
Computational Complexity and Speedup Factors
Analyses for Self-Suspending Tasks

Jian-Jia Chen
Department of Informatics, TU Dortmund University, Germany

Abstract—In computing systems, an execution entity
(job/process/task) may suspend itself when it has to wait for some
activities to continue/finish its execution. For real-time embedded
systems, such self-suspending behavior has been shown to cause
substantial performance/schedulability degradation in the litera-
ture. There are two commonly adopted self-suspending sporadic
task models in real-time systems: 1) dynamic self-suspension and
2) segmented self-suspension sporadic task models. A dynamic
self-suspending sporadic task is specified with an upper bound
on the maximum suspension time for a job (task instance),
which allows a job to dynamically suspend itself as long as the
suspension upper bound is not violated. By contrast, a segmented
self-suspending sporadic task has a predefined execution and
suspension pattern in an interleaving manner.

Even though some seemingly positive results have been
reported for self-suspending task systems, the computational
complexity and the theoretical quality (with respect to speedup
factors) of fixed-priority preemptive scheduling have not been
reported. This paper proves that the schedulability analysis
for fixed-priority preemptive scheduling even with only one
segmented self-suspending task as the lowest-priority task is
coNP-hard in the strong sense. For dynamic self-suspending task
systems, we show that the speedup factor for any fixed-priority
preemptive scheduling, compared to the optimal schedules, is
not bounded by a constant or by the number of tasks, if the
suspension time cannot be reduced by speeding up. Such a
statement of unbounded speedup factors can also be proved for
earliest-deadline-first (EDF), least-laxity-first (LLF), and earliest-
deadline-zero-laxity (EDZL) scheduling algorithms. However, if
the suspension time can be reduced by speeding up coherently
or the suspension time of each task is not comparable with (i.e.,
sufficiently smaller than) its relative deadline, then we successfully
show that rate-monotonic scheduling has a constant speedup
factor, with respect to the optimal schedules, for implicit-deadline
task systems.

1 Introduction
Advanced embedded real-time computing systems for

safety-critical applications have timing requirements to ensure
the functional correctness and timeliness. The seminal work by
Liu and Layland [26] considered the scheduling of periodic
tasks. More advanced task models have been designed in
the past decades to improve the expressiveness of the task
models to match the system behavior. To validate whether their
deadlines will be met at run-time in the resulting schedule, the
schedulability of a set of such tasks has to be provided.

One important assumption in most of these schedulabil-
ity analyses is that a job does not suspend itself. Such an
assumption enables the widely-adopted critical instant theo-
rem [26], the busy-window concept [22], etc. When a task can
suspend itself, most of such existing schedulability analyses
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in many scheduling algorithms cannot be applied without any
modifications. Self-suspension can happen due to the following
scenarios: (1) the latency of the memory accesses and I/O
peripherals is hidden by using direct memory access (DMA),
(2) there are external devices for accelerating the compu-
tation by using computation offloading, (3) another task on
another processor has already held the resource (e. g., locked
semaphores) required by the task to finish its computation,
etc. In those cases, a job may suspend itself and release the
processor to let the processor idle or to run another job (even
with lower priorities) to improve the execution efficiency.

Therefore, self-suspension has become increasingly impor-
tant for many applications. For more details, please refer to
the recent review paper [9] for scheduling self-suspending
tasks in real-time systems. Although the investigation of the
impact of self-suspension behavior in real-time systems has
been started since 1990, the literature of this research topic
has been seriously flawed, including [1]–[3], [11], [18]–[20],
[28], as reported in [9].

We consider a system of n sporadic self-suspending tasks.
A sporadic task τi releases an infinite number of jobs that ar-
rive with the minimum inter-arrival time constraint. A sporadic
real-time task τi is characterized by its worst-case execution
time Ci, its minimum inter-arrival time (also known as period)
Ti and its relative deadline Di. In addition, each job of task
τi has also a specified worst-case self-suspension time Si. If
the relative deadline Di of task τi in the task set is always
equal to (no more than, respectively) the period Ti, such a
task set is called an implicit-deadline (a constrained-deadline,
respectively) task set (system).

