
Schedulability and Priority Assignment for Multi-Segment
Self-Suspending Real-Time Tasks under Fixed-Priority Scheduling

Wen-Hung Huang and Jian-Jia Chen
Department of Computer Science

TU Dortmund University, Germany
{wen-hung.huang, jia.chen}@tu-dortmund.de

Abstract—Self-suspension is becoming an increasingly promi-
nent characteristic in real-time systems such as: (i) I/O-intensive
systems (ii) multi-core processors, and (iii) computation offload-
ing systems with coprocessors, like Graphics Processing Units
(GPUs). In this paper, we study the schedulability of multi-
segment self-suspension tasks under fixed-priority scheduling,
where the executions of a multi-segment self-suspension task
alternate between per-defined computation segments and sus-
pension intervals. In particular, we do not use any enforcement
to control the releases of computation segments and suspension
intervals. Such an enforcement can prevent jitter but may incur
non-negligible overheads. This work presents a combined method
using the proposed multi-segment workload function to compute
the upper bound on the worst-case response time (WCRT) of
multi-segment tasks. To the best of our knowledge, this is the
first study that successfully provides a pseudo-polynomial-time
test for multi-segment self-suspension, hard real-time systems
under fixed-priority scheduling without any additional execution
control. We also show that the proposed analysis is compatible
with Audsley’s Priority Assignment. Our empirical investigations
show that the proposed approach is highly effective in terms of
the number of task sets deemed to be schedulable.

I. INTRODUCTION

In many real-time and embedded systems, tasks may be
suspended by the operating system when accessing external
devices such as disks, graphical processing units (GPUs), or
synchronizing with other tasks. This behavior is often known
as self-suspension. Self-suspensions are even more pervasive in
many emerging embedded cyber-physical systems in which the
computation components frequently interact with external and
physical devices [16], [17]. Typically, the resulting suspension
delays range from a few microseconds (e.g., a write operation
on a flash drive [16]) to a few hundreds of milliseconds (e.g.,
offloading computation to GPUs [17], [25]). Such suspension
delays have negative impact on the timing predictability and
cause intractability in hard real-time (HRT) schedulability
analysis [26].

The unsolved problem of efficiently supporting self-suspen-
sions in real-time systems has impeded research progress on
many related research topics such as predictably supporting
I/O-intensive applications and computation offloading. In fact,
the problem of scheduling HRT self-suspension task systems
on a uniprocessor has been proved to beNP-hard in the strong
sense [26]. Therefore, there cannot exist a polynomial-time
scheduling algorithm for this problem, unless P = NP [26].
Related work. Recently, there have been some re-
sults [14], [20]–[22] on the dynamic self-suspending task
model [24]. This model characterizes each task as a 4-tuple
(Ci, Si, Ti, Di): Ti denotes the minimum inter-arrival time of

τi, each job of τi has a relative deadline Di, Ci denotes the
upper bound on total execution time of each job of τi, and Si
denotes the upper bound on total suspension time of each job
of τi. For such a model, a utilization bound for self-suspending
task is derived under rate-monotonic (RM) scheduling in [22].
In [14] the proposed approach is guaranteed to find a feasible
fixed-priority assignment on a speed-2 uniprocessor, if one
exists on a unit-speed processor.

From the system designer’s perspective, such a model
provides an easy way to specify self-suspending systems
without considering the juncture of I/O access or computation
offloading. However, such a model essentially suffers from
poor schedulability, as explained in Appendix B.

In terms of schedulability, it is more desirable to adopt
the multi-segment self-suspension task model [26] where each
task’s computation segments and suspension intervals are spec-
ified as an array (C0

i , S
0
i , C

1
i , S

1
i , ..., S

Mi−2
i , CMi−1

i) com-
posed of Mi computation segments separated by Mi − 1 sus-
pension intervals. For dynamic-priority scheduling, Chen and
Liu [8] show that fixed-relative-deadline scheduling can yield
non-trivial resource augmentation (speed-up factor) perfor-
mance. Fixed-relative-deadline scheduling assigns each com-
putation segment of a task with a fixed relative deadline, and
adopts earliest-deadline-first (EDF) scheduling by giving the
highest priority to the job with the earliest absolute deadline.
However, the result in [8] is only applicable when each task
has at most one suspension interval.

Several approaches [6], [11], [18], [19] have been reported
to analyze and design fixed-priority scheduling for the multi-
segment self-suspension task model. Specifically, Bletsas and
Audsley [6] study the schedulability for systems with limited
parallelism, which can also be modeled by the multi-segment
self-suspension model. However, the analysis provided by
Bletsas and Audsley [6] is flawed. We present a counter
example in Appendix A. Lakshmanan and Rajkumar [19]
study a special case of such a problem, in which the system
has only one self-suspension task as the lowest-priority task.
Unfortunately, the critical-instant analysis in [19] has also
been shown flawed in a very recent paper by Nelissen et al.
[11]. Moreover, Nelissen et al. [11] propose a method based
on a mixed integer linear programming (MILP) formulation
to calculate the exact worst-case response time of a self-
suspension task with only one suspension interval. However, in
the general cases, the time complexity rapidly grows, and the
MILP-based approach requires exponential time complexity.
Furthermore, how to assign the task priority remains open for
such a model.

1

Kim et al. [18] also analyze special cases when there is only
one self-suspension task. Moreover, an MILP-based algorithm
for segment-fixed priority scheduling is developed in [18], in
which each computation segment of a task is assigned with a
specific priority level, so to speak segment-level scheduling.
In their analysis, all the higher-priority computation segments
are assumed to be able to interfere with a lower-priority
computation segment at the same time. However, it is an
evidence that two computation segments within one job of a
higher-priority self-suspension task are temporarily separated
by a suspension interval, and hence their formulation of the
MILP is pessimistic. Moreover, in [18], [19] the static/dynamic
slack enforcement is proposed to ensure that each task imposes
no more than its sporadic non-suspending interference on
the lower-priority task. Such a scheme requires an additional
execution control. The slack enforcement is introduced in [18],
[19] to make the analysis easier, but its advantages to the
system are not discussed.

In summary, several promising results have been suc-
cessfully proposed for the dynamic self-suspension task
model [14], [20]–[22]. However, in the presence of multi-
segment self-suspension task models, such results are too
pessimistic to be seamlessly adopted. The best-known re-
sult presented for multi-segment self-suspension task models
under fixed-priority scheduling has worst-case exponential
time complexity [11]. There is neither polynomial-time nor
pseudo-polynomial-time algorithm available to provide effi-
cient schedulability analysis and feasible priority assignments
for multi-segment self-suspension tasks.

The significance of this paper is that by means of a sophis-
ticated schedulability analysis, we do not need any additional
execution control on the releases of suspension intervals and
computation segments, called enforcement, by which some
additional overhead may incur, as used in the concurrent
submission [12]. Besides, the approach in this paper achieves
significantly high performance in terms of schedulability when
there are many suspension intervals, whereas the result [12]
essentially suffers from such a case. One may conclude that
the result in this paper is more applicable if there are many
suspension intervals, whereas the concurrent submission [12]
is recommended if there are a few suspension intervals.
Contribution. We propose a pseudo-polynomial-time ap-
proach for assigning priority levels and analyzing the multi-
segment self-suspension system under fixed-priority schedul-
ing without any additional execution control. Our contributions
are as follows:

• We derive a workload function to safely bound the
workload from higher-priority tasks, to be detailed in
Section III. The workload function considers the worst-
case execution and release scenarios including early com-
putation and suspension completions. As the workload
function provides more precise information in the multi-
segment self-suspension model than the dynamic self-
suspension model, our response time analysis is superior
to the analysis in [14], [22].

