
0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2417554, IEEE Transactions on Computers

Cross-Layer Software Dependability
on Unreliable Hardware

Semeen Rehman1, Kuan-Hsun Chen2, Florian Kriebel1, Anas Toma1,
Muhammad Shafique1, Jian-Jia Chen2 and Jörg Henkel1

1Department of Informatics, Karlsruhe Institute of Technology (KIT), Germany
2Department of Informatics, TU Dortmund (TUD), Germany

Corresponding Author’s Email: muhammad.shafique@kit.edu

Abstract—To enable reliable embedded systems, it is impera-
tive to leverage the compiler and system software for joint opti-
mization of functional correctness (i.e., vulnerability indexes) and
timing correctness (i.e., deadline misses). This paper considers the
optimization of the Reliability-Timing (RT) penalty, defined as
a linear combination of the vulnerability and deadline misses.
We propose a cross-layer approach to achieve reliable code
generation and execution at compilation and system software
layers for embedded systems. This is enabled by the concept
of generating multiple versions for given application functions,
with diverse performance and reliability tradeoffs, by exploiting
different reliability-guided compilation options. As the execution
time of a function is not fixed, the selection of the versions
depends upon the execution behavior of the previous functions.
Based on the reliability and execution time profiling of these
versions, our reliability-driven system software decides the pri-
oritization of the functions for determining their execution order
and employs dynamic version selection to dynamically select a
suitable version of a function. Specifically, our scheme builds a
schedule table offline to optimize the RT penalty, and uses this
table at run time to select suitable versions for the subsequent
functions. A complex real-world application of “secure video and
audio processing” composed of various functions is evaluated for
reliable code generation and execution.

I. INTRODUCTION

Aggressive technology scaling in the deep nanometer
regime has led to serious system reliability threats like aging,
soft errors, etc. [5, 10, 22, 30]. Soft errors are transient faults
due to internal or external sources (e.g., high energy particle
strikes) that manifest as spurious bit flips in the hardware
and finally corrupt the correct application execution [5, 10].
Several reliability optimization techniques have been proposed
at different system layers to mitigate soft error effects, most
of which primarily rely on full-scale redundancy [10].

Hardware-based approaches mainly target spatial/temporal
architectural redundancy using Dual/Triple Modular Redun-
dancy (DMR, TMR) and design with reduced architectural vul-
nerability [22, 31]. However, these techniques introduce extra
hardware circuitry and incur significant area/power overhead,
which may violate the stringent design constraints of embed-
ded systems. To alleviate this overhead, compiler-/software-
based techniques have emerged as an attractive option.

Compiler-/Software-based approaches rely on instruction
and/or data redundancy (DMR, TMR) [23, 27]. The approach
in [12] duplicates the contents of narrow-width register values
in 64-bit registers and performs error detection by checking
the upper 32-bit and lower 32-bit values. The approaches in

[23, 27] duplicate the instructions and insert check points
during compilation for error detections. Other compiler-level
approaches include reducing the register lifetime by reschedul-
ing the assembly code [33], control flow checking [27, 32],
etc. However, these approaches incur significant performance
overhead (in most of the cases more than 2x-3x). Therefore,
these techniques do not respect the timing aspects and thereby
lead to an increased risk of deadline misses.

For real-time embedded systems, the system software-based
approaches need to jointly account for: (1) functional relia-

bility, i.e., for a given input, the correctness of the output
values of a given application function considering faults in
the underlying hardware; and (2) timing reliability, i.e.,
whether the correct application output is derived in time or
after the deadline due to its prolonged execution exceeding
estimations or expectations. An application that is the best
from the perspective of functional reliability but incurring
significant performance degradation might lead to deadline
misses for delivering the correct output, i.e., degraded timing
reliability. Consequently, it may jeopardize the overall system
reliability. To ensure the reliability of an embedded system,
it is imperative to make sure that the timing constraints are
mostly obeyed, i.e., all the applications running in a system,
most of the time, deliver their correct output in time. For
soft and firm real-time systems, in which deadline misses are
tolerable, but should be avoided or leveraged with functional
correctness, compiler- and software-based approaches can be
adopted.

System software-based approaches: To address soft errors
in real-time systems, one might integrate fault tolerance tech-
niques and task scheduling with on-time recovery, e.g., [9].
For distributed real-time systems, Izosimov et al. [16] propose
a policy how to assign fault-tolerance to meet the timing
constraints under specific reliability levels. The work in [19]
analyzes the schedulability of real-time tasks for real-time
systems based on processors with autonomic frequency scaling
under aging. This analysis accounts for the aging-induced
degradation for task mapping under life-time constraints. By
considering the imprecise computation model, in which a task
is composed of mandatory and optional parts of executions,
Aydin et al. [3] explore how to maximize the total system
reward under task recovery. Furthermore, Izosimov et al. [15]
consider a more comprehensive imprecise computation model
for maximizing the system reward in distributed systems by
exploiting execution time properties (i.e., the best-, worst-, and



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2417554, IEEE Transactions on Computers

2

Performance-
Driven 

CompilationProcessor Model and 
Synthesis Results

Program Analysis
CFG/DFG

BB Diagram

IVI, FVI 
Distribution

LEGEND
Existing ComponentsOur System Components

Reliability-Driven Offline System Software
* Reliability-Aware Function Scheduling

* Reliability-Aware Task Prioritization

Reliability-Driven Adaptive
Run-Time System Software

(Dynamic Function Version Selection)

IVI, FVI 
Traces

Performance CDF
Reliable 
Binary 
Codes 

R

D

Reliability 
Simulation & 

Validation

Error Logger

Instruction Set 
Simulator

Fault Injection 
Engine

Program Reliability 
Model (IVI, FVI)

Application Softwares 
[C, C++]

Fault Models
[transient, # of bit flips, 

SEU/MEU’s]

User-Defined 
Constraints (perf. 

overhead, #versions)

Reliability-Driven Compilation

* Reliability-Driven Software Transformations 

* Reliability-Driven Instruction Scheduling

* Selective Instruction Redundancy

Fig. 1: Overview of our Cross-Layer Dependability illustrating the interactions between the reliability-driven compilation and
reliability-driven system software layers for dependable code generation and execution.

average-case execution times).
Summarizing: state-of-the-art reliability methods mitigate

reliability-related issues at a particular layer and do not fully
leverage the cross-layer interactions and exploitation among
different system layers. Therefore, these solutions provide
optimizations for one design constraint, i.e., reliability by
sacrificing other design constraints such as performance. State-
of-the-art software-level techniques have, by far, not exploited
their potential since the common belief, so far, was that
reliability problems when occurring at the hardware level
should also be addressed at the hardware level.

Challenge: For highly dependable embedded systems, it
is crucial to leverage/engage multiple system layers in an
integrated fashion for joint optimization of functional and
timing reliability in case the underlying hardware components
are unreliable.

The goal of this paper is to enable cross-layer software
dependability on unreliable hardware by jointly addressing
the issues related to the functional and timing reliability at
multiple system layers (i.e., compiler, offline system software,
and run-time system software), such that these system layers
interact with each other and contribute towards the overall
system reliability. In particular, this paper targets at reliable
code generation and execution using integrated reliability-
driven compilation and system software layers. Following the
definitions in [6, 10, 11, 20] the term “cross-layer” is used
referring to two or multiple adjacent layers which is not
restricted to include both hardware and software layer.

To achieve high reliability, the flexibility in compilers to
generate multiple reliable versions of a given function should
be utilized such that, these function versions are identical in
terms of their functionality and output, but differ in terms of
their vulnerability and execution time properties. The multiple
versions of the same function provide the foundation for
performance versus reliability tradeoffs and joint optimizations
at both compiler and system software levels.

A. Our Novel Contributions and Concept Overview

Our cross-layer software dependability scheme aims at op-
timizing the Reliability-Timing (RT) penalty, which is defined
as the linear combination of vulnerability and deadline misses
(see details in Section II-D). That is, given an application with
n sequential functions, the studied problem is to generate and
execute the application software such that the RT penalty is
minimized. Fig. 1 shows an overview of our novel cross-layer

scheme while illustrating the interaction between reliability-
driven compiler, offline system software, and run-time system
software layers. Our scheme employs the following novel

contributions.
Concept of Multiple Reliable Function Versions (Sec-

tion III, IV): Our reliability-driven compiler generates multiple
versions (for a given function) with diverse performance and
reliability properties under user-defined constraints of tolera-
ble performance overhead and number of versions. Different
reliability-aware transformations (like in [25, 26, 29, 33]) are
employed to generate multiple reliable versions (with different
assembly codes and hence different binary codes), which
are then forwarded to the reliability-driven offline system
software. In a cross-layer reliability stack, further reliability-
performance tradeoff options can be obtained through tradi-
tional N-version programming. The distinction between multi-
ple reliable compiled versions and N-version programming [7]
is discussed in the Supplementary Material.

Reliability-Driven Offline System Software (Section V, VI):
Given an application with n different functions each having
multiple versions, our reliability-driven offline system software
determines an appropriate executing sequence before the so-
called “schedule table” (defining function execution schedules)
is determined. Since exploring all possible ordering combi-
nations is extremely time consuming, we provide a function
prioritization algorithm to determine the execution order of the
given functions. Since the actual execution time of a function
is not always a constant, the probability distribution of the
execution time of a function is taken into consideration by
a dynamic version selection scheme to exploit the dynamic
execution behavior by selecting suitable versions for the
subsequent functions. When generating the schedule table,
our scheme selects the versions of functions dynamically for
minimizing the RT penalty.

Reliability-Driven Run-Time System Software (Section VI):
It selects different function versions from the schedule ta-
ble, prepared offline, depending upon the current execution
behavior (the reliability penalty and the remaining time to
the deadline) and dynamically links the corresponding binary
codes of different functions1.

1Note, such dynamic-linking techniques have also been used for the
corrections of the software bugs, application reconfigurations, and dynamic
applications in embedded systems, e.g., in wireless sensor networks [8].



