutions are indicated by either a high de-
tection quality, a low energy consumption, or short execu-
tion times. Thus, the Pareto front is oriented to the bottom
right of the diagrams. Table 2 shows excerpts of the Pareto
fronts for all experiments.

For the baseline experiment Exp0baseline (cf. Table 2), the
unmodified virus detection software was measured on the
Odroid systems. The measured energy consumption was
370 Joule and the execution time 119.8 seconds. The F1

score (detection quality) of 100% for the training data set
has been previously optimized on a desktop system and was
not further optimized on the Odroid. The detection quality
on the testing data set attained 99.5%.

Within the first experiment Exp1hw (cf. Table 2), only the
hardware configuration of the Odroid system was optimized.
As no parameters of the virus detection program were opti-
mized, the detection quality is fixed to the same values as in

the baseline experiment. In result the energy consumption
varies from 233.5 Joule to 344.6 Joule. The execution time
is 116.2 seconds to 118.9 seconds, which corresponds to a
frame rate of 7.7 frames per second (fps) in the best case.
The frame rate is calculated for 900 images of the data set,
as 100 of the 1,000 images are used for the initialization
phase, which is excluded from the measurements.

For the second experiment Exp2sw (cf. Table 2 and Fig-
ure 6(a)), only the software configuration of the virus de-
tection software is optimized. The energy consumption is
87.2 Joule for the best detection quality of 100% and 34.4
Joule for the lowest detection quality of 41.3%. The execu-
tion time varies from 29.7 seconds, which corresponds to a
frame rate of 30.3 fps for the best detection quality, to 10.4
seconds with a frame rate of 86.5 fps for the lowest detection
quality. As expected, the detection qualities on the testing
data set are slightly lower than on the training data set, but
still show good results.

The third experiment Exp3hw&sw (cf. Table 2 and Fig-
ure 6(b)), where software and hardware parameters were
optimized, shows similar results for the detection quality on
the training and testing data set, but further improvements
for the energy consumption and execution time compared to
the other experiments. The energy consumption for the best
detection quality could be reduced to 57.5 Joule, which saves
84% energy compared to the baseline experiment. With a
reduced, but reasonable detection quality of 96.9%, the en-
ergy consumption could be reduced by 93% compared to the
baseline and by more than 50% compared to the solution
from Exp2sw with 95.3% detection quality.

6.4 Discussion
As the results show, the genetic algorithm is able to achieve

a large diversity in the results. Thus, the resulting Pareto
fronts are composed of several solutions with different per-
formance characteristics. As a consequence, the genetic al-
gorithm is able to explore the solution space exposed by the
application and target platform.

The evaluation of Exp3hw&sw shows that the optimiza-
tion of software and hardware parameters simultaneously
achieves the best results. Solutions achieving a F1 score of
100% on the training data and nearly 100% on the testing
data at almost 31 fps were found. Only these results show
that the soft real time requirements can be met to enable a
live/on the fly virus detection. However, for these solutions
the energy consumption is quite high. The results show
that by allowing a Quality of Service (F1) decrease of only
3.1% the energy consumption could be reduced drastically
by about 52%. In addition, the amount of frames processed
per second could by almost doubled. For Exp2sw, similar
observations can be made.

Further, the results show that to achieve additional re-
ductions of the energy consumption the Quality of Service
decrease must be quite large. If such a decrease is useful in
clinical practice highly depends on the task. For example
a F1 score of 50% can still be feasible for a detection task,
where only a positive or negative result is the output of the
test and the actual count of individual viruses in the sample
is of no interest.

The results indicate that the energy consumption is not
always tightly coupled to the execution time. Exp1hw shows
that for this application, changing only the hardware param-
eters can influence the energy consumption in the opposite

SCOPES 2015

54

Table 2: Results for the three experiments. Excerpt of the three Pareto fronts for the objectives virus
detection quality (F1 score), energy consumption and execution time. In addition the detection quality (F1

score testing) for the unseen testing data set is shown. As baseline/comparative measurement an unoptimized
run is given in the first row (Exp0baseline), which was measured with an unmodified system and program.
Experiment F1 Score Training F1 Score Testing Energy Cons. Energy Sav. Exec. Time Speedup Frame Rate