• The derived workload function can be utilized in two
ways to analyze the worst-case response time of the task
τk under analysis, to be detailed in Section IV: (1) It can

be used to analyze the worst-case response time of a com-
putation segment directly. (2) Alternatively, it can also
be used by treating τk’s suspension as computation. We
prove that both of the above treatments can be adopted
by extending the standard response time analysis (RTA).
This results in pseudo-polynomial time complexity for
deriving the worst-case response time safely. Such tests
can also be converted to polynomial-time with some
errors by using the tricks in [1], [7].

• We also show, in Section V, that the proposed response
time analysis is compatible with Audsley’s priority as-
signment [3], [4], [9]. Therefore, the optimal priority
ordering (under our response time analysis) can be de-
termined efficiently.

• Our empirical investigations, in Section VI, show that
the proposed approach is highly effective in terms of
the number of task sets deemed to be schedulable. We
significantly improve the performance over the best-
known test for dynamic self-suspension model presented
in [14]. The self-suspension task is deemed to reach the
poor schedulability when tasks have a long suspension
interval. The proposed test fully tackles such a case, and
our empirical results show that our proposed test is able
to accept task sets with utilization up to 75% in such a
case with noticeable acceptance ratios.

• Evaluation results also provide very strong evidence to
control the suspension length to improve the schedu-
lability, which is discussed in Section VII. However,
controlling the phases of the computation segments (with
constant offsets with respect to the first computation
segment) is not necessary.

To the best of our knowledge, this is the first work that
successfully provides schedulability analysis with pseudo-
polynomial-time complexity for multi-segment self-suspension
systems under fixed-priority scheduling without any additional
execution control.

II. SYSTEM MODEL AND NOTATIONS

We consider a real-time system to execute a set of n
independent, preemptive, self-suspension real-time tasks τ =
{τ1, τ2, ..., τn} on a uniprocessor. Each task can release an
infinite number of jobs under minimum inter-arrival time
(temporal) constraints. The self-suspending sporadic (SSS)
task model extends the conventional sporadic task model by
allowing tasks to suspend themselves. Similar to sporadic
tasks, a self-suspending sporadic task releases jobs sporad-
ically, but the execution of each job of τi is composed of
Mi computation segments separated by Mi − 1 suspension
intervals. A computation segment is eligible to execute only
after the completion of the previous suspension interval. A
self-suspension task τi is characterized by a 3-tuple:

τi =
(

(C0
i , S

0
i , C

1
i , S

1
i , ..., S

Mi−2
i , CMi−1

i), Ti, Di

)
where Ti denotes the minimum inter-arrival time of τi, Di

denotes the relative deadline of task τi, C
j
i denotes the upper

bound on execution times of the (j + 1)-th computation
segment, and Sji denotes the (j + 1)-th suspension interval.
If Mi is 1, there is only one computation segment of task τi,

2

which is the conventional sporadic task model. It is possible
that a task can start or complete its job with a suspension
interval. This can be easily covered by the above model by
placing one virtual computation segment at the beginning or
at the end in the model. Therefore, such cases are not explicitly
discussed.

Each Sji ranges in interval [S̆ji , Ŝ
j
i] where S̆ji (Ŝji , respec-

tively) denotes the lower (upper, respectively) bound on the
(j+1)-th suspension time of task τi. Note that it is not required
to obtain the lower bound on suspension intervals (if unknown,
then S̆ji = 0). However, as will be seen in Section VI, the
interference from higher-priority tasks can be more precisely
calculated if the lower bound is provided.

We denote the amount of total computation segment lengths∑Mi−1
j=0 Cji as Ci and the amount of total minimum suspension

interval times
∑Mi−2
j=0 S̆ji as S̆i and the amount of total

maximum suspension interval times
∑Mi−2
j=0 Ŝji as Ŝi. Note

that when Mi = 1, both S̆i and Ŝi are 0. We assume that
Ci + Ŝi ≤ Di for any task τi ∈ τ . The utilization of task τi is
defined as Ui = Ci/Ti. We further assume that

∑n
i=1 Ui ≤ 1.

A task system τ is said to be an implicit-deadline system if
it is guaranteed that each task has its relative deadline equal
to its period, and a constrained-deadline system if the relative
deadline of each task is no larger than its period. Otherwise,
task system τ is said to be an arbitrary-deadline system. In
this work, we restrict our attention to constrained-deadline
task systems.

The response time of a job is defined as the completion time
of the last computation segment minus the release time of the
job. The worst-case response time of task τi is defined as the
longest response time among all the jobs released. A system τ
is said to be feasible if there exists a scheduling algorithm that
can schedule the system without any deadlines being missed.

In this paper we focus on fixed-priority scheduling, in which
each task is associated with a unique priority. More precisely,
all the jobs of a task have the same priority level, and the
system always selects the job in the ready queue with the
highest-priority level to execute. Clearly, if a job suspends
itself, it is no longer in the ready queue. On the other hand,
when a job resumes from its self-suspension, it is put into the
ready queue again.

The multi-segment self-suspension model is a restrictive
model extended from the dynamic self-suspension model
where the suspension can occur at any time-instant with any
suspension size. Hence the dynamic self-suspension model
can be thought of as a relaxation of the multi-segment self-
suspension model. The dynamic model in turn alleviates the
effort of finding the location of suspension intervals. However,
for such a model, oblivious to the releasing pattern of computa-
tion segments, the schedulability is deemed more pessimistic.
In several approaches [14], [20]–[22] reported on this model
we can see that the suspension intervals of the analyzed task
are modeled as computation segments. Comparing to the
multi-segment self-suspension model, such a transformation
leads to rather poor performance. In detail, we explain this in
Appendix B.

T1

τ1

C 0
i S̆0

i C 1
i

τ2
0 1 2 3 4 5 6 7 8

(a) The critical instant for 1.5 execu-
tion time units

T1

τ1

C 0
i S̆0

i C 1
i

τ2
0 1 2 3 4 5 6 7 8

(b) The critical instant for 0.5 execu-
tion time units

Fig. 1: The dependency of the critical instant on the
parameters of task τ2

III. MULTI-SEGMENT WORKLOAD FUNCTION

Before analyzing the worst-case response time of a task,
we have to quantify the interference from the higher-priority
tasks. Most of the existing workload functions that quantify
such interferences [14], [22] are derived based on the dynamic
self-suspension model, which lacks of the characteristic of
multi-segment self-suspension tasks studied in this paper. The
workload functions from [19] and [6] have been shown to
be flawed (in Appendix A for [6] and in [11] for [19]).
This section presents a workload function that provides some
insights on the multi-segment self-suspension task and results
in tighter analysis.

Most of the response time analysis relies on the critical
instant for a task, which is defined to be an instant at which an
execution of that task will have the longest response time [23].
For sporadic tasks without self-suspension, it is proven that the
critical instant for a task occurs when the analyzed task and
all higher priority tasks are released simultaneously and all
the jobs are released as early as possible [23]. This critical
instant is unique and independent of the parameters of the
higher-priority tasks and the analyzed task.