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2417554, IEEE Transactions on Computers

3

II. SYSTEM MODEL

A. Fault and Architecture Models

The types of faults considered in this paper include
transient faults/soft errors, single and multiple bit up-
sets in both the combinatorial and sequential logic. The
processor under consideration is with RISC architec-
ture, single core, and in-order execution. Let C be the
set of hardware components in the processor, in which
C = {pipeline, register file, address generation unit, . . .}.
For each component c in C, the area size Ac and the
microarchitecture-dependent error probability ψc are both
given a priori for evaluating the vulnerability w.r.t. component
c.

To estimate the functional correctness at the instruction-
level, we adopt the program reliability model “Instruction Vul-
nerability Index (IVI)” of [26] that captures the vulnerability
of an instruction by considering both the spatial vulnerability
(w.r.t. the area of different processor resources) and temporal
vulnerability (w.r.t. instruction vulnerable periods in different
processor components) of an instruction during execution.
Based on the definition in [26], we can also define IVIinst,c as
the vulnerability index of an instruction inst in a component
c. The total IVIinst of an instruction inst is then defined
based on the weighted vulnerability in the components that
the instruction is executed on:

IVIinst =
∑

c∈C IVIinst,c ·Ac · ψc∑
c∈C Ac

. (1)

To characterize/estimate the vulnerability of a function ver-
sion, this paper adopts the Functional Vulnerability Index
(FVI) [25, 26] that is based on IVI and denotes the probability
that a fault during the execution of this version leads to a
visible error. For a binary version implementation V for a
function, suppose that ψinst is the probability that instruction
inst is executed. The FVI of a version V is given as [25, 26]:

FVIV =
∑

each instruction inst in V

ψinst ·
(∑

c∈C

IVIinst,c

)
.

(2)
We refer the readers to [25, 26] and the Supplementary
Material for more details about the definitions and arguments
on IVI and FVI. According to the definition, a version with
higher FVI is more unreliable.

B. Application Model

We consider a soft real-time application that comprises
of n functions F = {F1, F2, . . . , Fn}. An instance of the
application is required to finish the execution of all the given
n functions. The execution order of these functions is obtained
using our prioritization algorithm that minimizes the expected
RT penalty. A simple example sequence would be: starting
from function F1, then F2, . . ., and finishing with function
Fn. For the simplicity of presentation, we will implicitly
assume that these n functions are independent (therefore they
have the highest freedom of orderings). For completeness, we
will discuss how our algorithm works if the functions have
precedence constrains at the end of Section V.

We consider a function as the basic unit for making schedul-

ing decisions. Each function may be implemented using differ-
ent algorithms, e.g., different sorting algorithms, which may
be implemented by different programmers. Each implemented
function can be compiled using different transformations,
e.g., reliability-aware loop unrolling [26], reliability-driven
instruction scheduling [25, 33], and selective instruction re-
dundancy [29].

We target soft real-time systems, in which deadline misses
are possible. It is typically insufficient to examine the timing
and reliability properties of an application by inspecting one
execution instance. A common practice is to model the re-
current execution of the application by specifying its periodic
execution behaviour [18, 21] with a period T and a relative
deadline D with D ≤ T . However, it is possible that an
instance misses the deadline, which may cause a domino effect
of deadline misses for the subsequent instances. For most
control applications, in which the period T is fixed due to the
specification and the required timing properties, such domino
effects may make the system unstable, and, therefore deadline
misses should be avoided. For most multimedia applications,
in which the period T is a soft constraint imposed to increase
the comfort of users’ experience, deadline misses are possible,
but the arrival time (release time) of the upcoming execution
instances should be adjusted accordingly after a deadline miss.
We focus on the latter applications, in which the arrival times
of subsequent jobs are adjusted accordingly after a deadline
miss. That is, if an execution instance of the application
finishes before the periodicity, the periodicity will be enforced;
otherwise, the next instance of execution will start after this
instance finishes. That is, suppose that an instance is released
at time t and finishes at time t′. When t′ is less than t+T , the
next instance starts at time t+T ; otherwise, the next instance
starts at time t′. Another option is to abort this deadline-missed
instance before the next instance starts. For such a case, the
corresponding reliability penalty has to be evaluated only till
the relative deadline of the task.

Based on the above definition, it is clear that the probability
of a deadline miss of one execution instance of the application
is independent from the other execution instances. As a result,
the deadline miss rate of one execution instance is also the
deadline miss rate of the application for multiple executions.

C. Compilations

Among the possible versions of function Fi, we would
like to characterize Ki versions that are effective. For each
version of these Ki versions, the reliability-aware compiler
[26] considers the tradeoff between the vulnerability index,
represented by FVI, and the performance by considering the
performance distributions. The details about the compilation
tradeoffs will be presented in Section III. This paper assumes
that Ki is given a priori as a user-defined parameter. These
Ki versions should have the same functional guarantees, e.g.,
the bounded errors should be the same when operating on
numerical data so that the error of the application is bounded.
Moreover, we consider systems with a given (and fixed) fault
rate η (in the unit of number of faults per time unit).

For each version Fi,j of function Fi, the following infor-
mation is obtained based on the profiling after compilation:



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2417554, IEEE Transactions on Computers

4

• The cumulative density function (CDF) of the execution
time, where Ci,j(e) denotes the probability in which the
execution time of such a version is less than or equal to
e. When obtaining the density function, the influence of an
error on the execution time is not considered.

• The probability density function (PDF) of the execution
time, where Pi,j(e) denotes the probability that the exe-
cution time of such a version is e.

• The reliability penalty Ri,j of function version Fi,j is
defined by the system designers. Here, based on the func-
tional vulnerability index and the given fault rate η, the
expected number of faults in one execution of function Fi,j

can be defined by the product of η and the average-case
execution time, i.e., η

∫∞
0

Pi,j(x)xdx. Since FVI denotes
the probability of an error, the reliability penalty Ri,j is
defined as FVIFi,j

· η ∫∞
0

Pi,j(x)xdx.
Even though we define the metric of the reliability penalty

specifically based on the FVI and the fault rate, the proposed
approach for version selection in the system software also
works for other vulnerability indexes, in which the reliability
of the application is the summation of the vulnerability indexes
of the selected versions.

We will present the design flow based on the assumption
that the cumulative and probability density functions are
continuous. The results can be easily extended to consider
discrete cases (with probability massive functions). For the
rest of this paper, we will assume that the profiling is precise.
Based on this information, we will optimize the functional
reliability and the timing reliability.

D. Optimization Objective

The design objective is to improve the reliability while
meeting the timing constraints. Therefore, we need to exploit
the deadline misses versus the functional reliability tradeoff.
The Reliability-Timing (RT) penalty is defined as the linear
combination of functional reliability (i.e., the reliability penal-
ties in form of vulnerabilities) and timing reliability (i.e., the
deadline misses). Specifically, for a user-defined parameter
0 ≤ α ≤ 1, the RT penalty is: αR + (1 − α)miss rate,
where miss rate is the percentage of deadline misses for the
application and R is the sum of the reliability penalties of the
selected versions, defined in Section II-C. When α is closer to
0, the timing satisfaction is more important; when α is closer
to 1, the functional reliability in the presence of faults in the
underlying hardware is more important.

The objective of the studied problem in this paper can be
described as follows: Given an application with n functions,
the objective is to leverage multiple system layers to generate
and execute the application software such that the RT penalty
is minimized.

If function Fi already misses the deadline, it is clear that
the application will miss its deadline no matter how the rest of
the functions are executed. However, it is the users’ choice to
further improve the reliability or further improve the perfor-
mance. Suppose that improving performance is preferred, the
version with the minimum average execution time should be
chosen. Suppose that the reliability improvement is preferred,
the version with the minimum reliability penalty (hence, higher

Ap
pl
ic
at
io
n F1

F2

...

Fn

Different 
Functions

[1 … n]

a11

a12

...

a1A

Different 
Algorithms 

for F1

For a 
given 

implemen
-tation 

generate 
different 
versions

f11

f12

...

f1k1

Design-Time

Different Compiled 
Versions of F1(a11)

[1 … k]

Compile-Time

User-Defined
Constraints

(perf. Overhead,
#Versions) O

ffl
in
e
Sy
st
em

So
ftw
ar
e

(F
un
ct
io
n
Pr
io
rit
iz
at
io
n,
Pr
ep
ar
e

Fu
nc
tio
n
Sc
he
du
le
s)

O
nl
in
e
Sy
st
em

So
ftw
ar
e

(S
el
ec
to
ne
sc
he
du
le
w
ith
on
e
ve
rs
io
n

pe
rf
un
ct
io
n)

Run-Time

Re
lia

bi
lit

y-
Dr

iv
en

 
Co

m
pi

la
tio

n
(A

pp
ly

 re
lia

bi
lit

y-
aw

ar
e 

tr
an

sf
or

m
at

io
ns

, i
ns

tr
uc

tio
n 

sc
he

du
lin

g,
 se

le
ct

iv
e 

in
st

ru
ct

io
n 

re
du

nd
an

cy
)

Fig. 2: Partitioning between design-, compile-, and run-time
for the generation and utilization of multiple function versions

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0.00

0.05

0.10

0.15

0.20

0.25

DCT MC-FIR SAD SATD

FV
I 

DCT FIR Filter SAD SATD 

Execution Time FVI 

4 

0 0.00 
0.05 
0.10 

2 

6 

8 

Av
er

ag
e 

Ex
ec

ut
io

n 
Ti

m
e 

[K
Cy

cl
es

] 

0.15 
0.20 
0.25 (b) 

FV
I 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0.00

0.05

0.10

0.15

0.20

0.25

Bubble Sort1 Merge Sort1 Merge Sort2 Quick Sort1 Quick Sort2 Selection SortBubble 
Sort 

Merge 
Sort 1 

Merge 
Sort 2 

Quick 
Sort 1 

Quick 
Sort 2 

Selection 
Sort 

Execution Time FVI 

0.00 

0.05 

0.10 

0.15 

0.20 

0.25 

4 

0 

8 

12 

16 

Av
er

ag
e 

Ex
ec

ut
io

n 
Ti

m
e 

[K
Cy

cl
es

] 

(a) 

Fig. 3: Different algorithms have different FVI and average
execution time: (a) comparing different sorting algorithms; (b)
comparing different functions of the same application.

reliability) should be chosen.
Note: although function versions with instruction-level re-

dundancy for software-level error detection and recovery are
provided, the system software layers aims at minimizing the
probability of program errors as a means of improving the
overall system reliability. The proposed approach is orthogonal
to other means like thread replication, rollback recovery, etc.
It is noteworthy that a reduced probability to program errors
also corresponds to a reduced number of rollback recovery
operations.