Exp0baseline 100% (fixed) 99.5% (fixed) 370.0 Joule - 119.8 s - 7.5 fps

Exp1hw 100% (fixed) 99.5% (fixed) 233.5 Joule 37% 118.9 s 1 7.6 fps
100% (fixed) 99.5% (fixed) 239.8 Joule 35% 117.1 s 1 7.7 fps
100% (fixed) 99.5% (fixed) 246.4 Joule 33% 116.7 s 1 7.7 fps
100% (fixed) 99.5% (fixed) 257.7 Joule 30% 116.6 s 1 7.7 fps
100% (fixed) 99.5% (fixed) 344.6 Joule 7% 116.2 s 1 7.7 fps

Exp2sw 100% 99.5% 87.2 Joule 76% 29.7 s 4.0 30.3 fps
98.5% 93.1% 64.6 Joule 83% 22.7 s 5.3 39.6 fps
95.3% 88.3% 59.7 Joule 84% 20.6 s 5.8 43.7 fps
87.0% 84.4% 50.5 Joule 86% 17.4 s 6.9 51.7 fps
83.0% 73.4% 48.6 Joule 87% 15.8 s 7.6 57.0 fps
75.3% 72.3% 43.9 Joule 88% 17.4 s 6.9 51.7 fps
75.0% 69.3% 46.3 Joule 87% 14.7 s 8.1 61.2 fps
68.4% 61.2% 39.2 Joule 89% 13.8 s 8.7 65.2 fps
51.9% 41.3% 36.4 Joule 90% 12.0 s 10.0 75.0 fps
41.3% 40.0% 34.4 Joule 91% 10.4 s 11.5 86.5 fps

Exp3hw&sw 100% 99.5% 57.5 Joule 84% 29.3 s 4.1 30.7 fps
100% 99.5% 84.5 Joule 77% 28.9 s 4.1 31.1 fps
98.5% 97.4% 47.9 Joule 87% 25.5 s 4.7 35.3 fps
97.4% 99.5% 69.3 Joule 81% 23.9 s 5.0 37.7 fps
96.9% 87.8% 27.7 Joule 93% 14.8 s 8.1 60.8 fps
87.9% 76.6% 22.3 Joule 94% 10.8 s 11.1 83.3 fps
84.2% 60.5% 20.7 Joule 94% 11.4 s 10.5 78.9 fps
74.2% 63.9% 23.5 Joule 94% 10.7 s 11.2 84.1 fps
74.2% 64.7% 33.6 Joule 91% 10.4 s 11.5 86.5 fps
51.9% 55.8% 33.0 Joule 91% 10.0 s 12.0 90.0 fps

direction to the execution time. Another example can be
seen in Exp3hw&sw, where a slightly faster solution (86.5fps,
33.6J) consumes 42% more energy that the slightly slower
(84.1fps, 23.5J) one. However, in most cases, reducing the
execution time also reduces the energy consumption.

In Exp3hw&sw one can observe several peak shaped solu-
tions on the Pareto front in the Figure 6(b), where points
with similar detection quality and execution time differ in
the energy consumption. Further investigations show that
this behavior is caused by different governor settings. The
slightly faster results use conservative or performance gov-
ernors, whereas the more energy efficient solutions use the
userspace governors with a fixed frequency of 1.1 GHz for
the Cortex-A15.

Overall, the results show that the design space exploration
algorithm was able to decrease the execution time of the
virus detection algorithm drastically. By keeping the detec-
tion quality of 100%, a speedup of 4.1 with energy savings of
77%− 84% could be achieved. For a slightly reduced detec-
tion quality of 96.9%, a speedup of 8.1 with energy savings
of 93% could be achieved. By a further reduction of the
detection quality, speedups up to a factor of 12 and energy
savings of up to 94% are possible. This strongly indicates
that a mobile virus detection using embedded systems in
combination with the PAMONO sensor, meeting the soft
real time requirements, is feasible.