Unfortunately, for self-suspension tasks, there is a depen-
dency on the parameters of tasks for the critical instant. For
example, consider a self-suspension real-time system consist-
ing of one SSS task τ1 = ((1, 1, 2), 8, 8) and one sporadic task
τ2 with both period and deadline ≥ 8, as shown in Figure 1.
The SSS task has higher-priority than the sporadic task. When
the execution time of task τ2 is 1.5, the critical instant for
task τ2 occurs when task τ2 is released simultaneously with
the first computation segment of task τ1. On the other hand,
when the execution time of task τ2 is 0.5, the critical instant
occurs when task τ2 is released simultaneously with the second
computation segment of task τ1.

Instead of investigating the critical instant, we will safely
bound the higher-priority interferences by quantifying the
carry-in jobs. As a naive approach, we can simply count all the
computation segments of the carry-in job, which is released
prior to the interval of our interest. This is referred as a burst
in [22]. However, this certainly induces too much pessimism
for multi-segment self-suspension systems where the pattern
of computation segments is given.

To quantify the interference from the higher-priority tasks
more precisely, we here give some insights in the multi-
segment self-suspension systems. For such systems, no mat-
ter how the computation segments of a multi-segment self-
suspension task are executed in the schedule, there will be
a minimum inter-arrival time between two computation seg-

3

ments within one job, i.e., the minimum time on suspension
intervals S̆ji plus the computation segment Cji . In addition, the
time between the finish time of the last computation segment
and the release time of the first computation segment of the
next job release cannot be less than Ti −Di. Otherwise, task
τi already misses its deadline. Informally speaking, we can
shift the computation segments of the first release to the right
so that consecutive releases can run nearly back-to-back while
satisfying the minimum inter-arrival time requirement. (Also
see Figure 2.)

Suppose that given a time-instant t0, the interval [t0, t0 + t]
with a length of t is of our interest. The rest of this section
is to quantify an upper bound of the execution of task τi in
the time interval [t0, t0 + t) under the assumption that task τi
can meet its deadline and Di ≤ Ti. By the assumption that
Di ≤ Ti, there is at most one job of an SSS task that can be
carried into the interval of our interest, i.e. the so-called carry-
in job. The remaining question is to answer what is the worst
case of interferences from an SSS task that characterizes such
a carry-in job (may including several computation segments).
Multi-segment workload function. Multi-segment workload
function is an upper bound on the amount of execution that the
jobs of task τi can perform in the time interval of duration t
where h states the phasing (also see Figure 2). More formally,
let h be a candidate computation segment in the carry-in job
of task τi.

Definition 1: Given an index h and an interval length t, the
multi-segment workload function Wi(t) of task τi is defined
as follows:

Wh
i (t) =

∑̀
j=h

Cj mod Mi

i +

min

C(`+1) mod Mi

i , t−
∑̀
j=h

(
Cj mod Mi

i + Si(j)
)
(1)

where ` is the maximum integer satisfying the following
condition: ∑̀

j=h

(
Cj mod Mi

i + Si(j)
)
≤ t (2)

and

Si(j) ≡

S̆j mod Mi

i if (j mod Mi) 6= (Mi − 1),
Ti −Di else if j ≤Mi,
Ti − (Ci + S̆i) otherwise.

Roughly speaking, the work from task τi can be considered
as two parts: (i) the last computation segment that arrives
before t0 + t and (ii) the other computation segments released
before the last computation segment. The segments of task τi’s
first release to be counted as the carry-in job are released as
late as possible. Every computation segment is treated as it is
released immediately, regardless of the schedule. The modulo
operation mod is used to indicate which computation segment
to be counted. Hence, the term

∑`
j=h C

j mod Mi

i counts those
computation segments that can be fully executed prior to
the last computation segment’s release within time interval

[t0, t0 + t), starting from the h-th computation segment. For
the last computation segment released prior to t0 + t, we
use min

(
C

(`+1) mod Mi

i , t−
∑`
j=h

(
Cj mod Mi

i + S̆i(j)
))

to quantify its interfering execution time instead of the request
execution time, since the latter may not be effectively executed
within the interval of length t. Moreover, Si(j) can be thought
of as the minimum interval-arrival time between the (j−1)-th
and the j-th released computation segments. Therefore, if the
(j − 1)-th and the j-th computation segments belong to the
same job of task τi, then Si(j) = S̆j mod Mi

i . Otherwise, the
j-th computation segment belongs to the next released job of
task τi. In this case, the minimum inter-arrival time between
the (j−1)-th and the j-th computation segments may depend
on whether the j-th computation segment comes from the
carry-in job, that is, Ti − Di for the carry-in job; otherwise,
Ti − (Ci + S̆i).

Note that the derivation of the workload function is based
on the setting Di ≤ Ti and the assumption that task τi
can meet its deadline, without referring to any properties
of the scheduling policy. We only quantify the worst-case
accumulated execution time of task τi that can interfere lower-
priority tasks, within an interval of length t. For the rest of
this section, we will show that given a candidate computation
segment Chi , the multi-segment workload function above is
the upper bound on the interference from high-priority self-
suspension task τi.

In contrast with the conventional sporadic task, an early
completion on a computation segment (if the execution time
is less than the worst-case execution time) of a self-suspension
task will advance the following releases of suspension intervals
and computation segments. This may seem at first glance bring
some additional interferences into the interval of interest. On
the other hand, each suspension interval executed for longer
than its lower bound S̆ji time-units may postpone the following
releases of computation segments. In summary, we have the
following two observations, to be proven in Lemma 1: for any
interval length of t and index h
• The multi-segment workload function of task τi is non-

increasing when each suspension interval is increased.
• The multi-segment workload function of task τi is non-

increasing when each computation segment decreases its
execution time.

Let Wh
i (t) and W̄h

i (t) denote the multi-segment workload
function of task τi and τ̄i, respectively, such that Ti =
T̄i, Di = D̄i, for each computation segment, C̄ji ≤ Cji , and,
for each suspension interval, S̄ji ≥ S̆

j
i .

Lemma 1: Given h, for all t > 0,

Wh
i (t) ≥ W̄h

i (t) (3)

Proof: We know that each computation segment is eligi-
ble to be executed only after the completion of the previous
suspension interval. Hence, an increase on any suspension
interval will postpone the following execution and thus the
interference cannot be increased.

Also, a decrease ∆ on any computation segment will
bring at most an increase by ∆ execution of the following
computation segments within the same release into the interval

4

C 0
i S̆0

i C 1
i S̆1

i C 2
i

Ti − Di − (Ci + S̆i) Ti − Di Ti − (Ci + S̆i)

τi
t0 + tt0

Fig. 2: Multi-segment workload function for h = 1, where the striped rectangles indicate the workload in this interval.

Ti − Di

τi
t0 + tt0f σi

(a) The schedule when t0 > fσi . In this case the work contributing over [t0, t0 + t) is bounded by the workload function for σi = 2.

Ti − Di

τi
t0 + tt0 f σi

(b) The schedule when t0 ≤ fσi . In this case the work contributing over [t0, t0 + t) is bounded by the workload function for σi = 1.

Fig. 3: The illustration in the schedule for two different cases in the proof of Theorem 1.

length of t. Hence, this lemma is proved.
We have defined the multi-segment workload function in

Eq. (1) by assuming that a computation segment of task τi
arrives at time t0. The following theorem shows that this
function indeed bounds the maximum interference for a given
interval length t resulting from task τi if h is chosen properly.