III. RELIABILITY-DRIVEN COMPILATION

Fig. 2 shows the high-level flow of design-, compile-, and
run-time steps showing different versions generated by our
reliability-driven compiler and their utilization.

Our experimental study in Fig. 3(b) illustrates that different
functions of the same application exhibit unique reliability
(i.e., FVI) and performance properties (i.e., execution time)
because of their distinct algorithmic properties in terms of
instruction profile and control flow. Moreover, same function
may be implemented using different algorithms that exhibit
distinct performance and reliability properties. Fig. 3(a) il-
lustrates that different sorting algorithms and even different
implementations by different programmers have different FVI
and execution time values. Similarly, different compiler opti-
mization options may also result in significant impacts on the
FVI and execution time of the same function (an extensive
study of this fact can be found in [25, 26, 29, 33]).

The proposed approach is to select representative function
versions to cover a wide range of possible FVIs and average
execution times for the resulting binary code of a function
version.

Algorithm 1 shows the pseudo-code for generating up to



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2417554, IEEE Transactions on Computers

5

Algorithm 1 Compilation for Function Fi

Input: Transformation Methods T [26], Instruction Rescheduling Methods
S [25], Instruction Protection Method IP, Function Implementations Ii,
maximum number of versions Ki, overhead Ωi;

1: for each τ ∈ T and each I ∈ Ii do

2: evaluate FVII,τ and the average execution time based on transfor-
mation τ for I under the given overhead constraint Ωi (the details
are in [26]);

3: end for

4: let B be the combinations of τ ∈ T and I ∈ Ii in the RT penalty
Pareto frontier;

5: for each bj ∈ B and each s ∈ S do

6: evaluate the FVIj,s based on instruction rescheduling method s under
the implementation bj (the details are in [25]);

7: end for

8: replace B by taking the implementations in the RT penalty Pareto
frontier based on the above loop;

9: for each bj ∈ B do

10: perform selective instruction redundancy on the implementation bj
using IP (the details are in [29]);

11: end for

12: replace B by taking the implementations in the RT penalty Pareto
frontier based on the above loop;

13: select Ki versions in B and profile the corresponding CDF/PDF and the
FVI;

Ki versions of binary codes based on the function implemen-
tations Ii for function Fi, the compiler-based code transfor-
mations (called, transformation methods) T [26], instruction
scheduling methods S [25], selective instruction redundancy
using the given protection method [29] and a user-specified
tolerable performance overhead Ωi for reliability-driven com-
pilations. Here, the tolerable performance overhead is defined
as an upper bound of the increase in the average-case execution
time, compared to the best performance version (under the
average-case execution time). Unlike the RT-penalty based
optimization by System Software, the specification of Ωi is
needed so that the reliability-driven compilation can limit the
design space of transformations for generating the Ki versions.

As shown in [25, 26], it is usually better to first adopt
the transformation methods to explore potential reliability
improvement. Our approach here also first tries to adopt
these transformation methods to obtain the corresponding FVI
and average execution time (lines 1-3). Among the binary
translations, the set of binary version implementations B for
RT penalty Pareto frontier is taken (line 4). That is, none of any
two binary version implementations in B will dominate each
other in both FVI and the average execution time. Then, among
all the binary version implementations in B, we further con-
sider the instruction rescheduling methods to further exploit
some local improvement (lines 5-8). The set of binary version
implementations B for RT penalty Pareto frontier is updated.
These two reliability-driven compilation steps reduce the error
probability. Afterwards, the selective instruction redundancy is
applied for software-level error detection and recovery (lines
9-12) [29].

As the number of points in B may be more than Ki, the
last step in Algorithm 1 is to select Ki (line 13). There
can be many approaches to decide the final Ki versions by
considering different strategies. For example, one possibility
is to cluster B into Ki clusters by minimizing certain metrics.
Another possibility is to divide the spectrum of the average
execution time into Ki intervals, and find a representative
in each interval. Here, we adopt the strategy by iteratively

removing a Pareto point with the minimum slope, as this
implies the improvement is less significant.

The compile-time prepared functions versions are then
forwarded to the offline system software to generate execution
schedules while optimizing for the RT penalty.

IV. VERSION CLASSIFICATIONS AND PROPERTIES

Before presenting the system software optimization for the
minimization of RT penalty, this section presents how to
classify the given Ki versions of function Fi based on their
reliability and timing characteristics. Our classification is to
identify a suitable high-performance version Fi,hi so that we
can redefine the properties of the other versions by referring
to the high-performance version. For the rest of this paper,
we define hi to represent the index of the high-performance
version for function Fi. In this section, we present how to
identify hi and use Fi,hi as a reference version and evaluate
two quantities for presenting the properties of each version
with respect to this version hi.

A. Identification of High-Performance Versions

To identify which version has higher performance, we need
to analyze the difference of stochastic execution time (gap)
between two versions x and y for function Fi.

Definition 1: Suppose that X and Y are the independent
random variables that represent the execution times of versions
Fi,x and Fi,y , respectively. The cumulative density function
Ci,x,y(e), i.e., the probability, in which X − Y is no more
than a given gap e, is

Ci,x,y(e) = P{X − Y ≤ e}
= P{X ≤ e+ Y }
=

∫ ∞

−∞
Pi,Y (y)

(∫ e+y

−∞
Pi,X(x)dx

)
dy.

Therefore, Ci,x,y(e) provides a distribution function on the
difference between two versions so that we can estimate the
stochastic additional execution time by considering different
versions Fi,x and Fi,y . For two versions Fi,x and Fi,y of
function Fi, we can say that Fi,y has higher performance than
Fi,x, where the probability of random variable Y larger than
or equal to random variable X is at least 0.5 if

Ci,x,y(0) ≤ 0.5.

However, the above definition of higher performance by
comparing two versions does not have a transitive property.
That is, when version Fi,x outperforms version Fi,y and
version Fi,y outperforms version Fi,z , we are not able to
guarantee that Fi,x outperforms version Fi,z . In such cases,
the version with lowest-reliability penalty can be a reasonable
reference.

In Algorithm 2, we collect a set Γ of versions with better
performance in the above definition and choose the one which
has the lowest reliability penalty as the reference version hi in
set Γ. That is, if a version outperforms all the other versions
in the above definition, it is put to Γ (lines 2-10). Please note,
the version will be removed from Γ if there exists another
version which outperforms it (lines 5-7). Due to the lack of
the transitive property in the above definition, if Γ is an empty



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2417554, IEEE Transactions on Computers

6

Algorithm 2 Classifications
Input: function Fi with Ki versions;

1: Γ ← ∅;
2: for each j = 1, 2, . . . ,Ki do

3: Γ ← Γ ∪ {Fi,j};
4: for each k = 1, 2, . . . ,Ki, j �= k do

5: if Fi,k outperforms Fi,j , i.e., Ci,j,k(0) ≤ 0.5, then

6: Γ ← Γ \ {Fi,j};
7: break;
8: end if

9: end for

10: end for

11: if Γ is an empty set then

12: put the version with the lowest-reliability penalty to Γ;
13: end if

14: return the version hi which has the lowest-reliability penalty in set Γ;

(a) Versions Distributions (b) Versions Gap

Fig. 4: Multiple versions with stochastic execution time

set (lines 11-13), we will greedily place the version with the
lowest-reliability penalty in Γ.

Fig. 4(a) shows the distribution function of execution time
for multiple versions in one function. Please note, this ex-
ample uses SHA as described in our experimental setup in
Section VII-A. Fig. 4(b) presents the distribution function
of additional execution time for each version which refers
to high-performance version hi. Note, the y-axis of charts
(Ci,x(t) and Ci,x,y(t)) are at most 100%, because they are
the cumulative density functions representing the probabilistic
properties of version Fi,x.

B. Properties of Each Version

We further define two quantitative properties to describe
the benefit and additional execution time of each version by
referring to the high-performance version hi of function Fi:
• wi,j is the benefit/effective profit for version Fi,j upgrading

from version Fi,hi
. Suppose that Φi,j is the probability of

deadline misses for a version Fi,j by considering only itself
for execution. That is,

Φi,j = 1− Ci,j(D), (3)

where Ci,j(D) is the probability in which the execution
time is less than or equal to D. Therefore, wi,j is defined
as follows:

wi,j = α · (Ri,hi −Ri,j) + (1− α) · (Φi,hi − Φi,j). (4)

• μi,j is the expected additional execution time for version
Fi,j upgrading from version Fi,hi . Suppose that E[gi,j ] is
the expected gap between version j and version hi. That is,

μi,j = E[gi,j ] =

∫ ∞

−∞
g · Pi,j,hi(g)dg. (5)

Here, the Pi,j,hi(g) is the probability density function (PDF)

of the additional execution time (gap) g between version
j and version hi, i.e., the probability to have additional
execution time equal to g.

V. FUNCTION PRIORITIZATION ALGORITHM

This section explores the function prioritization algorithm
with multiple versions of each function Fi for Section VI
to minimize the RT penalty. We first present a motivational
example to explain why the execution ordering of the given
functions matters. Then, we present a heuristic algorithm to
decide the prioritization of the functions for determining the
execution ordering.

A. Motivational Example

Fig. 5: Motivational example
of prioritization.

We provide a motivational
example to explain why the
ordering of the execution
of the functions matters for
the optimization of the RT
penalty. Suppose that we are
given three functions, F1, F2

and F3. Suppose that func-
tion F1 has one version with variability in the execution time,
in which R1,1 = 0.1, P1,1(2) = 0.5, and P1,1(4) = 0.5.
Function F2 has two versions, one version with variability in
the execution time and the other with fixed execution time, in
which R2,1 = 0.1 and P2,1(8) = 1; R2,2 = 0.8, P2,2(3) = 0.9
and P2,2(5) = 0.1. Moreover, function F3 has two versions
with variability in the execution time, in which R3,1 = 0.1,
P3,1(3) = 0.5 and P3,1(9) = 0.5; R3,2 = 0.3, P3,2(2) = 0.9
and P3,2(8) = 0.1. Suppose that the deadline D is 15.