7. RELATED WORK
For mobile battery driven solutions, energy consumption

is a key objective. As presented in this paper, modern em-
bedded applications are emerging from the computer vision
domain. Thus, GPUs play an important role. The energy
efficiency of GPUs has been analyzed by Cebrian et al. [5].
This work emphasizes that the energy consumption of desk-
top GPUs heavy depends on the actual applications. Thus,
energy-aware computing is mandatory to achieve necessary
efficiency for mobile usage. A survey of energy-aware com-
puting in general was done by Ahmad and Ranka [2].

Exploring all possible parameters is quite complex and
often infeasible. Thus, (semi-) automatic Design Space Ex-
ploration (DSE) methods have been presented in the last
decades. A DSE approach combining offline and online ex-
ploration was presented by Pham et al. [14]. Their approach
is able to generate a mapping to heterogeneous MPSoCs con-
sidering energy and throughput. A mapping generated of-
fline is refined during run time to increase performance. This
approach only considers mapping and no hardware/software
parameters as well as QoS. Agosta et al. [1] presented a hard-
ware software co-exploration which is able to explore archi-
tectural parameters and source-level transformations con-
currently. Beside hardware parameters like memory hierar-
chy levels this approach also considers function inlining and
loop unrolling to find trade-offs between energy and delay.
This approach focuses on embedded low-power applications

SCOPES 2015

55

and does not consider QoS. In addition, only two software
transformations are used and thus opportunities exposed by
the application e.g. algorithm parameters not considered.
The MADNESS framework [4] is able to compose MPSoCs
by using Evolutionary Algorithms (EAs) considering mul-
tiple objects simultaneously. Therefore, a library of prede-
fined hardware blocks and software implementations is used.
Applications are specified as Kahn Process Networks (KPN).
This approach is able to explore different application scenar-
ios. A scenario captures a specific provided implementation
of the same application to take e.g. QoS into account.

In the domain of approximate computation the precision
of calculation can be adjusted to achieve certain objectives.
The GREEN system [3] uses controlled approximation to
reduce energy consumption by meeting a certain QoS. The
user provides multiple implementation of an algorithm with
different precision and e.g. energy consumption. Then, the
GREEN system builds a QoS model to determine the impact
of the provided implementations on the QoS. Afterwards,
a solution is selected which meets the user-specified QoS
requirements. Thus, a trade-off between energy consump-
tion/performance and QoS can be made. Nevertheless, the
user has to provide several inputs like implementation or
QoS which is complex and not always possible. The SAGE
approach [15] combines automatic code generation, to gener-
ate various levels of approximation, with a runtime system
to achieve speedups under user-defined output quality re-
quirements. This approach concentrates only on GPUs as
target platform and trade-offs between speedup and output
quality.

8. CONCLUSION
In this paper we presented a design space exploration ap-

proach in combination with a complex biological virus detec-
tion application. In combination with the PAMONO sensor,
the application is able to identify viruses in images. Usu-
ally, due to its demands on calculation power, this appli-
cation is executed on PCs or laptops. To enable a mobile
battery-driven virus detection, embedded systems must be
used. The availability of powerful embedded multiprocessor
systems on a chip allows a usage in this computer vision
domain. However, if a software should run on such system,
one is confronted with several difficulties, e.g., the limited
computing power or tight energy consumption restrictions.

We could show that we were able to extend an existing
multi-objective aware DSE approach to target embedded
platforms taking the restrictions exposed by these systems
into account. With three experiments we were able to show
the influences of a hardware parameter optimization, a soft-
ware parameter optimization and a combined hardware and
software parameter optimization on the detection software.

A surprising result is that the frame rate could be in-
creased from 7.5 fps to 30.7 fps (speedup of 4.1) without
losing accuracy in the detection quality. This enables the
embedded system to process the images with the best pos-
sible detection quality live from camera. At the same time,
the energy consumption could also decreased by 84%, from
370 Joule down to 57.5 Joule. By taking a reduction of
the Quality of Service into account, the energy consumption
could be reduced by 93% with a reasonable detection qual-
ity of 96.9% and a frame rate of 60.8 fps (speedup of 8.1).
These positive results have exceeded our expectations and
lay the foundation for a mobile usage of this virus detection.