Theorem 1: Suppose that task τi can meet its deadlines
under the given scheduling policy. For any interval length t,
there exists an index of computation segment hi ∈ [0,Mi−1]
such that the work contributing to the interval [t0, t0 + t) from
SSS task τi is bounded from above by Whi

i (t).
Proof: Consider the work contributing over the interval

[t0, t0 + t) by a legal sequence of jobs executed by task τi
that is assumed to be schedulable under the scheduling policy.
Let Cσi

i be the latest computation segment released prior to
t0 and fσi denote its completion time. We now consider two
separate cases:
• fσi < t0. In this case, we can see that by the choice of

the latest segment Cσi
i prior to t0, there is no work from

task τi executing over [fσi , t0]. Hence, we can use the
workload function W̄h

i (t) for h = ((σi + 1) mod Mi) to
bound the cumulative execution in the interval [t0, t0+t).

• fσi ≥ t0. In this case, we can use the workload function
W̄h
i for h = σi to bound the cumulative execution in the

interval [t0, t0 + t).
The above two cases are also illustrated in Figures 3a and
3b, respectively. In either case we may see that the work
contributing over [t0, t0 + t) is bounded by its corresponding
multi-segment function W̄h

i (t). By Lemma 1, we know that
the maximum cumulative execution over [t0, t0 + t) where the
computation segment may be less than the upper bound on
execution time and where the suspension interval length may
be larger than its minimum time on suspension is bounded
from above by the multi-segment workload function Wh

i (t)
defined in Eq. (1). Thus, there must exist hi ∈ [0,Mi − 1]
such that the work contributing over [t0, t0 + t) is bounded
by the multi-segment workload function Whi

i (t) defined in
Eq. (1) for any interval length of t.

Figure 2 also demonstrates that each job of task τi that

arrives in and has its absolute deadline within the interval
[t0, t0 + t), called a body job, must contribute to the interval
for the amount Ci of execution times. This implies that we can
reduce the time complexity to evaluate Eq. (1) by skipping
these body jobs and counting entirely all their computation
segments, i.e.,

∑Mi−1
j=0 Cji = Ci. Therefore, Eq. (1) can be

equivalently decomposed as follows:

Wh
i (t) = Wh

i

(
t−

[⌊
t− 2Ti
Ti

⌋
Ti

]†)
+

[⌊
t− 2Ti
Ti

⌋
Ci

]†
(4)

where [x]† is defined as max(0, x).
As a result, only those computation segments that belong

to (i) the carry-in job: released prior to t0 and have absolute
deadline within [t0, t0 + t) and (ii) the tail job: the last job
released within [t0, t0 + t) and has absolute deadline after
t0 + t have to be evaluated, in total at most 2Mi computation
segments. The above multi-segment workload function Wh

i (t)
can thus be computed in linear-time in the size of Mi, for a
given interval length of t.
Maximum workload function. Without knowing the worst-
case scenario, the interference from higher-priority tasks can
only be quantified by enumerating all possible release se-
quences hi ∈ [0,Mi − 1] for all the higher-priority tasks
according to Theorem 1 but it is computationally intractable
since the time complexity is O(M1×M2× ...Mn). Therefore,
we here introduce the maximum workload function of task τi,
Wi(t), for providing an amenable solution.

Wi(t) = maxhi∈[0,Mi−1]{W
hi
i (t)} (5)

The interference from higher-priority suspending tasks can be
thereafter bounded above by the summation of Wi(t) for all
the tasks, in the interval [t0, t0 + t]. Note that the maximum
workload function Wi(t) for a given t can be computed in
polynomial-time O(M2

i).
In addition to the computational tractability, the sum of the

maximum workload functions of the higher-priority tasks are
fully independent from each other. This attribute is important
for being compatible with Optimal Priority Assignment (OPA)

5

Algorithm, and allows us to use OPA to achieve high schedu-
lability (to be discussed in Section V).

IV. OUR PROPOSED RESPONSE TIME ANALYSIS

In this section we derive a response time analysis for an
analyzed SSS task τk based on the maximum workload func-
tion established in Section III, under the assumption that all
the higher-priority tasks are already verified to be schedulable.
We will show that the response time analysis for task τk can
be successfully done by two methods:
• SC (Suspension as Computation): This method models

every suspension interval of task τk as computation
segments. Informally speaking, task τk can be thought
of as a dynamic SSS task in this method, like in [14],
[22]. However, since our maximum workload function
that characterizes the interference of a higher-priority task
τi in Section III is tighter for a multi-segment SSS task
than the interference used in PASS in [14] for a dynamic
SSS task, this method is still better than the state-of-the-
art analysis for dynamic SSS systems.

• AIR (As Interference Restarts): This method treats each
of the computation segments of task τk as if the worst-
case higher-priority interference that it suffers restarts,
regardless of its previous computation segments.

The above two methods can be easily compared for their
advantages and disadvantages. SC is very useful when the
suspension length of task τk is short enough, wheres AIR
does not work well for such cases. In constrast, AIR is very
useful when the length of a suspension interval is long enough,
wheres SC does not work well for such cases.

Before we proceed to present these two methods, it is
also useful to explain why calculating the response time is
non-trivial, even if the maximum workload function derived
in Section IV is available. Intuitively, one may release task
τk along with all maximum workload (interference) function
Wi(t) simultaneously and calculate its corresponding response
time from the resulting schedule. But, unfortunately, this may
lead to an overoptimistic worst-case response time. We show
this in the following example:
Example. Consider a self-suspension real-time system con-
sisting of two self-suspension tasks τ = {τ1 =
((0.5, 3, 0.5), 4, 4), τ2 = ((6, 2, 1), T, T)} where T is any
number larger than 12, as shown in Figure 4. Task τ1 has
higher-priority than task τ2. Notice that there is no slack
for task τ1. By making use of the multi-segment workload
function, it is not different to see that the interference starting
from the second computation segment (h = 1) dominates that
from the first one (h = 0). Thus, aligning task τ2’s release
with task τ1’s second computation segment results in the most
unfavorable interference, as shown in Figure 4a. Consequently,
it results in a worst-case response time of 11. However, it can
also be easily seen that releasing task τ2 at time 1.5 results
in a response time of 12, shown in Figure 4b. Therefore, the
maximum workload function developed in Section III has to
be used very carefully. Releasing synchronously the worst-
case interference only from the first computation segment is
not safe enough.

To ensure the upper bound on the response time of the
analyzed task τk, a conservative way is to model every

suspension interval as a computation segment released with
its upper bound, i.e., Ŝjk. Then, we can safely calculate
the response time of the equivalent non-suspending task by
releasing higher-priority tasks with their maximum workload
functions simultaneously. That is, the standard Response Time
Analysis (RTA) [2], [15] approach first computes the worst-
case response time of the equivalent sporadic non-suspending
task, and then compares this value with the tasks deadline Di.
We state this with the following theorem

Theorem 2 (SC): If the worst-case response time of task τk
is ≤ Tk, then the worst-case response time of multi-segment
SSS task τk is upper bounded by the smallest Rk satisfying
the following recurrence:

Rk = Ck + Ŝk +
∑

τi∈hp(k)

Wi(Rk) (6)

where Wi(t) is defined in Eq. (5) and hp(k) denotes the set
of the tasks with higher priority than task τk.