With the above setting, there are 6 different orderings to
execute the three functions. Due to the probability distribution
of the execution times, the version chosen for the second
function depends on how much time the first function takes.
Fig. 5 illustrates the effect of different execution sequences on
the remaining time.

For an executing sequence, we can try all possible execution
scenarios to obtain the best execution plan under the execution
sequence. Please note, the approach presented in Section VI
can be used to decide how to optimally minimize the RT
penalty with the slack, via building a dynamic programming
table. The optimality proof of the proposed approach can be
found in Theorem 1 in the Supplementary Material. In the
above example, when α = 0.05, the best result is with RT
penalty 0.03325, whereas the RT penalty is 0.06475 for the
worst ordering (see Table I). The gap between the best and the
worst RT penalty is up to 95% as shown in Table I for different
αs. Please also note that, the prioritization does not have any
impact when considering only static version selections, since
the reliability penalty and the miss rate can be both calculated
statically. In other words, no matter which function is executed
first, the RT penalty is not affected in that sense.

According to this motivational example, we know that an
appropriate executing ordering also matters significantly for
the minimization of the RT penalty. Enumerating all possible
orderings exhaustively is of course a possible way to find a
best executing ordering. However, with n functions, there are
n! different orderings, in which evaluating one given order



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2417554, IEEE Transactions on Computers

7

RT penalty RT penalty
when α = 0.01 when α = 0.05

F1, F2, F3 0.01605 0.06025
F1, F3, F2 0.01065 0.03325
F2, F1, F3 0.01605 0.06025
F2, F3, F1 0.01695 0.06475
F3, F1, F2 0.01065 0.03325
F3, F2, F1 0.01065 0.03325

TABLE I: Individual Optimal RT penalty when D = 15, where
the sequence is the corresponding ordering of the functions.

takes significant amount of time to do the minimization of RT
penalty. It is clear that such an option is usually not possible
when n is large.

Since each function has several versions, it is complicated
to decide which function should be executed first and which
of the available versions should be selected. In order to reduce
the search space, we will perform a preprocessing procedure
to estimate the potential profit with respect to RT penalty
reduction by looking at only a subset of the given Ki versions
of function Fi. After the preprocessing, we will put all the
above subsets of the given versions of all the functions together
and decide how to order the functions.

Please note that the following steps are just to decide
the ordering of the functions. We may artificially reduce the
available versions when deciding the orders, but all these
available versions will be considered when we apply the
dynamic programming approach in Section VI.

B. Preprocessing

The proposed algorithm starts with the initial step by con-
sidering that all the functions will use their high-performance
versions. That is, we start from Fi,hi

for each function Fi.
Then, the algorithm checks two properties of each version Fi,j :
the effective profit wi,j and the expected additional execution
time μi,j .

For notational brevity, we define the expected execution
time of function Fi,j as E[Fi,j ] =

∫∞
0

Pi,j(x)xdx. Through-
out this section, we assume that the total expected execution
time of the high-performance versions of the n functions, i.e.,∑n

i=1 E[Fi,hi
] is no more than D. Otherwise, the probability

of deadline misses is too high to be applied for real-time
applications.

Moreover, we further define D′ as the residual time by
subtracting

∑n
i=1 E[Fi,hi

] from the original relative deadline
D, i.e.,

D′ = D −
n∑

i=1

E[Fi,hi
], (6)

in which D′ ≥ 0 as we assume that
∑n

i=1 E[Fi,hi ] is no more
than D.

The first step in the preprocessing is to find the Pareto
curve with respect to μi,j and wi,j . That is, a version Fi,k

is excluded if there exists a version Fi,j , in which μi,j ≤ μi,k

and wi,j ≥ wi,k. This can be done by applying the standard
convex hull method (line 2) to identify the convex hull frontier
with time complexity O(Ki logKi) for a function Fi (lines 3-
6). Fig. 2 in the Supplementary Material gives an example, in
which the solid line shows the efficient convex hull frontier
and the dotted line is the set of inefficient nodes for getting
the better benefit. Therefore, the time complexity for this step

Algorithm 3 Preprocessing
Input: n functions, Ki versions, and μi and wi of each version;

1: for each i ∈ n do

2: adopt the standard convex hull method to construct the convex hull
for Fi function by Ki versions;

3: for each j ∈ Ki do

4: start from the node which has the smallest μi,j to identify the
efficient frontier until the relative slope becomes negative with the
previous node;

5: end for

6: return the nodes on the efficient frontier;
7: end for

is O(
∑n

i=1 Ki logKi).
Now, suppose that there are κi ≥ 2 points in the resulting

Pareto curve of function Fi, and πi(�) is the index of the
version for the �-th point in the Pareto curve, in which
μi,πi(�−1) < μi,πi(�) for � = 2, 3, . . . , κi. Moreover, we further
define that
• Δμi,πi(�) = μi,πi(�) − μi,πi(�−1) and
• Δwi,πi(�) = wi,πi(�) − wi,πi(�−1),
for � = 2, 3, . . . , κi.

Moreover, if the Pareto curve only has one version for
function Fi, i.e., κi is 1, we will only consider the high-
performance version hi of function Fi when deciding the
ordering of the given n functions. The pseudo code of the
above preprocessing is presented in Algorithm 3.

C. Our Heuristic Algorithm for Function Prioritization

After the preprocessing, we sort the
∑n

i=1 κi points for the
n functions by a non-increasing order of the benefit density
defined as

Δwi,πi(�)

Δμi,πi(�)
, in which ties are broken arbitrarily. The

motivation for such a greedy ordering is to consider that all the
possible elements in S can contribute benefit with execution
time penalty (line 1 in Algorithm 4). For notational brevity,
we denote the sorted list of these

∑n
i=1 κi points as S, and

|S| as the number of elements in S. For the j-th element in
S, let w̄j be the corresponding value Δwi,πi(�) and μ̄j be the
corresponding value Δμi,πi(�). As a result, we have

w̄1

μ̄1
≥ w̄2

μ̄2
≥ . . . ≥ w̄|S|

μ̄|S|
. (7)

Moreover, for notational brevity, let Sort(Fi,πi(�)) be the
index of the implementation Fi,πi(�) in the sorted list S (line
1 in Algorithm 4). That is, Sort(Fi,πi(�)) is j when

Δwi,πi(�)

Δμi,πi(�)

has the j-th largest benefit density in the sorted list S.
Let r be the minimum index such that

∑r
i=1 μi ≥ D′

(line 2). That is, by selecting the first r elements in S,
the summation of the expected additional execution time
(with respect to the high-performance versions) of the first
r elements in S is at most D′. Moreover, if

∑|S|
i=1 μi < D′,

we greedily set r to |S|.
For function Fi, we define the index θi in which

Sort(Fi,θi) = r and Δwi,θi

Δμi,θi
is the minimum (lines 3-6).

Note that θi is −1 if none of the points in the Pareto curve
for function Fi is chosen before index r in S. The index
θi provides the reasonable reference point to evaluate the
potential benefit . With this step, we have the specific index
θi for each function Fi with respect to the residual time D′.
That is, the index r defines the effective range of upgrading
among these

∑n
i=1 κi points for the n functions. This specific



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2417554, IEEE Transactions on Computers

8

Algorithm 4 Function Prioritization
Input: n functions, Ki versions, the κi points in the Pareto curve for a

function Fi, and the residual time D′;
1: create the sorted list S based on (7) and the invert function Sort();
2: let r be the minimum index such that

∑r
i=1 μi ≥ D′;

3: for each i = 1, 2, . . . , n do

4: find θi in which Sort(Fi,θi ) = r and
Δwi,θi
Δμi,θi

is the minimum;

5: let θi be −1 if there is no index θi with Sort(Fi,θi ) = r;
6: end for

7: let N1 = {Fi|θi ≥ 0, i = 1, 2, . . . , n};
8: let N2 = {Fi|θi = −1, i = 1, 2, . . . , n};
9: order the functions in N1 ahead of the functions in N2;

10: order the functions Fis in N1 non-increasingly according to
wi,θi
μi,θi

;
11: order the functions Fis in N2 non-increasingly according to

α·Ri,hi
+(1−α)·Φi,hi

E[Fi,hi
]

;

index θi will be the possible efficient point in the κi points to
use the residual time D′ for upgrading from Fi,hi

to Fi,j .
Among the given n functions, we can now classify them

into two sets N1 and N2 (lines 7-9), in which
• N1 = {Fi|θi ≥ 0, i = 1, 2, . . . , n}, and
• N2 = {Fi|θi = −1, i = 1, 2, . . . , n}.

It is reasonable to then order the functions in N1 ahead of
functions in N2. Among the functions in N1, ordering them
according to the benefit density, i.e., from hi version to θi
version, would give the system better improvement in the RT
reliability. Therefore, for the functions Fis in N1, we order
these functions according to wi,θi

μi,θi
in a non-increasing order

(line 10). For the functions in N2, in our definitions, they are
selected with their high-performance versions. Therefore, for
functions Fis in N2, we order them in a non-increasing order
of α·Ri,hi

+(1−α)·Φi,hi

E[Fi,hi
] (line 11), i.e., the RT penalty divided

by the expected execution time.
Algorithm 4 presents the pseudo-code of the proposed

algorithm for deciding the prioritization of the functions.
The overall time complexity is O(

∑n
i=1 Ki logKi). After the

executing order is decided, we can further use the dynamic
programming approach proposed in next section VI to obtain
the optimal RT penalty with the given executing ordering.

Specifically, if the functions have a partial order instead of
an unknown order, we can adopt the prioritization algorithm
to obtain the partial executing order for the subset of functions
which have no precedence constraints with each other in
directed acyclic graphs (DAG). After the priorities of subset
functions are determined, we can update their successors de-
pendence by removing the predecessors in the selection pool of
functions. As a consequence, we can derive a set of executing
functions sequentially until the remaining dependences cannot
be removed. Then we start the prioritization algorithm for the
optimization of application reliability.