As future work the PAMONO sensor will be extended to
detect more than one virus stem at a time. For this ap-
proach a larger sensor area will be used and the sensor will
be divided into different areas, each covered with different
antibodies. The new challenge with this approach is that
the image sizes must adapt to the larger sensor area, which
is more demanding for the target platform and the design
space exploration. One opportunity for the detection soft-
ware and the design space exploration is an automatic adap-
tation of the detection quality, energy consumption and exe-
cution time, independently to each single area of the sensor.
If viruses are appearing only in one part of the sensor images,
this area can be inspected with an increased detection qual-
ity. While in the other areas a low quality of service might
be enough, to not miss the moment where particles start to
appear and the detection quality needs to be adapted.

Acknowledgment
Part of the work on this paper has been supported by Deut-
sche Forschungsgemeinschaft (DFG) within the Collabora-
tive Research Center SFB 876 “Providing Information by
Resource-Constrained Analysis”, project B2. URL: http://
sfb876.tu-dortmund.de

9. REFERENCES
[1] G. Agosta, G. Palermo, and C. Silvano.

Multi-objective co-exploration of source code
transformations and design space architectures for
low-power embedded systems. In Proc. of SAC, 2004.

[2] I. Ahmad and S. Ranka. Handbook of Energy-Aware
and Green Computing. Chapman & Hall/CRC, 2012.

[3] W. Baek and T. M. Chilimbi. Green: A framework for
supporting energy-conscious programming using
controlled approximation. In Proc. of PLDI, 2010.

[4] E. Cannella, L. Di Gregorio, L. Fiorin, et al. Towards
an ESL design framework for adaptive and
fault-tolerant MPSoCs: MADNESS or not? In Proc.
of ESTIMedia, 2011.

[5] J. Cebrian, G. Guerrero, and J. Garcia. Energy
efficiency analysis of GPUs. In Proc. of IPDPSW,
2012.

[6] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A
fast elitist non-dominated sorting genetic algorithm
for multi-objective optimization: NSGA-II. In Proc. of
PPSN VI, Berlin, 2000.

[7] Hardkernel. Odroid-XU3. http://www.hardkernel.
com/main/products/prdt_info.php?g_

code=G140448267127, Dec. 2014.

[8] P. Libuschewski, D. Kaulbars, D. Siedhoff,
F. Weichert, H. Müller, C. Wietfeld, and P. Marwedel.
Multi-objective computation offloading for mobile
biosensors via the LTE network. In Proc. of
Mobihealth, Nov 2014.

[9] P. Libuschewski, P. Marwedel, D. Siedhoff, and
H. Müller. Multi-objective energy-aware GPGPU
design space exploration for medical or industrial
applications. In Proc. of CITIMA, 2014.

[10] P. Libuschewski, D. Siedhoff, C. Timm, A. Gelenberg,
and F. Weichert. Fuzzy-enhanced, real-time capable
detection of biological viruses using a portable
biosensor. In Proc. of BIOSIGNALS, 2013.

SCOPES 2015

56

[11] S. Luke. The ECJ Owner’s Manual, 2013.

[12] O. Neugebauer and P. Libuschewski. Odroid energy
measurement software, 2015. http://sfb876.
tu-dortmund.de/auto?self=Software.

[13] Peter Greenhalgh, ARM. Big.LITTLE processing with
ARM Cortex-A15 & Cortex-A7. http://www.arm.
com/files/downloads/big_LITTLE_Final_Final.pdf,
2013.

[14] N. K. Pham, A. K. Singh, A. Kumar, and K. M. M.
Aung. Incorporating energy and throughput awareness
in design space exploration and run-time mapping for
heterogeneous mpsocs. In Proc. of DSD, pages
513–521, Sept 2013.

[15] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and
S. Mahlke. Scaling performance via self-tuning
approximation for graphics engines. TOCS, 32(3),
2014.

[16] D. Siedhoff, A. Zybin, V. Shpacovitch, and
P. Libuschewski. PAMONO sensor data, 2014.
doi:10.15467/e9ofylrdvk.

[17] Texas Instruments Incorporated. High- or Low-Side
Measurement, Bidirectional CURRENT/POWER
MONITOR with 1.8-V I2C Interface, Feb. 2013.

[18] A. Zybin and et al. Real-time detection of single
immobilized nanoparticles by surface plasmon
resonance imaging. Plasmonics, 5:31–35, 2010.

SCOPES 2015

57