Proof: Similar to the proof of Lemma 3 in [22] for
dynamic SSS tasks, converting the maximum self-suspension
time of multi-segment SSS task τk to computation time makes
the worst-case response time of task τk larger (if the worst-
case response time after converting is no more than Tk). Let τ ′k
be a computation task without any self-suspension, in which
its worst-case execution time is C ′k = Ck + Ŝk and minimal
inter-arrival time is T ′k = Tk.

Now, we consider a fixed-priority schedule of hp(k) and
τ ′k under the same priority ordering, i.e., τ ′k has lower priority
than hp(k). Let t0 be the arrival time of a job of task τ ′k. By
Theorem 1 and Eq. (5) and the assumption that all the higher-
priority tasks in hp(k) can meet their deadlines in an SSS task
system with constrained deadlines, we know that the maximum
workload executed from hp(k) in the interval [t0, t0 + t) is at
most

∑
τi∈hp(k)Wi(t). To finish C ′k amount of workload of

task τk from t0 to t0 + t, we need C ′k +
∑
τi∈hp(k)Wi(t) ≤ t.

Therefore, the minimum t with C ′k +
∑
τi∈hp(k)Wi(t) ≤ t is

the worst-case response time, provided that t ≤ Tk to ensure
that any job of task τ ′k does not have remaining execution time
before the next release.

The accuracy of Theorem 2 (i.e., SC) depends on the ratio
of the suspension length Ŝk to the total computation time Ck
of task τk. That is, it becomes too pessimistic when Ŝk

Ck
is large

enough. This is also shown in the example in Appendix B
where the suspension interval is modeled as the computation
computation segment when a dynamic self-suspension task is
analyzed. To overcome this problem, the alternative is to
individually compute the response time of each computation
segment that undergoes the maximum interference, called AIR.
Towards this end, we need the following lemma.

Lemma 2: Let Rjk denote the smallest value t satisfying the
following recurrence:

t = Cjk +
∑

τi∈hp(k)

Wi(t), (7)

where Wi(t) is defined in Eq. (5) and hp(k) denotes the set of
the tasks with higher priority than task τk. The response time
of computation segment Cjk of SSS task τk is at most Rjk if
the worst-case response time of task τk is no more than Tk.

6

τ1

τ2
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

(a) The synchronous release results in a response time of 11

τ1

τ2
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

(b) The asynchronous release results in a response time of 12

Fig. 4: Different response times for synchronous and asynchronous releases of the analyzed task

Proof: We prove this lemma by contradiction: the re-
sponse time of computation segment Cjk is R > Rjk.

Let t0 be the release time of computation segment Cjk
in the schedule. Due to the SSS model and the assumption
that the worst-case response time of task τk is no more
than Tk, task τk does not have any other demand ready to
be executed at time t0, except Cjk. Since the response time
of computation segment Cjk is greater than Rjk, the interval
[t0, t0 + Rjk] must be busy, and computation segment Cjk
has not finished within the interval. By Theorem 1 and the
definition of the maximum workload function, the maximum
cumulative execution of each task is bounded by Wi(t) with
any interval length of t. Since t0 + Rjk is the time-instant at
which Rjk = Cjk+

∑
τi∈hp(k)Wi(t), we know that computation

segment Cjk has completed its execution at time t0+Rjk with at
most a response time Rjk, which contradicts to our assumption.

Once obtaining the response time of every computation
segment, we can calculate the total response time by summing
them up in addition to the total suspension length. We state
this with the following theorem:

Theorem 3 (AIR): If the worst-case response time of task
τk is ≤ Tk, then the worst-case response time of task τk is
upper bounded by Rk:

Rk = Ŝk +

Mk−1∑
j=0

Rjk (8)

where Rjk is the smallest value t satisfying Eq. (7).
Proof: This comes directly from Lemma 2.

In either way, we can see that the response time of SSS task
τk is upper bounded. Hence, Theorem 4 follows immediately:

Theorem 4 (SCAIR): A sporadic self-suspension task τk is
schedulable under a fixed-priority scheduling policy if the
smaller of the two upper bounds for Rk using Eq. (6) and (8)
is less than or equal to Dk.

Proof: This comes directly from Theorems 2 and 3.
Computational complexity. As discussed in the previous sec-
tion, the maximum workload function Wi(t) can be computed
in polynomial-time O(M2

i) for a given time t. Checking the
schedulability of an SSS task τk can be done in pseudo-
polynomial time, i.e., O(Dk ×

∑
τi∈hp(τk)M

2
i).

V. PRIORITY ASSIGNMENT AND PROPOSED APPROACH

In this section we will present how a feasible priority
assignment in a multi-segment self-suspension system under
fixed-priority scheduling can be determined in polynomial
time. With respect to schedulability to meet the deadlines,
deadline-monotonic (DM) scheduling is known to be an
optimal fixed-priority scheduling for a sporadic constrained-
deadline real-time system without self-suspensions. For self-

suspending systems it has been shown in [8] that no lower
bound on processor speed-up factor is guaranteed for RM
scheduling in implicit-deadline SSS systems.

A priority assignment determines the priority levels of the
given tasks, defined as follows:

Definition 2 (priority assignment): Let π be a priority as-
signment as a bijective function π : τ → {1, 2, . . . , n} to
define the priority level of task τi ∈ τ . Priority levels are
numbered from 1 to n where 1 is the highest and n the lowest.

As there are n! possible priority orderings, testing all of
them to find a feasible priority assignment is computationally
intractable. For arbitrary-deadline real-time systems without
self-suspensions, fortunately, it has been shown in [4] that it
suffices to examine a polynomial number of priority orderings
to find a feasible priority ordering, if one exists. The method is
called Optimal Priority Assignment (OPA) Algorithm [3], [4],
[9]. The OPA algorithm assigns each priority level k to one
of the unassigned tasks that has no deadline miss along with
the other unassigned tasks, assumed to have higher priorities.
The iterative priority assignment terminates as soon as either
no unassigned task can be assigned at the priority level k or
all priority levels are assigned.

The OPA algorithm was originally proposed for handling
arbitrary-deadline real-time systems without self-suspensions
[3], [4], [9]. It has been recently shown in [9] that the OPA
algorithm can always find a feasible priority assignment if
one exists by the sufficient schedulability test that complies
with three conditions. For completeness, we state these three
conditions as follows:
• Condition 1. The schedulability of a task τk may, accord-

ing to schedulability test S, depend on any independent
properties of tasks with priorities higher than τk, but not
on any properties of those tasks that relate to their relative
priority ordering.

• Condition 2. The schedulability of a task τk may, accord-
ing to schedulability test S, depend on any independent
properties of tasks with priorities lower than τk, but not
on any properties of those tasks that relate to their relative
priority ordering.

• Condition 3. When the priorities of any two tasks of
adjacent priority are swapped, the task being assigned the
higher priority cannot become unschedulable according to
schedulability test S, if it was previously schedulable at
the lower priority.

If the above three conditions can be satisfied for a schedu-
lability test, then the test is called OPA-compatible. It is not
difficult to see that the RTA by Theorem 4 complies with the
required conditions for the OPA algorithm. We state this with
the following lemma.