VI. DYNAMIC VERSION SELECTION SCHEME

After deriving the execution ordering in Section V, we
present the system software optimization based on the com-
piled versions for the given functions to minimize the RT
penalty. Note that, throughout this section, we will consider
that the execution ordering is given. For notational brevity, we
execute the functions in the order of F1, F2, . . . , Fn. We will
start from the simplest case by considering applications with
only one function. Then, we will move further to consider
multiple functions.

A. One Function

When the application has only one function, based on the
given information for the applications, we can evaluate the
probability Φ1,j of deadline misses for a version j of function
F1 by Eq. 3. Therefore, by selecting the version j, the RT
penalty for the application with one function is defined as
αR1,j + (1 − α)Φ1,j . It is clear that the version j∗ that
minimizes αR1,j∗ + (1 − α)Φ1,j∗ should be selected for
execution.

B. Multiple Functions

This subsection explores the minimization of the RT penalty
when the application has multiple functions. The simplest way
is to select the versions statically. However, finding the optimal
selection with the minimum RT penalty with static version
selections is in general NP-hard. The proof of NP-hardness
is presented in Theorem 2 in the Supplementary Material.

Unfortunately, the optimal static version selections with the
minimum RT penalty may still be too pessimistic. Consider the
following motivational example with two functions. Suppose
that function F1 is executed with one specific version with
high variability in the execution time, in which R1,1 = 0.1,
P1,1(1) = 0.5, and P1,1(9) = 0.5. Function F2 has two
versions with fixed execution times, in which R2,1 = 0.1,
P2,1(9) = 1, R2,2 = 0.3, and P2,2(1) = 1. Suppose that D
is 10. There are only two options for static version selections
as shown in Fig. 6(a), i.e., with {F1,1, F2,1} or {F1,1, F2,2}.
For the case {F1,1, F2,1}, as the deadline miss rate is 50%,
we know that the RT penalty is 0.2α+ 0.5 · (1− α). For the
case {F1,1, F2,2}, as the deadline miss rate is 0%, we know
that the RT penalty is 0.4α. Since 0.4α > 0.2α+0.5 · (1−α)
when α > 5

7 , for the above example, we should choose
• the execution versions {F1,1, F2,1} if α > 5

7 , and
• the execution versions {F1,1, F2,2} otherwise.

However, the above static assignment is pessimistic, as func-
tion F2 can react according to different execution behaviours
of function F1. When function F1 finishes very early, i.e.,
at time 1, function F2 can adopt the high-reliability version
F2,1 with longer execution time, when the remaining time to
the deadline is sufficiently large. Moreover, when function F1

finishes very late, i.e., at time 9, function F2 has to run the
low-reliability version F2,2 with shorter execution time, when
the remaining time to the deadline is too small. The above
dynamic version selection of function F2 is with RT penalty
equal to 0.3α, which is lower than the RT penalty 0.4α of the
optimal static version selection {F1,1, F2,2} when α ≤ 5

7 as
shown in Fig. 6(b).

Therefore, for the rest of this section, we will present the dy-
namic version selections, in which a schedule table is prepared
offline and the scheduler adopts the suitable versions of the
functions according to the run-time execution behavior in an
online fashion. Also, we assume that θi is the preferred version
of function Fi when Fi has already missed the deadline. For
notational brevity, we define ρ(i) =

∑n
�=i R�,θ� for the total

reliability penalty from Fi to Fn when function Fi already
misses the deadline.

The decision for function Fi depends on the execution
behavior of functions F1, F2, . . . , Fi−1. In the literature of



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2417554, IEEE Transactions on Computers

9

(a) Static Version Selection (b) Dynamic Version Selection

Fig. 6: Motivational example of version selections. In figure
(b), it is shown that the dynamic version selection reconciles
the advantage of both selections and avoids the deadline miss
and slack wastage.

real-time systems, when the actual execution time is less than
the estimated worst-case execution time, the unused time is
called slack. Slack reclamation and management have been
studied to improve the quality of the system or reduce the
energy consumption of the system dynamically. However, as
this paper does not assume any worst-case behavior, we will
analyze the timing behavior based on the estimated probability
functions to minimize the RT penalty.

The selection of the execution version for function Fi

depends on (1) the execution behavior up to now of func-
tions F1, F2, . . . , Fi−1 and (2) the reaction of functions Fi+1,
Fi+2, . . ., Fn according to the execution behavior of function
F1, F2, . . . , Fi. To capture the properties in the first part,
we need to know how much reliability penalty the functions
F1, F2, . . . , Fi−1 have incurred and how much execution time
the functions F1, F2, . . . , Fi−1 have elapsed. We will consider
all possible scenarios for these properties by exploring possible
values. The properties in the second part will be captured by
referring to a table entry which stores the reactions of Fi+1,
Fi+2, . . ., Fn.

Our approach builds a 3-dimensional table G() for execution
behavior. Let G(i, r, t) be an entry that stores the minimum
RT penalty for the given n functions under the following
conditions:
• F1, F2, . . . , Fi−1 have finished at time D − t, and
• F1, F2, . . . , Fi−1 have total reliability penalty r.
Furthermore, the decision of G(i, r, t) also depends how the
functions Fi+1, Fi+1, . . ., Fn will react according to the
execution behavior of function Fi.

According to the above structure, we have to build G(i +
1, r′, t′) for all possible r′ and t′ values first so that the
entries can be used when we need to consider G(i, r, t).
Therefore, the procedure starts from the last function Fn. The
entries for Fn−1, Fn−2, . . . , F1 are built later sequentially. To
build G(n, r, t), we first find j∗(n, r, t) which is the version
of function Fn with the minimum RT penalty (lines 1-5 in
Algorithm 5), defined as follows:

j∗(n, r, t) =

{
argminj α(r +RN,j) + (1− α)(1− CN,j(t)), t > 0

θn, t ≤ 0
(8)

Therefore, we know that

G(n, r, t) = α(r +RN,j∗) + (1− α)(1− CN,j∗(t)), (9)

where j∗ is j∗(n, r, t).
Now, let’s consider the case to build an entry G(i, r, t)

where i = n − 1, n − 2, . . . , 1 (lines 6-18). Clearly, when
t ≤ 0, we know that j∗(i, r, t) is θi and G(n, r, t) is
α(r+ ρ(i)) + (1− α). We now consider the other case when
t > 0. If that function Fi selects version j, we know that
• the probability that Fi finishes with execution time x (when
x ≤ t) is Pi,j(x),

• the minimum RT penalty for the n functions has been
calculated and stored in G(i+ 1, r +Ri,j , t− x) when the
execution time of Fi is x, where x ≤ t, and

• the probability when x > t is (1−Ci,j(t)) by executing all
the functions Fi+1, Fi+2, . . . , Fn with the default versions
θi+1, θi+2, . . . , θn, respectively.

For notational brevity, we define Hj(i, r, t) as the penalty by
using the above properties, where

Hj(i, r, t) =

∫ t

x=0

Pi,j(x) ·G(i+ 1, r +Ri,j , t− x)dx

+ (1− Ci,j(t)) · (α(r +Ri,j + ρ(i+ 1)) + (1− α)) .
(10)

The first part in the right hand side in (10) for the integration
considers the convolution when the execution time of Fi,j is
no more than t, while the second part considers the impact
that Fi,j already misses the deadline. Suppose that j∗(i, r, t)
is the index of j which minimizes Hj(i, r, t) in Equation (10).
Therefore, for i = n− 1, n− 2, . . . , 1, we know that

G(i, r, t) = Hj∗(i, r, t) (11)

where j∗ is j∗(i, r, t). Clearly, building G(i, r, t) requires time
complexity O(Kit) = O(KiD).

Therefore, by building G(i, r, t) from i = n to i = 2, we can
build G(1, 0, D) and find j∗(1, 0, D) (line 19), which gives
the solution how the first function F1 should be executed.
Clearly, function F1 uses only one version j∗(1, 0, D). The
other functions may require multiple versions to fully exploit
the dynamic behavior of function executions.

Let Rmax be the maximum (i.e., worst) reliability penalty
that the system can achieve, i.e.,

∑n
i=1 maxj Ri,j . The above

procedure requires time complexity O(KiD
2Rmax) for build-

ing G(i, r, t) for r in the range of 0 and Rmax and t in the
range of 0 and D. As a result, the total time complexity is
O(

∑n
i=1 KiD

2Rmax).
When all the possible values of execution time and relia-

bility penalties are discretized, it is not difficult to see that
the above procedure can optimally minimize the RT penalty.
The optimality of the above procedure is proved by using
the mathematical induction hypothesis in Theorem 1 included
as supplementary material, where the base case starts from
function Fn.

The above presentation requires to build the table for all
possible values of t and r. However, it is not necessary to
build some non-achievable entries in the table. For notational
brevity, suppose that Rmax(i) is

∑i−1
�=1 maxj R�,j and Rmin(i)

is
∑i−1

�=1 minj R�,j . For building G(i, r, t), we only have to
consider r in the range of Rmin(i) and Rmax(i). Moreover, we
can change the units of the time and the reliability penalties.
For example, we can build the table based on the timing unit
of 0.1 msec or 0.01 msec. The larger the timing unit and the
reliability unit adopted, the more the loss of accuracy and the
less the complexity of table construction.