There are two models that are widely used in the litera-
ture: dynamic and segmented self-suspension (sporadic) task
models. The dynamic self-suspension model allows a job of
task τi to suspend itself at any moment before it finishes as
long as the worst-case self-suspension time Si is not violated.
The segmented self-suspension model further characterizes the
computation segments and suspension intervals as an array
(C1

i , S
1
i , C

2
i , S

2
i , ..., S

mi−1
i , Cmii ), composed of mi computa-

tion segments separated by mi − 1 suspension intervals.

Both of the above self-suspension models are meaningful
and important. The dynamic self-suspension model has high
flexibility since it does not need the system designers to
detail the suspension and execution behavior very precisely.
However, if the suspension patterns are well-defined and can be
characterized with known suspension intervals, the flexibility
of the dynamic self-suspension model can make the analysis
and scheduling design rather pessimistic, whilst the segmented
self-suspension model is more appropriate. Therefore, these
two models are used for different scenarios.

For self-suspending task systems, there are two separated



problems: 1) how to design scheduling policies to schedule the
self-suspending tasks and 2) how to validate the schedulability
of a scheduling algorithm. In this paper, the former is referred
to as the scheduler design problem, whilst the latter is referred
to as the schedulability test problem.

Computational complexity: It was shown by Ridouard et
al. [31] that the scheduler design problem for the segmented
self-suspension task model is NP-hard in the strong sense.1
The proof in [31] only needs each segmented self-suspending
task to have one self-suspension interval with two computation
segments.

Lakshmanan and Rajkumar [20] proposed a pseudo-
polynomial-time worst-case response time analysis, based on
a revised critical instant theorem from [26], for a special case,
in which there are n − 1 ordinary sporadic tasks without
any self-suspension and one segmented self-suspending task
as the lowest-priority task. This has been recently disproved
by Nelissen et al. [29]. The sufficient schedulability test by
Nelissen et al. [29] requires exponential-time complexity even
when the task system has only one self-suspending task.
The other solutions [14] [30] require pseudo-polynomial time
complexity but are only sufficient schedulability tests.

Table I summarizes the computational complexity men-
tioned above, in which the computational complexity of the
schedulability tests for dynamic-priority scheduling can be
found in Section 2.2.

Speedup Factors: Since real-time systems focus on the worst-
case properties to meet or to miss the deadlines, direct approx-
imation on the schedulability answers is usually not possible.
Alternatively, researchers have widely used the resource aug-
mentation bound or the speedup factor to quantify the imper-
fectness of the scheduling algorithms and the schedulability
tests [17]. If an algorithm A has a speedup factor ρ, then it
guarantees that the schedule derived from the algorithm A is
always feasible by running at speed ρ, if the input task set
admits a feasible schedule on a unit-speed processor.

Under the setting of self-suspending tasks, there are two
options for speeding up. If the suspension length cannot be
reduced by changing the local execution platform (e.g., due to
computation offloading), then speeding up the processor only
affects the execution time but the self-suspension time remains
the same. If the suspension length can also be coherently
reduced by changing the local execution platform (e.g., due to
multiprocessor synchronization), then we assume that speeding
up affects both the execution time and the self-suspension time
coherently. The former is termed as the speedup factor as usual,
and the latter is termed as the suspension-coherent speedup
factor.

For the segmented self-suspension task model, Chen and
Liu [7] and Huang and Chen [15] proposed to use release time
enforcement, termed as fixed-relative-deadline (FRD), to have
bounded speedup factors under dynamic-priority scheduling
and fixed-priority scheduling, respectively. Specifically, the
scheduling algorithm in [7] has a speedup factor 3 when each
task can only suspend at most once. The scheduling algorithm
in [15] has a speedup factor (M+1)2 when each task can only
suspend at most M times. For the dynamic self-suspension task
model, Huang et al. [16] provided a fixed-priority scheduling

1Ridouard et al. [31] termed this problem as the feasibility problem for the
decision version to verify the existence of a feasible schedule.

policy to find a good priority assignment. A speedup factor 2
with respect to the optimal fixed-priority schedule (instead of
the optimal schedule) was provided in [16]. However, whether
the optimal fixed-priority schedule has a bounded speedup
factor with respect to the optimal schedule, for the dynamic
self-suspension task model, remains as an open problem.