7

Algorithm 1: SCAIR-OPA
input : A set of multi-segment self-suspending tasks τ
output: Priority assignment π and the feasibility of system τ
π ← ∅;
for each priority k from |τ | to 1 do

for each unassigned task τi do
if task τi is schedulable at priority k with all unassigned
tasks (assume them as higher-priority tasks) according to
Theorem 4 then

π(τi)← k // assign task τi to priority k
break (continue the outer loop) ;

if priority level k is not assigned with any task then
return “unscheduable”;

return π as a “scheduable priority assignment”;

Lemma 3: The sufficient schedulability test by Theorem 4
is OPA-compatible.

Proof: Eqs. (6) and (8) for the schedulability of task τk
depend only on the set of higher-priority tasks but not on their
relative priority ordering. Hence, Condition 1 holds. Similarly,
they are independent on the set of lower-priority tasks, and
hence Condition 2 holds. Consider two tasks τa and τb initially
at priorities k and k+1, respectively. If task τb is schedulable,
it is still schedulable when it is shifted one priority level up
to priority level k, since the only change of higher-priority
task demand is the removal of task τa from the tasks that
are assigned higher priority than task τb. Hence, Condition 3
holds.

Algorithm 1 shows the proposed approach adopting the
OPA algorithm, called SCAIR-OPA, for the feasible priority
assignment in self-suspending systems. Lemma 3 suggests the
following theorem.

Theorem 5: If there exist feasible priority assignments by
adopting Theorem 4 as the schedulability test, the proposed
SCAIR-OPA returns one of them.

Proof: From Lemma 3 the sufficient test by Theorem 4
is compliant with the above conditions. Following the proof
of Theorem 3 in [9], we here conclude this theorem.

VI. EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments using
synthesized task sets for evaluating the proposed test. To
the best of our knowledge, there was no polynomial-time or
pseudo-polynomial-time schedulability test ([6] is flawed) for
the multi-segment self-suspension task model. To analyze
the multi-segment SSS tasks, we can still adopt the known
schedulability tests for dynamic self-suspension systems [14],
[22]. These evaluated tests are listed as follows:
• XDM: the pseudopolynomial-time analysis where we

transform every task into a non-suspending task by mod-
eling every suspension interval as computation segments
and use the standard RTA under deadline-monotonic
(DM) scheduling.

• Idv-Burst-RM: the polynomial-time utilization-based test
for dynamic self-suspension tasks in Corollary 2 in [22].

• PASS-OPA: the pseudopolynomial-time algorithm and
analysis presented in [14]. Note that PASS-OPA is the
best known analysis handling the general dynamic self-
suspension system under fixed-priority scheduling.

• SCAIR-OPA: Algorithm 1 in this paper, with
pseudopolynomial-time complexity.

The metric to compare the results is to measure the accep-
tance ratio of the above tests with respect to a given goal
of task set utilization. We generate 100 task sets for each
utilization level. The acceptance ratio of a level is said to be
the number of task sets that are schedulable divided by the
number of task sets for this level, i.e., 100.

We first investigate the impact of suspension interval lengths
and suspension types, of SSS tasks, on the acceptance ratio,
by assuming that the upper and lower bounds on suspension
intervals are equal. In the second experiment we further
explore the impact of the lower bound of suspension interval
times on the acceptance ratio.

A. Simulation Setup- & Result I

We first generated a set of sporadic tasks. The cardinality
of the task set was 10. The UUniFast method [5] was adopted
to generate a set of utilization values with the given goal. We
here used the approach suggested by Davis and Burns [10]
to generate the task period according to an exponential distri-
bution. The distribution is of two orders of magnitude, i.e.,
[1ms − 100ms]. The execution time was set accordingly,
i.e., Ci = TiUi. Task relative deadlines were implicit, i.e.,
Di = Ti.

We then converted all of the sporadic tasks to SSS tasks.
Suspension lengths of the tasks were then generated in a
similar manner to the method used in [21]. Suspension lengths
of the tasks were generated according to a uniform random
distribution, in one of three ranges depending on the self-
suspension length (sslen): [0.01(Ti−Ci), 0.1(Ti−Ci)] (short
suspension, sslen=S), [0.1(Ti − Ci), 0.6(Ti − Ci)] (medium
suspension, sslen=M), and [0.6(Ti − Ci), Ti − Ci] (long sus-
pension, sslen=L). We assume Ŝji = S̆j for each suspension
interval for all SSS tasks.

The number of computation segments Mi was set depending
on the following types of self-suspensions: 2 (rare suspen-
sion, sstype=R), 5 (moderate suspension, sstype=M), and 10
(frequent suspension, sstype=F). We then generated every
computation segment Cji and suspension interval S̆ji with the
given Ci and Si, according to a uniform distribution, like the
UUniFast method.
Results. Figure 5 presents the result for the performance
in terms of the acceptance ratio. Not surprisingly, the naive
approach XDM is only effective when the suspension length
is short enough, i.e., sslength=S. Also, as shown earlier, RM
scheduling is not optimal in self-suspension systems. Hence,
Idv-Burst-RM is hardly to be effective even the state-of-the-art
utilization-based analysis has been shown in [22]. It is clear
that our proposed SCAIR-OPA is far more effective to PASS-
OPA. For all the tests, the acceptance ratio decreases when
the number of suspension intervals, for all different suspension
types, increases.

For the cases with short suspension lengths, i.e., Fig-
ure 5a, 5b, and 5c, PASS-OPA and SCAIR-OPA are able
to admit the task sets with a utilization of up to 75% with
noticeable acceptance ratios. For such cases, the improvement
by considering multi-segment SSS tasks over dynamic SSS
tasks is not significant but still visible. For the other cases, the

8

0.0 0.2 0.4 0.6 0.8 1.0

Utilization (%)

0.0

0.2

0.4

0.6

0.8

1.0
A

cc
e
p
ta

n
ce

 R
a
ti

o

0 20 40 60 80 100
0.0
0.2
0.4
0.6
0.8
1.0 (a) sslen:S,sstype:R

XDM Idv-Burst-RM PASS-OPA SCAIR-OPA

0 20 40 60 80 100
0.0
0.2
0.4
0.6
0.8
1.0 (b) sslen:S,sstype:M

0 20 40 60 80 100
0.0
0.2
0.4
0.6
0.8
1.0 (c) sslen:S,sstype:F

0 20 40 60 80 100
0.0
0.2
0.4
0.6
0.8
1.0 (d) sslen:M,sstype:R

0 20 40 60 80 100
0.0
0.2
0.4
0.6
0.8
1.0 (e) sslen:M,sstype:M

0 20 40 60 80 100
0.0
0.2
0.4
0.6
0.8
1.0 (f) sslen:M,sstype:F

0 20 40 60 80 100
0.0
0.2
0.4
0.6
0.8
1.0 (g) sslen:L,sstype:R

0 20 40 60 80 100
0.0
0.2
0.4
0.6
0.8
1.0 (h) sslen:L,sstype:M

0 20 40 60 80 100
0.0
0.2
0.4
0.6
0.8
1.0 (i) sslen:L,sstype:F

Fig. 5: Comparison with different types of suspension lengths (sslength) and different types of suspension frequency
(sstype) of SSS tasks. In the first (respectively, second and third) column in the figure, rare (respectively, moderate and
frequent) self-suspension frequency is assumed. In the first (respectively, second and third) row in the figure, short
(respectively, medium and long) suspension length is assumed.

proposed SCAIR-OPA can achieve significant improvement
over PASS-OPA, especially for the cases with long suspension
lengths (Figure 5g, 5h, and 5i).