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2417554, IEEE Transactions on Computers

10

Algorithm 5 Offline Table Construction
Input: n functions, CDF and PDF of the functions, units δ and σ, weighted

parameter α, and the default versions θ() after observing the deadline
misses;

1: for r ←
⌊
Rmin(n)

σ

⌋
σ, . . . ,

⌈
Rmax(n)

σ

⌉
σ stepped by σ do

2: for t ← 0, . . . ,
⌈
D
δ

⌉
δ, stepped by δ do

3: calculate j∗(n, r, t) and G(n, r, t) by using Equations (8) and (9);
4: end for

5: end for

6: for i ← n− 1, n− 2, . . . , 2 do

7: for r ←
⌊
Rmin(i)

σ

⌋
σ, . . . ,

⌈
Rmax(i)

σ

⌉
σ stepped by σ do

8: for t ← 0, . . . ,
⌈
D
δ

⌉
δ, stepped by δ do

9: if t = 0 then

10: j∗(i, r, t) ← θi; G(i, r, t) ← α(r + ρ(i)) + (1− α);
11: else

12: for each j = 1, 2, . . . ,Ki, calculate Hj ← ∫ t
x=0 Pi,j(x) ·

G(i + 1,
⌊
r+Ri,j

σ

⌋
σ,

⌊
t−x
δ

⌋
δ)dx + (1 − Ci,j(t)) ·

(α(r +Ri,j + ρ(i+ 1)) + (1− α));
13: j∗(i, r, t) ← argminj=1,2,...,Ki

Hj ;
14: G(i, r, t) ← Hj∗(i,r,t);
15: end if

16: end for

17: end for

18: end for

19: calculate j∗(1, 0, D) and G(1, 0, D) with the same procedure in
Steps 13 and 14;

20: return the table j∗;

Algorithm 5 adopts the above approximations by using δ
as the timing unit and σ as the reliability penalty unit. The
procedure is the same as the flow presented above. The time
complexity of Algorithm 5 is O(

∑n
i=1 Ki(

D
δ )

2Rmax

σ ). The
space complexity is O(nD

δ
Rmax

σ ).

C. Adaptive Run-Time System Software

The run-time system software performs version selection
at run time by determining which function version Fi should
be executed. F1 is executed by the version j∗(1, 0, D). But,
the other functions Fis may have different versions, de-
pending upon the achieved reliability penalty of functions
F1, F2, . . . , Fi−1 and the remaining time to the deadline of
this execution instance of the application.

According to Algorithm 5 when the remaining time to the
relative deadline is t and the reliability penalty for the first
i−1 functions is r, the run-time system software looks up the
table entry j∗(i, r, t). However, by considering the timing unit
δ and the unit σ of the reliability penalties, the run-time system
software instead looks up the entries with j∗(i,

⌊
r
σ

⌋
σ,
⌊
t
δ

⌋
δ).

Therefore, the binary version implementation Fi,j∗ is selected,
where j∗ is j∗(i,

⌊
r
σ

⌋
σ,
⌊
t
δ

⌋
δ).

Therefore, after the table j∗ is built, the entries of j∗

should be stored in the main memory as a look-up table. With
such a mechanism, deciding a version to be executed requires
only O(1) time. However, the space complexity becomes a
problem. Moreover, this may result in many redundant entries.
It is not necessary to keep all the entries of j∗. For example,
when j∗(i, r, t) remain the same in the range of [r1, r2] and
in the range of [t1, t2], the run-time system software only
needs to keep one entry for the index. Therefore, only the
representative entries are stored. Moreover, some entries can
be further removed if the difference of the RT penalty is too
small between two entries to reduce the memory overhead. In
general, the system designers can decide the tolerable overhead

Configu-
rable Fault 
Generator

Fault 
Files Fault Injector

Error Logging
Erroneous 
Executions

Error-Free 
Execution

Error Type 
Distribution

IVI, FVI 
Distribution

CFG/DFG
BB Diagram

Pareto-Optimal Selection 
of Function Versions

Function 
Transformations
Reliability-Driven 

Instruction SchedulingFunction 
Versions

ISS
Reliability-Aware Processor Simulator

Reliability-Driven Compiler

Execution 
Time Analysis

Error Characterization

IVI, FVI 
Estimation

Reliability Analysis

Performance 
CDF

Fault 
Model 
Config.

Proc.
Model,
Layout,
etc.

System Software
Dynamic
Selection 

of Function 
Versions

Schedule Table 
Generation

System Software Simulation

Fig. 7: Experimental setup with reliability-driven compiler,
system software, and processor simulator.

for the resulting table.
Note that the table j∗ should be protected so that the

run-time system software can select the correct versions for
minimizing the RT penalty. By removing the sparse entries, as
discussed above, we can reduce the memory protection over-
head. Following the prominent industrial and research trends
of AMD [2] and IBM [14], in our experiments, we consider
protected caches and memory. The performance overhead is at
most (n−1) multiplied with the overhead of fetching one table
entry from the main memory. This is considered negligible,
compared to the execution time of one application iteration.

VII. RESULTS AND DISCUSSION

This section presents our experimental results based on
simulations using a reliability-aware processor simulator and
a reliability analysis program with profilers for obtaining the
reliability and timing properties.

A. Experimental Setup and Compilations for Multiple Versions

The overview of the experimental setup is shown in Fig. 7.
The reliability-driven compiler is based on the GCC frame-
work and extended with several reliability-driven transfor-
mations [26] and an instruction scheduling algorithm [25]
along with our Pareto optimal selection of function versions.
The reliable binary codes of various application functions
are forwarded to the system software which is implemented
in C++. A reliability-aware Leon-II processor simulator is
employed for executing all function versions with different
inputs generating the information (e.g., instruction trace, regis-
ter read/write accesses, etc.) that is required by the Reliability-
Driven offline system software to analyze the performance and
reliability properties of the function versions and to create the
tables used by the Reliability-Driven online system software
for dynamically selecting appropriate function versions. The
simulator is a SPARC-v8 instruction set simulator (ISS) that is
generated using the ArchC architecture description language
and related tools [4]. The simulator is enhanced with an in-
house developed configurable fault generator and injector, and
error logging capabilities which is required for a detailed relia-
bility analysis. For an accurate estimation, processor synthesis
results (area, frequency, etc.) and fault model configurations
(number of bit flips per fault, fault rate, fault distribution, etc.)
are input to the reliability-aware processor simulator. Realistic
fault rates are obtained using the neutron flux calculator
[1] and coordinates of a given location. In our experiment,
considering a processor frequency of 100MHz (representing
embedded processors), we have used three different fault rates



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2417554, IEEE Transactions on Computers

11

of 10−8, 10−7, and 10−6 (in the unit of #faults/cycles) to
cover both terrestrial and aerial use cases. For representing
processors with higher frequency, further accelerated fault
rates could be used as typically adopted for fault injection
experiments [13, 17]. After randomly generating several fault
scenarios using the fault generator (i.e., determining for a
large number of analysis runs, when and in which processor
component faults should occur), the faults are injected by the
fault injector during the function version execution on the ISS.
The manifested effects on the application program layer are
finally monitored using the error logger and categorized based
on the severity from the user’s perspective (e.g., application
failure, incorrect output, correct output). More details on the
fault injection and compilation infrastructure are presented
in [24, 26] and the Supplementary Material. Faults are injected
randomly (as it is done in [22, 28]) in different processor
components and their effects are observed at the application
program layer. The results of the fault injection experiments
are finally used to accomplish two tasks (a) estimating the
software-level masking properties of the applications used and
(b) analyzing the main reason e.g. for application failures
which could range from accessing prohibited memory regions
to non-decodable instructions.

For experimental evaluation, we have employed various
functions of different applications from MiBench like: (1)
the “H.264” video encoder with three key functions “SAD”,
“DCT”, and “SATD”; (2) “ADPCM”; (3) “CRC”; (4) “Su-
sanS”; and (5) “SHA”. In order to realize a complex real-
world application scenario for reliable code generation and
execution, we have integrated all these applications into one
big application namely “secure video and audio processing”.
However, they can also be seen as parallel independent de-
mands on a single core processor. Note, for each application
at least 3 (up to 7) different function versions are generated
and evaluated. For the defined order experiment, we use the
following ordering of these 7 functions: “SAD”, “SATD”,
“DCT”, “SusanS”, “CRC”, “ADPCM”, “SHA”. In the exper-
imental setup, we choose the first version returned from the
compiler as the preferred version θi for each function Fi. For
the unknown order experiment, we break the ties of functions
arbitrarily and decide the execution order by the prioritization
scheme in Section V. It is worthwhile to mention that, the
functions of “H.264” video encoder have dependences which
are not possible to remove similar to the case we already
mentioned in Section V. Therefore, we keep their execution
order, i.e., “SAD” → “SATD” → “DCT”, and combine them
as a wrapped function for the prioritization algorithm.

Fig. 8 shows the performance and reliability properties of
different compiled versions in terms of average execution time
and function vulnerability index (FVI), respectively. A user-
provided maximum tolerable performance overhead Ωi equal
to 100% is provided to our reliability-driven compilation flow
as illustrated in Algorithm 1. Different compiled versions of
each function are profiled on the reliability-aware processor
simulator using various different input data sets and distribu-
tions of errors, vulnerabilities, and execution time are obtained.
The CDF of the execution time is generated and partitioned
into 10 different steps. Note that a function can have different

0.01

0.1

1

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

1 2 3 4 5

Se

5000 

7000 

3000 

1000 

0 

V1
 

V2
 

V3
 

V0
 

V1
 

V2
 

V0
 

V1
 

V2
 

V3
 

V0
 

V1
 

V2
 

V3
 

V0
 

V1
 

V2
 

V4
 

V0
 

FV
I (

Lo
g 1

0 S
ca

le
) 

0.1 

1.0 

Av
er

ag
e 

Ex
ec

ut
io

n 
Ti

m
e 

[K
Cy

cl
es

] 

V4
 

0.01 

ADPCM 

V0
 

V1
 

V2
 

V0
 

V1
 

V2
 

V0
 

V1
 

V2
 

V3
 

V4
 

V0
 

V1
 

V2
 

CRC SHA SUSAN SAD 

V3
 

V0
 

V1
 

V2
 

V3
 

V4
 

Execution Time FVI 

Fig. 8: Average execution time and FVI of different compiled
versions of different functions.

reliability and execution time properties depending on its input
which is one reason why a reliability-driven runtime system
is required, i.e., different versions are selected at runtime.
For simplifying the version selection problem the average
vulnerability of a function version for different inputs is
considered here as reliability variations for different inputs
are also rather small in range.

For evaluating the system software, in addition to Algo-
rithm 5 for dynamic version selections, we also evaluated three
static version selections:
• Min. R: is to choose the version j with the minimum Ri,j

for each function Fi to improve the reliability;
• Min. Avg: is to choose the version j with the minimum

average execution time for each function Fi to improve the
performance;

• Min. RTP: is to choose the version j with the minimum RT
penalty of αR + (1-α)(1 − Ci,j(D)) for each function Fi

to jointly consider the reliability and performance, since it
directly maps to the optimization objective.