The above results [7], [15], [16] are the only results (in
the literature) that provide speedup factor upper bounds for
self-suspending sporadic task systems. There have been also
a few lower bounds in the literature. For both self-suspension
task models, EDF and Rate-Monotonic (RM) scheduling al-
gorithms (known as very good traditional real-time scheduling
algorithms when there is no self-suspension) do not have any
speedup factor bound as shown in [7], [16], [31].

Contributions: This paper provides the following negative
results of the scheduler design problem and the schedulability
test problem for self-suspending sporadic task systems:

• In Section 3, we prove that the schedulability analysis for
fixed-priority (FP) preemptive scheduling even with only
one segmented self-suspending task as the lowest-priority
task is coNP-hard in the strong sense when there are
more than one self-suspension interval (or equivalently
more than two computation segments). The computational
complexity analysis is valid for both implicit-deadline and
constrained-deadline cases, when the priority assignment
is given. Our proof also shows that validating whether
there exists a feasible priority assignment is coNP-hard
in the strong sense for constrained-deadline segmented
self-suspending task systems.

• For dynamic self-suspending task systems, Section 4
shows that the speedup factor for any FP preemptive
scheduling, compared to the optimal schedules, is not
bounded by a constant if the suspension time cannot
be reduced by speeding up. Such a statement of un-
bounded (by a constant or by the number of tasks)
speedup factors can also be proved for earliest-deadline-
first (EDF), least-laxity-first (LLF), and earliest-deadline-
zero-laxity (EDZL) scheduling algorithms. How to design
good schedulers with a constant speedup factor remains
as an open problem.

Moreover, the following positive result for implicit-deadline
task systems is provided for speedup factors in Section 5.

• If the suspension time can also be reduced by speeding up
coherently, then we show that RM scheduling has a con-
stant suspension-coherent speedup factor. Furthermore, if
Si/Di is small for each task τi, we also show that the
speedup factor can be bounded.

2 System Models and Preliminary Results
We assume a system T composed of n sporadic self-

suspending tasks. A sporadic task τi is released repeatedly,
with each such invocation called a job. The jth job of τi,
denoted by τi,j , is released at time ri,j and has an absolute
deadline at time di,j . Each job of task τi is assumed to have
a worst-case execution time Ci. Furthermore, a job of task τi
may suspend itself for at most Si time units (across all of its
suspension phases). When a job suspends itself, it releases the
processor and another job can be executed. The response time
of a job is defined as its finishing time minus its release time.
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Task Model Scheduler design problem Schedulability test problem
Fixed-Priority

Scheduling Dynamic-Priority Scheduling

Segmented
self-suspension strongly NP-hard [31] Constrained Deadlines Implicit Deadlines

strongly coNP-hard
(this paper)

strongly coNP-hard
(special case is [12])

strongly coNP-hard
(explained in this paper)

Dynamic
self-suspension

unbounded (by a constant or by the number
of tasks) speedup factors in any FP

scheduling, EDF, EDZL, etc. (this paper)
unknown computational complexity

unknown strongly coNP-hard
(special case is [12]) unknown

TABLE I: The computational complexity classes (and some speedup factors) of the scheduler design problem and the
schedulability test problem for self-suspending tasks.

Each task τi is characterized by the tuple (Ci, Si, Di, Ti),
where Ti is the period (or minimum inter-arrival time) of τi
and Di is its relative deadline. Ti specifies the minimum time
between two consecutive job releases of τi, while Di defines
the maximum amount of time a job can take to complete its
execution after its release. It results that for each job τi,j ,
di,j = ri,j + Di and ri,j+1 ≥ ri,j + Ti. In this paper, we
focus on constrained-deadline tasks, for which Di ≤ Ti. The
utilization of a task τi is defined as Ui = Ci/Ti. Without
loss of generality, we also implicitly assume that 0 < Ci,
0 < Si < Di and Ci + Si ≤ Di for every task τi in T.