It is noticeable that the acceptance ratio of the proposed
SCAIR-OPA still drops when the number of suspension
segments increases, especially for long suspension lengths
(Figure 5g, 5h, and 5i). In such cases, the SC test by Theorem 2
can hardly be better than the AIR test by Theorem 3, since
the conversion of suspensions to computations, of task τk,
is overly pessimistic. However, the pessimism on calculating
the response time of each computation segment by the AIR
test in Theorem 3 propagates when the number of suspension
intervals increases.

Furthermore, for rare suspensions (Figure 5a, 5d, and 5g),
we can see that the case of long suspension lengths (Figure 5g)
can be successfully scheduled with a utilization of up to 40%
with noticeable acceptance ratios. In conclusion, SCAIR-OPA
significantly improves the schedulability by the best-known
test for dynamic self-suspension tasks.

B. Simulation Setup- & Result II
In this experiment we evaluated how the variability of the

lower bounds of the suspension interval lengths affects the
schedulability. We generated a set of sporadic self-suspension
tasks in the same manner in Section VI-A. The suspension
interval generated by UUniFast was set to its upper bound time
on the suspension interval. Then, we use a scaling factor b to

assign the lower bound time on the suspension interval, i.e.,
S̆ji = bŜji . The scale factor b is chosen from one of four val-
ues: [0, 0.25, 0.5, 0.75, 1], denoted by SCAIR-OPA-0, SCAIR-
OPA-25, SCAIR-OPA-50, SCAIR-OPA-75, and SCAIR-OPA-
100, respectively.

Theoretically, SCAIR-OPA for multi-segment self-
suspension tasks outperforms PASS-OPA for dynamic self-
suspension tasks where the pattern of suspension intervals
is oblivious. As shown in Figure 5, the gaps in acceptance
ratio between these two tests are small for the cases of short
and medium suspension lengths. Hence, we only report the
effect of the variability of lower bounds for the case of long
suspension lengths.
Results. Figure 6 shows that performance comparison when
the suspension length is long. The schedulability decreases
when the lower bound of the suspension lengths decreases. For
PASS-OPA and SCAIR-OPA-0, even though the lower bound
of a suspension interval can be 0, SCAIR-OPA-0 is better than
PASS-OPA due to its awareness of the computation segments
characterized in the multi-segment self-suspension task model.

VII. REMARKS ON EARLY SUSPENSION COMPLETIONS

With the above discussions, we notice that the worst-
case interference of a self-suspension task is evaluated by
considering the lower bound of the self-suspension lengths.
However, when analyzing the worst-case response time of a

9

0.0 0.2 0.4 0.6 0.8 1.0

Utilization (%)

0.0

0.2

0.4

0.6

0.8

1.0
A

cc
e
p
ta

n
ce

 R
a
ti

o

30 35 40 45 50 55 60 65 70
0.0

0.2

0.4

0.6

0.8

1.0 (a)sslen:L,sstype:R

PASS-OPA

SCAIR-OPA-0

SCAIR-OPA-25

SCAIR-OPA-50

SCAIR-OPA-75

SCAIR-OPA-100

30 35 40 45 50 55 60 65 70
0.0

0.2

0.4

0.6

0.8

1.0 (b)sslen:L,sstype:M

30 35 40 45 50 55 60 65 70
0.0

0.2

0.4

0.6

0.8

1.0 (c)sslen:L,sstype:F

Fig. 6: Comparison for different types of suspension frequency, with long suspension length

task, we have to consider its worst-case suspension interval
lengths. Therefore, it is more difficult to be schedulable if S̆i
is small and Ŝi is large for every task τi.

A very clear message from the above analysis is “Do not
allow early suspension completions, if possible!”. The early
suspension completion may simply result in unnecessary jitters
and bursts. The task τi with early suspension completion
may finish its execution earlier in the average case, but it
creates more interference to lower-priority task τk. From the
perspective of schedulability, such flexibility does not provide
any gain in the worst cases but decreases the schedulability.

Therefore, if possible, it is recommended to make the
suspension interval length deterministic without any flexibility
by taking the worst case. This can be done by designing the
suspensions more properly. For example, every suspension has
to initialize a timer (interrupt) to set a fixed suspension length.
Even if the operation of the self-suspension is done, the fol-
lowing computation segment is not placed back to the ready-
queue until the timer is triggered. As shown in Section VI-B,
this may improve the schedulability significantly.

VIII. CONCLUSIONS

In this paper we address the problem of scheduling and
the priority assignment for multi-segment self-suspension tasks
under fixed-priority scheduling. We derive the multi-segment
workload function that bounds the maximum cumulative ex-
ecution of a self-suspension task. Based on this function,
we present two methods for analyzing the response time
of a self-suspension task. Empirical results show that our
analysis together with the optimal priority assignment is highly
effective in terms of schedulability. The self-suspension task
is deemed to reach the poor schedulability when a long
suspension interval exists. The proposed test fully tackles this
case, and empirical results show that our proposed test is able
to accept a task set with utilization up to 75% in such a case
with noticeable acceptance ratios. Nevertheless, the worst-case
quality of the proposed test is not studied. In future work it
is interesting to see whether there is a processor speed so that
the proposed test will lead to a feasible schedule if one exists
upon a unit-speed processor.

REFERENCES

[1] K. Albers and F. Slomka. An event stream driven approximation for the
analysis of real-time systems. In ECRTS, pages 187–195, 2004.

[2] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings.
Applying new scheduling theory to static priority pre-emptive schedul-
ing. Software Engineering Journal, 8(5):284–292, 1993.

[3] N. C. Audsley. Optimal priority assignment and feasibility of static
priority tasks with arbitrary start times. Citeseer, 1991.

[4] N. C. Audsley. On priority assignment in fixed priority scheduling.
Information Processing Letters, 79(1):39–44, 2001.

[5] E. Bini and G. C. Buttazzo. Measuring the performance of schedulability
tests. Real-Time Systems, 30(1-2):129–154, 2005.

[6] K. Bletsas and N. C. Audsley. Extended analysis with reduced pessimism
for systems with limited parallelism. In RTCSA, pages 525–531, 2005.

[7] S. Chakraborty, S. Künzli, and L. Thiele. Approximate schedulability
analysis. In IEEE Real-Time Systems Symposium, pages 159–168, 2002.

[8] J.-J. Chen and C. Liu. Fixed-relative-deadline scheduling of hard real-
time tasks with self-suspensions. In Real-Time Systems Symposium
(RTSS), 2014.

[9] R. I. Davis and A. Burns. Improved priority assignment for global fixed
priority pre-emptive scheduling in multiprocessor real-time systems.
Real-Time Systems, 47(1):1–40, 2011.

[10] R. I. Davis, A. Zabos, and A. Burns. Efficient exact schedulability tests
for fixed priority real-time systems. Computers, IEEE Transactions on,
57(9):1261–1276, 2008.

[11] G. R. Geoffrey Nelissen, Jos Fonseca and V. Nelis. Timing analysis of
fixed priority self-suspending sporadic tasks. In Euromicro Conference
on Real-Time Systems (ECRTS), 2015.

[12] W.-H. Huang and J.-J. Chen. Self-suspending real-time tasks under
fixed-relative-deadline fixed-priority scheduling. Submitted to RTNS15.

[13] W.-H. Huang and J.-J. Chen. Schedulability and priority assignment
for multi-segment self-suspending real-time tasks under fixed-priority
scheduling. Technical report, Dortmund, Germany, 2015.