B. Simulation Results for a Defined Sequence

This subsection presents the results when the execution
ordering is given. In such a case, the dynamic programming
approach derives the minimum (optimal) RT penalty under the
given execution ordering.

Fig. 9 presents the results for the “secure video and audio
processing” application (as discussed above) simulated under
a certain given ordering and three different settings of the fault
rates, i.e., η = 10−6 in Fig. 9(a), η = 10−7 in Fig. 9(b), and
η = 10−8 in Fig. 9(c). According to the obtained FVIs of the
functions and the fault rates, we derived the corresponding
reliability penalties. Among these three configurations, we
have

∑
i maxj Ri,j ≈ 2.47,

∑
i maxj Ri,j ≈ 0.247, and∑

i maxj Ri,j ≈ 0.0247 when η = 10−6, η = 10−7, and
η = 10−8, respectively. Similarly, we have

∑
i minj Ri,j ≈

1.72,
∑

i minj Ri,j ≈ 0.172, and
∑

i minj Ri,j ≈ 0.0172
when η = 10−6, η = 10−7, and η = 10−8, respectively.
Note, the average total execution time of application is 178ms,
which is calculated by all functions executing on the highest
performance versions. For the memory capacity, the dynamic
programming with the simplification requires 921KBytes to
build the table when the relative deadline is D = 300ms.

In our simulation results in Fig. 9, it is clear that when the
relative deadline increases, the RT penalty decreases, since the
timing constraint is less stringent. Therefore, when the relative
deadline is too small, i.e., less than 40ms, the miss rate is



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2417554, IEEE Transactions on Computers

12

(a) η = 10−6 (b) η = 10−7 (c) η = 10−8

Fig. 9: The RT penalty under different fault rates.

(a) η = 10−6 (b) η = 10−7

Fig. 10: The RT penalty under different fault rates by com-
paring to the static version selections when α = 0.1.

almost 100% for all the version selections, and, hence, the
most reliable versions will be selected (or the default versions
will be enabled). On the other hand, when the relative deadline
is large, i.e., more than 240ms, the miss rate becomes nearly
0%. A proper version selection will have almost no deadline
misses, and will try to minimize the reliability penalties as
well. In all the figures, the RT values change more in the range
when the relative deadline is between 80ms and 240ms, and
Algorithm 5 tries to balance the miss rate and the reliability
penalties.

In Fig. 9, for one given α under a given deadline D, when
the fault rate is high, we can also see that the RT penalty is
also higher, due to the fact that Ri,j is larger. When α = 0.01,
the reliability penalties Ri,j do not play a very significant
role in our settings, while the deadline miss rate matters. As
a result, we can find very similar curves for α = 0.01 in
Fig. 9(a), Fig. 9(b), and Fig. 9(c). In other words, these curves
for α = 0.01 are basically very similar to the miss rate.

Interestingly, when the fault rate is 10−6, the setting with
α = 0.5 is the one with the maximum RT penalty in the
simulated cases, but it becomes the one with the minimum
when the fault rate is 10−8. The main reason comes from the
settings of Ri,j . When η = 10−6, the achievable reliability
penalty is between 1.72 and 2.47. When η = 10−8, the
achievable reliability penalty is between 0.0172 and 0.0247.
Therefore, compared to the deadline miss rates, the reliability
penalties play a very significant role when η = 10−6, play
a comparable role when η = 10−7, and play a very minor
role when η = 10−8. In Fig. 9(a), even though our scheme
tries to minimize RT penalty, the values of αRi,j are still too
significant so that the RT penalty remains very high, especially
when α is larger. In Fig. 9(b), we try to make a balance
between the reliability penalties and the miss rate. However,
since

∑
i minj Ri,j ≈ 0.172 when η = 10−7, the minimum

RT penalty in Fig. 9(b) for α = 0.5, is still about 0.1.
Fig. 10 presents our simulation results when the fault rate

is 10−6 and 10−7 with α = 0.1 by considering the static
version selections (Min. R, Min. Avg, and Min. RTP) and the
dynamic version selections based on Algorithm 5. As shown

in Fig. 10, all the static version selections are worse than the
dynamic version selection in Fig. 10.

As shown in Fig. 10(a), when the fault rate is higher (i.e.,
η = 10−6), the static version selection with the minimum
average execution time is the worst, since the reliability
penalties play an important role for reducing the RT penalty.
This also explains why the static version selection with the
minimum Ri,j for each function Fi is better. When the fault
rate is lower (i.e., η = 10−7), in Fig. 10(b), the differences
between the above static version selections are very limited.
Although the static version selection with the minimum RT
penalty reconciles the advantage of the above static selections,
the dynamic version selection can utilize the spare time (slack),
which is changed from time to time, more cleverly than the
others within the range of 80ms and 240ms. The advantage
of the dynamic algorithm can achieve 33% improvement on
average.

C. Simulation Results for Prioritization Ordering

This subsection presents the results when the execution
ordering can be determined by the system software. In such
a case, we adopt our function prioritization algorithm in Sec-
tion V and the dynamic programming approach in Section VI.

We illustrate the evaluation results by presenting the nor-
malized RT penalty ratio, which is defined as the RT penalty
of the resulting solution divided by the optimal RT penalty. For
comparison, we also demonstrate a normalized result of the
worst ordering. Please note, the optimal and worst orderings
both are obtained by an exhaustive search with the factorial
timing complexity. With this normalization, we can evaluate
the effectiveness of our technique and show the potential of
improvement between two extreme orderings, i.e., the best
ordering and the worst ordering. As we are not aware of
any other function prioritization algorithms, these two extreme
cases also show the potential improvement space. Fig. 11
shows the RT penalty ratios of our proposed prioritization
algorithm (with legends “PA”) and the worst ordering (with
legends “Worst”) when considering the 5 functions as defined
in the experimental setup in Section VII-A. Note that, since the
application suffers from violating the performance constraint
most of time from 0ms to 178ms, we only present our
results by setting D in the range of 200ms and 300ms with
α = 0.1. In such cases, i.e., 0ms to 178ms, employing the
prioritization would not obtain too much difference in terms
of dependability, since the degradation of timing reliability as
mentioned above will dominate the RT penalty.

Fig. 11 shows that our prioritization algorithm as a heuristic
can reach the optimal RT penalty with the best execution
order of function when the residual time is sufficient, i.e.,
D ≥ 260ms. In such cases, we observe that most of the



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2417554, IEEE Transactions on Computers

13

(a) η = 10−6 (b) η = 10−7 (c) η = 10−8

Fig. 11: The RT penalty ratio under different fault rates

functions can upgrade the executing version to the lowest
possible RT penalty state, in which our prioritization algorithm
can evaluate the benefit density of all the best versions and
prioritize the higher expected benefit version with higher
priority. Though the proposed algorithm is not as good as the
optimal result during 220ms to 260ms, it starts to deliver more
efficient execution orders with lower RT penalty, where the
efficiency of the proposed approach at the higher fault rate,
i.e, η = 10−6, is getting better than the results at the lower
fault rates. When the fault rate is higher, i.e, η = 10−6, the
prioritization algorithm is getting better quickly than the others
at lower, which starts from 220ms and the others start from
240ms and 250ms, respectively.

For the time consumption, we also report the required time
to derive the RT penalty by adopting our approaches and by
performing an exhaustive search of function prioritization, for
the experiment reported in Fig. 11. For the case with fault
rate 10−6 and α = 0.1, our approach requires 2.35 sec on
average whereas the exhaustive search takes 12 sec. Note,
since the worst result for RT penalty is obtained along with
the exhaustive search for the optimal ordering, we only do the
exhaustive search once.

Naturally, the exhaustive search does not scale with the
number of functions. Fig. 12 presents the results under dif-
ferent fault rates for a more complicated application scenario.
This application is constructed using different functions se-
lected from MiBench as mentioned previously, and composes
various function versions with partial and full duplications to
provide selective or full protection against functional errors.
The motivation of this simulation result is to present that our
approach still works while the application is more complicated.
As mentioned before, this application is too complicated to
provide the best ordering by an exhaustive search due to the
high complexity. Our approach takes 3.3 sec on average for
such a case.

VIII. CONCLUSIONS

This paper explored the issues related to the functional
and timing reliability at multiple system layers (i.e., compiler,
offline system software, and run-time system software) to
improve the overall system reliability. We presented a scheme
for reliable code generation and execution using reliability-
driven compilation and system software.

We (1) develop a heuristic function prioritization algorithm
to improve the optimization of the RT penalty efficiently,
(2) enable the generations of multiple function versions with
different performance versus reliability trade-off, (3) utilize
these multiple versions in the system software and builds
a schedule table offline to optimize the RT penalty, and
(4) adapt the dynamic execution behavior to select suitable

versions for the subsequent functions properly. We evaluated
our scheme with a real-world application of “secure video and
audio processing” composed of various functions by using a
reliability-aware processor simulator.

REFERENCES

[1] Flux calculator. http://www.seutest.com/cgi-bin/FluxCalculator.cgi.
[2] AMD. AMD PhenomTM II Processor Product Data Sheet 2010.
[3] H. Aydin, R. G. Melhem, and D. Mossé. Tolerating faults while maximizing reward.

In ECRTS, pages 219–226, 2000.
[4] R. Azevedo, S. Rigo, M. Bartholomeu, G. Araujo, C. C. de Araujo, and E. Barros.

The ArchC Architecture Description Language and Tools. International Journal
of Parallel Programming, 33(5):453–484, 2005.

[5] R. Baumann. Radiation-induced soft errors in advanced semiconductor technolo-
gies. IEEE Trans. on Device and Materials Reliability, 5(3):305 – 316, 2005.

[6] Y. Cao, J. Velamala, K. Sutaria, M. S.-W. Chen, J. Ahlbin, I. S. Esqueda, M. Bajura,
and M. Fritze. Cross-layer modeling and simulation of circuit reliability. IEEE
Trans. on CAD of Integrated Circuits and Systems, 33(1):8–23, 2014.

[7] L. Chen and A. Avizienis. N-version programming: A fault-tolerance approach
to reliability of software operation. In International Symposium on Fault-Tolerant
Computing, 1995.

[8] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt. Run-time dynamic linking for
reprogramming wireless sensor networks. In SenSys, pages 15–28, 2006.