The dynamic self-suspension task model allows a job of
task τi to suspend at any moment before it finishes as long
as the worst-case self-suspension time Si is not violated. The
segmented self-suspension task model further characterizes the
computation segments and suspension intervals as an array
(C1

i , S
1
i , C

2
i , S

2
i , ..., S

mi−1
i , Cmii ), composed of mi computa-

tion segments separated by mi − 1 suspension intervals.

We consider uniprocessor preemptive scheduling. If there is
no self-suspension, the preemptive earliest-deadline-first (EDF)
algorithm (as a dynamic-priority scheduling policy) is optimal
[26] to meet the timing constraints. Due to the high overhead
of EDF scheduling, fixed-priority (FP) scheduling has been
also introduced to reduce the scheduling overhead by assigning
a task with a fixed-priority level. FP scheduling has been
widely adopted and also supported in most real-time operating
systems. If there is no self-suspension, rate-monotonic (RM)
scheduling [26] and deadline-monotonic (DM) scheduling
[24] are optimal for uniprocessor FP scheduling for implicit-
deadline and constrained-deadline task systems, respectively.

We say that a schedule is feasible if all the temporal char-
acteristics and timing constraints are respected and satisfied.
Moreover, a task system (set) is schedulable by a scheduling
algorithm if the resulting schedule is always feasible. A
schedulability test of a scheduling algorithm for a given task
system is to validate whether the task system is schedulable
by the scheduling algorithm. A sufficient schedulability test
provides only sufficient conditions for validating the schedula-
bility of a task system. A necessary schedulability test provides
only necessary conditions to allow the schedulability of a task
system. An exact schedulability test provides necessary and
sufficient conditions for validating the schedulability.

If a scheduling algorithm A has a speedup factor ρ, then
it guarantees that the schedule derived from the scheduling
algorithm A is always feasible by running at speed ρ, if
the input task set admits a feasible schedule on a unit-speed
processor. The negation of the above statement is therefore
useful to quantify the theoretical quality of the scheduling
algorithm A as follows: If the algorithm A fails to provide

a feasible schedule for an input task system, then there does
not exist any feasible schedule (in the worst cases) for the task
set when the execution time of each task τi in T (running at
speed 1/ρ) becomes ρ · Ci.

The above definition does not allow the self-suspension
time to be also reduced by speeding up. As explained in
Section 1, we also consider the suspension-coherent speedup
factor defined as follows: If the algorithm A fails to provide a
feasible schedule for an input task system, then there does not
exist any feasible schedule (in the worst cases) for the task set
when the execution time of each task τi in T (running at speed
1/ρ) becomes ρ ·Ci and the self-suspension time of each task
τi in T (suspending at speed 1/ρ) becomes ρ · Si.

2.1 Scheduler Design Problem
The scheduler design problem is to design a scheduling

algorithm to handle self-suspending tasks. For the segmented
self-suspension task model, this problem is NP-hard in the
strong sense [31]. For the dynamic self-suspension task model,
the computational complexity of this problem remains un-
known. To validate whether the resulting schedules are feasible
or not, sufficient or exact schedulability tests for the scheduling
algorithm should also be provided.

For FP scheduling, the scheduler design problem is to
define the corresponding fixed-priority assignment. Without
self-suspension, it has been shown by Davis et al. [10] that
the speedup factors of RM and DM are 1.4427 and 1.7322,
respectively. However, with self-suspension, RM and DM do
not have any speedup factor bound as shown in [7], [16], [31].

2.2 Schedulability Test Problem
To analyze the speedup factors of scheduling algorithms for

dynamic self-suspension task systems, the following necessary
conditions will be used in Section 4.

Lemma 1 (Huang et al. [16]): (necessary condition for
FP scheduling) If a constrained-deadline dynamic self-
suspension sporadic task system T is schedulable under a
fixed-priority preemptive scheduling algorithm, then, for each
task τk ∈ T

∃0 < t ≤ Dk, s. t. Ck + Sk +
∑

τi∈hp(τk)

⌈
t

Ti

⌉
Ci ≤ t, (1)

where hp(τk) is the set of the tasks with higher-priority than
task τk in the fixed-priority scheduling algorithm.