[14] W.-H. Hung, J.-J. Chen, H. Zhou, and C. Liu. PASS: Priority assignment
of real-time tasks with dynamic suspending behavior under fixed-priority
scheduling. In Design Automation Conference (DAC), 2015.

[15] M. Joseph and P. Pandya. Finding response times in a real-time system.
The Computer Journal, 29(5):390–395, 1986.

[16] W. Kang, S. Son, J. Stankovic, and M. Amirijoo. I/O-Aware Deadline
Miss Ratio Management in Real-Time Embedded Databases. In Proc. of
the 28th IEEE Real-Time Systems Symp. (RTSS), pages 277–287, 2007.

[17] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and
R. Rajkumar. RGEM: A responsive GPGPU execution model for runtime
engines. In Real-Time Systems Symposium (RTSS), pages 57–66, 2011.

[18] J. Kim, B. Andersson, D. d. Niz, and R. R. Rajkumar. Segment-fixed
priority scheduling for self-suspending real-time tasks. In Real-Time
Systems Symposium (RTSS), pages 246–257, 2013.

[19] K. Lakshmanan and R. Rajkumar. Scheduling self-suspending real-time
tasks with rate-monotonic priorities. In IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 3–12, 2010.

[20] C. Liu and J. H. Anderson. Supporting sporadic pipelined tasks with
early-releasing in soft real-time multiprocessor systems. In RTCSA,
pages 284–293, 2009.

[21] C. Liu and J. H. Anderson. Task scheduling with self-suspensions in
soft real-time multiprocessor systems. In Real-Time Systems Symposium,
pages 425–436, 2009.

[22] C. Liu and J. Chen. Bursty-interference analysis techniques for analyzing
complex real-time task models. In Real-Time Systems Symposium
(RTSS), pages 173–183, 2014.

[23] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of the ACM (JACM),
20(1):46–61, 1973.

[24] J. W. Liu. Real-time systems. 2000. Prentice Hall.
[25] W. Liu, J. Chen, A. Toma, T. Kuo, and Q. Deng. Computation offloading

by using timing unreliable components in real-time systems. In Design
Automation Conference (DAC), 2014.

[26] F. Ridouard, P. Richard, and F. Cottet. Negative results for scheduling
independent hard real-time tasks with self-suspensions. In Real-Time
Systems Symposium (RTSS), pages 47–56, 2004.

10

APPENDIX A
COUNTER EXAMPLE FOR THE TEST IN [6]

Consider a self-suspension system consisting of three tasks:
sporadic task τ1 = ((1), 4, 4), SSS task τ2 = ((1, 2, 1), 6, 6)
with one suspension interval and two computation segments,
and sporadic task τ3 = ((1), T, 3) where T ≥ 4. We assume
that the minimum and maximum times on the suspension
interval of task τ2 are same. Task τ1 is assigned with the
highest priority whereas task τ3 with the lowest priority. It
is clear that task τ1 and task τ2 are schedulable. We then
check the schedulability of task τ3. The response time analysis
proposed by Bletsas and Audsley [6] is shown as follows:

Rk = Ck+Ŝk+
∑

i∈hp(k)

n(τi)∑
j=0

⌈
Rk −Oji +Ai

Ti

⌉
u(Rk−Oji)C

j
i

(9)
where

Oji =

Mi−1∑
j=0

(Cji + S̆ji) (10)

Ai = Si − S̆i (11)

and

u(t) =

{
1 if t ≥ 0,
0 otherwise. (12)

According to their analysis, a transformation, called syn-
thetic distribution, has to be done first to provide an upper
bound on the worst-case interference. Due to the equal size
of the computation segments and suspension intervals of task
τ2 in our example, such a transformation has no impact in
our example. In addition, since the maximum and minimum
times on suspension intervals are the same, the jitter Ai is
set to zero. Consequently, the worst-case scenario provided by
Eq. (9) is to release all the higher-priority tasks as synchronous
arrival releases and the following jobs as early as possible. By
using the response time analysis by Bletsas and Audsley [6]
a response time of 3 for task τ3 is answered, whereas the
asynchronous release, arriving at time-instant 4, results in
a response time of 4, as shown in Figure 7. Hence, the
analysis proposed by Bletsas and Audsley in [6] guarantees
the schedulability of task τ3 that in fact misses its deadline in
the worst-case.

τ2

τ1

τ3
0 1 2 3 4 5 6 7 8 9 10

Fig. 7: A counterexample for the analysis in [6]

APPENDIX B
PESSIMISM BY CONVERTING MULTI-SEGMENT TO

DYNAMIC SELF-SUSPENSION MODEL

We demonstrate the pessimism by presenting the resulting
speed-up factor in the following example. If an algorithm A
has a speed-up factor α, then it guarantees that the schedule
derived from the algorithm A is always feasible by running
at speed α, if the input task set admits a feasible schedule
on a unit-speed processor. With such a transformation on a
speed-α uniprocessor, the computation segment Cji becomes
Cj

i

α ; however, Ŝji remains the same.
Example. Consider a self-suspension real-time system con-
sisting of two tasks τ = {τ1 = ((0.5, F − 1, 0.5), F, F), τ2 =
((ε, T −2−2ε, ε), T, T)}, where F is an integer larger than 1,
T is an integer larger than 2 and divisible by F , and ε can be
an arbitrarily small positive real number, as shown in Figure 8.
Task τ1 has higher priority than task τ2. Clearly, task τ1 will
meet its deadline. The worst-case scenario of τ2 occurs when
task τ2 and the second computation segment of τ1 are released
simultaneously. Consequently, the first computation segment
of task τ2 finishes with a response time of 1 + ε, and task τ2
completes its execution with a response time of T−1 while its
second computation segment experiences no interference from
task τ1. Therefore, we can conclude that task τ2 is schedulable.
Finding the worst-case scenario for a self-suspension task is
not trivial. Alternatively, we can pessimistically assume that
every computation segment suffers the possible maximum
interference from the high-priority tasks, and then calculate
the response time of the task accordingly, as presented in
Section IV. In the example, each computation segment of task
τ1 can experience at most one time-unit interference from task
τ1 before its completion. Consequently, the response time of
task τ2 is at most 1+1+2ε+(T−2−2ε) ≤ T , which is in fact
schedulable. However, the transformed self-suspension task τ2,

...
τ1

F
0.50.5

ε ε

τ2

T − 2− 2ε

...

T

Fig. 8: The ineffectiveness of modeling suspension inter-
vals as computation time

which is equivalent to a non-suspending task ((T − 2), T, T),
will yield no speedup factor: it is necessary for a deadline
to be met on α-speed processor that task τ2 is schedulable
when the second computation segment of task τ1 and task
τ2 are released simultaneously. Consequently, the following
inequality must hold1:

2ε

α
+ (T − 2− 2ε) +

T/F

α
≤ T

1Task τ1 can be considered as an equivalent sporadic non-suspending task
((1), F, F).

11

After reformulation, we have α ≥ T/F+2ε
2+2ε . Thus, α → ∞ as

T/F →∞.
One can conclude that the current state-of-the-art tests for

dynamic self-suspension models are not accurate enough to
be seamlessly applied for the multi-segment self-suspension
model. There still exists a large gap between the best-known
self-suspension tests for the dynamic self-suspension model
and what may be possible schedulability tests for the multi-
segment one.

12