[9] C.-C. Han, K. G. Shin, and J. Wu. A fault-tolerant scheduling algorithm for real-
time periodic tasks with possible software faults. IEEE Trans. Comput., 52(3):362–
372, 2003.

[10] J. Henkel, L. Bauer, N. Dutt, P. Gupta, S. Nassif, M. Shafique, M. Tahoori, and
N. Wehn. Reliable on-chip systems in the nano-era: Lessons learnt and future
trends. In Design Automation Conference (DAC), 2013.

[11] J. Henkel, L. Bauer, H. Zhang, S. Rehman, and M. Shafique. Multi-layer
dependability: From microarchitecture to application level. In Design Automation
Conference (DAC), pages 1–6, 2014.

[12] J. Hu, S. Wang, and S. Ziavras. In-register duplication: Exploiting narrow-width
value for improving register file reliability. In Dependable Systems and Networks,
2006. DSN 2006. International Conference on, pages 281 –290, june 2006.

[13] J. S. Hu, S. Wang, and S. G. Ziavras. In-Register Duplication: Exploiting
Narrow-Width Value for Improving Register File Reliability. In 2006 International
Conference on Dependable Systems and Networks (DSN 2006), 25-28 June 2006,
Philadelphia, Pennsylvania, USA, Proceedings, pages 281–290. IEEE Computer
Society, 2006.

[14] IBM. IBM XIV Storage System cache.
http://publib.boulder.ibm.com/infocenter/ibmxiv/r2/index.jsp.

[15] V. Izosimov, P. Eles, and Z. Peng. Value-based scheduling of distributed fault-
tolerant real-time systems with soft and hard timing constraints. In ESTImedia,
pages 31–40, 2010.

[16] V. Izosimov, P. Pop, P. Eles, and Z. Peng. Synthesis of fault-tolerant embedded
systems with checkpointing and replication. In DELTA, pages 440–447, 2006.

[17] L. Li, V. Degalahal, N. Vijaykrishnan, M. T. Kandemir, and M. J. Irwin. Soft error
and energy consumption interactions: a data cache perspective. In Proceedings of
the 2004 International Symposium on Low Power Electronics and Design, 2004,
Newport Beach, California, USA, August 9-11, 2004, pages 132–137, 2004.

[18] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. J. ACM, 20(1):46–61, 1973.

[19] A. Masrur, P. Kindt, M. Becker, S. Chakraborty, V. Kleeberger, M. Barke,
and U. Schlichtmann. Schedulability analysis for processors with aging-aware
autonomic frequency scaling. In IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA), 2012.

[20] S. Mitra, K. Brelsford, and P. N. Sanda. Cross-layer resilience challenges: Metrics
and optimization. In DATE, pages 1029–1034, 2010.

[21] A. K. Mok. Fundamental design problems of distributed systems for the hard-real-
time environment. Technical report, Cambridge, MA, USA, 1983.

[22] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin. A
systematic methodology to compute the architectural vulnerability factors for a
high-performance microprocessor. In Proceedings of the 36th annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 29–, 2003.

[23] N. Oh, P. Shirvani, and E. McCluskey. Error detection by duplicated instructions
in super-scalar processors. IEEE Trans. on Reliability, 51(1):63 –75, 2002.

[24] S. Rehman, F. Kriebel, M. Shafique, and J. Henkel. Reliability-driven software



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2417554, IEEE Transactions on Computers

14

(a) η = 10−6 (b) η = 10−7 (c) η = 10−8

Fig. 12: The RT penalty under different fault rates for the complicated application

transformations for unreliable hardware. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 33(11):1597–1610, Nov 2014.

[25] S. Rehman, M. Shafique, and J. Henkel. Instruction scheduling for reliability-aware
compilation. In Design Automation Conference (DAC), 2012.

[26] S. Rehman, M. Shafique, F. Kriebel, and J. Henkel. Reliable software for unreliable
hardware: embedded code generation aiming at reliability. In CODES+ISSS, pages
pp. 237–246, 2011.

[27] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, D. I. August, and S. S.
Mukherjee. Software-controlled fault tolerance. ACM Trans. Archit. Code Optim.,
2(4):366–396, Dec. 2005.

[28] G. P. Saggese, N. J. Wang, Z. Kalbarczyk, S. J. Patel, and R. K. Iyer. An
experimental study of soft errors in microprocessors. IEEE Micro, 25(6):30–39,
2005.

[29] M. Shafique, S. Rehman, P. V. Aceituno, and J. Henkel. Exploiting program-level
masking and error propagation for constrained reliability optimization. In 50th
Design Automation Conference (DAC), 2013.

[30] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi. Modeling the effect
of technology trends on the soft error rate of combinational logic. In Dependable
Systems and Networks, 2002. DSN 2002. Proceedings. International Conference
on, pages 389 – 398, 2002.

[31] R. Vadlamani, J. Zhao, W. P. Burleson, and R. Tessier. Multicore soft error rate
stabilization using adaptive dual modular redundancy. In DATE, pages 27–32, 2010.

[32] R. Venkatasubramanian, J. Hayes, and B. Murray. Low-cost on-line fault detection
using control flow assertions. In On-Line Testing Symposium, 2003. IOLTS 2003.
9th IEEE, pages 137 – 143, july 2003.

[33] J. Yan and W. Zhang. Compiler-guided register reliability improvement against
soft errors. In Proceedings of the 5th ACM international conference on Embedded
software (EMSOFT), pages 203–209, 2005.

Semeen Rehman (S’11) received the B.Sc. degree
in computer science from the University of Pe-
shawar, Pakistan, in 2004. She has been pursuing the
Ph.D. degree from the Chair for Embedded Systems,
Karlsruhe Institute of Technology, Germany, since
2008. From 2005 to 2007, she was an Informa-
tion Systems Manager at Mardan Surgical Centre
Pvt. (Ltd.), Pakistan. Her current research interests
include dependable computing, cross-layer reliabil-
ity, and reliability-driven compilation for embedded
processors. Ms. Rehman was the recipient of the

CODES+ISSS 2011 Best Paper Award and several HiPEAC Paper Awards.

Kuan-Hsun Chen received the M.Sc. degree in
computer science from the National Tsing Hua Uni-
versity, Hsinchu, Taiwan, in 2013, and is pursuing
the Ph.D. degree from the Chair for Design Automa-
tion of Embedded Systems, TU-Dortmund, Ger-
many. His current research interests include depend-
able computing, embedded systems and reliability-
aware resource management.

Florian Kriebel received the M.Sc. degree in com-
puter science from the Karlsruhe Institute of Tech-
nology (KIT), Germany, in 2013. He is currently
pursuing the Ph.D. degree from the Chair for Em-
bedded Systems, KIT, Germany. His current research
interests include dependable computing, cross-layer
reliability modeling, and optimization. Mr. Kriebel
was the recipient of the CODES+ISSS 2011 Best
Paper Award and two HiPEAC Paper Awards.

Anas Toma has been pursuing his Ph.D. at the
Department of Informatics, Karlsruhe Institute of
Technology, Germany, since October 2011. His
main research interests are real-time systems, high-
performance and energy-efficient scheduling, algo-
rithm design and analysis, and computer vision. He
received his B.Sc. in Computer Engineering from
An-Najah National University, Palestine in 2005.
In 2008, he received his M.Sc. in Computer En-
gineering from Jordan University of Science and
Technology. From 2008 to 2011, Anas worked as

lecturer at An-Najah National University. Anas was awarded two scholarships
by DAAD for his master and doctoral studies.

Muhammad Shafique (M’11) received the Ph.D.
degree in computer science from the Karlsruhe In-
stitute of Technology (KIT), Germany, in 2011. He
is currently a Research Group Leader at the Chair
for Embedded Systems, KIT. He has over ten years
of research and development experience in power-
/performance-efficient embedded systems in leading
industrial and research organizations. He holds one
U.S. patent. His current research interests include
design and architectures for embedded systems with
focus on low power and reliability. Dr. Shafique

was the recipient of six gold medals, CODES+ISSS’14 Best Paper Award,
CODES+ISSS’11 Best Paper Award, AHS’11 Best Paper Award, DATE’08
Best Paper Award, DAC’14 Designer Track Poster Award, ICCAD’10 Best
Paper Nomination, several HiPEAC Paper Awards, and the Best Masters
Thesis Award. He has served as a TPC Member at ICCAD, CASES, DATE,
and ASPDAC.

Jian-Jia Chen is Professor at Department of Infor-
matics in TU Dortmund University, Germany. He
was Juniorprofessor at Department of Informatics
in Karlsruhe Institute of Technology, Germany from
May 2010 to March 2014. He received his Ph.D.
degree from Department of Computer Science and
Information Engineering, National Taiwan Univer-
sity, Taiwan in 2006. Between Jan. 2008 and April
2010, he was a postdoc researcher at ETH Zurich,
Switzerland. His research interests include real-
time systems, embedded systems, energy-efficient

scheduling, power-aware designs, temperature-aware scheduling, and dis-
tributed computing. He received Best Paper Awards at CODES+ISSS 2014,
RTCSA 2005 and 2013, and SAC 2009. He has involved in Technical
Committees in many international conferences.

Jörg Henkel (M’95-SM’01) is currently with the
Karlsruhe Institute of Technology (KIT), Germany,
where he is directing the Chair for Embedded Sys-
tems (CES). Dr. Henkel received the masters and
the Ph.D. (Summa cum laude) degrees, both from
the Technical University of Braunschweig, Germany.
He then joined the NEC Laboratories, Princeton,
NJ, USA. He holds ten U.S. patents. His current
research interests include design and architectures
for embedded systems with focus on low power and
reliability. Prof. Henkel was the recipient of the 2008

DATE Best Paper Award, the 2009 IEEE/ACM William J. McCalla ICCAD
Best Paper Award, the CODES+ISSS 2011 and 2014 Best Paper Awards. He
was the Chairman of the IEEE Computer Society, Germany Section, and the
Editor-in-Chief of the ACM Transactions on Embedded Computing Systems.
He is also an Initiator and the Spokesperson of the national priority program
called Dependable Embedded Systems of the German Science Foundation,
and the General Chair of ICCAD 2013.