Proof: This was proved by Huang et al. in [16, Theorem
3].
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Lemma 2: (necessary condition for any scheduling) If
a constrained-deadline dynamic self-suspension sporadic task
system T is schedulable under a scheduling algorithm, then

∀0 < t,
∑
τi∈T

max

{
0,

(⌊
t− (Di − Si)

Ti

⌋
+ 1

)
· Ci
}
≤ t.

(2)

Proof: The proof is in Appendix A.

Notably, for self-suspending task systems, the computa-
tional complexity of the schedulability test problem has not
been explicitly explored in the literature. Here are a few cases
for dynamic-priority scheduling (as shown in Table I) that can
be concluded by using the result by Ekberg and Wang [12].

Dynamic-priority scheduling for constrained-deadline
self-suspending tasks: For this case, the complexity class
of this problem is at least coNP-hard in the strong sense,
since a special case of this problem is coNP-complete in
the strong sense [12]. Ekberg and Wang [12] proved that
verifying uniprocessor feasibility of ordinary sporadic tasks
(under EDF) with constrained deadlines is strongly coNP-
complete. Therefore, when we consider constrained-deadline
self-suspending task systems, for both dynamic and segmented
self-suspension task models, the complexity class is at least
coNP-hard in the strong sense.

Dynamic-priority scheduling for implicit-deadline seg-
mented self-suspending tasks: A special case of the seg-
mented self-suspending task system is to allow each task τi
having exactly one self-suspension interval with a fixed length
Si and one computation segment with (worst-case) execution
time Ci. Therefore, the relative deadline of the computation
segment of task τi (after it is released to be scheduled) is
Di = Ti−Si. For such a special case, the optimal scheduling
policy is EDF. Similarly, such a case is also coNP-hard in the
strong sense.

3 Computational Complexity
In this section, we will prove that the schedulability test

problem for FP preemptive scheduling even with only one seg-
mented self-suspending task as the lowest-priority task in the
task system is coNP-hard in the strong sense. Specifically, we
will also show that our reduction implies that finding whether
there exists a feasible priority assignment (the scheduler design
problem) under FP scheduling for constrained-deadline task
systems is also coNP-hard in the strong sense. We will first
consider constrained-deadline task systems and then revise the
reduction to consider implicit-deadline task systems.

Our reduction is from the 3-PARTITION problem [13]:2

Definition 1 (3-PARTITION Problem): We are given a
positive integer V , a positive integer M , and a set of
3M integer numbers {v2, v3, . . . , v3M+1} with the condition∑3M+1
i=2 vi = MV , in which V/4 < vi < V/2 and M ≥ 3.

Therefore, V ≥ 3.
Objective: The problem is to partition the given 3M integer
numbers into M disjoint sets V1,V2, . . . ,VM such that the
sum of the numbers in each set Vi for i = 1, 2, . . . ,M is V ,
i.e.,

∑
vj∈Vi

vj = V .

2For notational consistency and brevity in our reduction, we index the 3M
integer numbers from 2.

The decision version of the 3-PARTITION problem to verify
whether such a partition into M disjoint sets exists or not is
known NP-complete in the strong sense [13] when M ≥ 3.

3.1 Constrained-Deadline Task Systems
Definition 2 (Reduction to a constrained-deadline system):

For a given input instance of the 3-PARTITION problem, we
construct n = 3MV + 2 sporadic tasks as follows:

• For task τ1, we set C1 = V, S1 = 0, D1 = V, T1 = 3V .
• For task τi with i = 2, 3, . . . , 3M + 1, we set Ci =
vi, Si = 0, Ti = 21MV and Di = 3MV/2 if M is an
even number or Di = 3MV/2 + V/2 if M is an odd
number.

• For task τ3M+2, we create a segmented self-suspending
task with M computation segments separated by M − 1
self-suspension intervals, i.e., m3M+2 = M , in which
Cj3M+2 = V + 1 for j = 1, 2, . . . ,M , Sj3M+2 = 6V
for j = 1, 2, . . . ,M − 1, D3M+2 = M(4V + 1) − V +
6V (M − 1) = 10MV +M − 7V , and T3M+2 = 21MV .

Due to the stringent relative deadline of task τ1, it must
be assigned as the highest-priority task. Moreover, the 3M
tasks, i.e., τ2, τ3, . . . , τ3M+1, created by using the integer
numbers from the 3-PARTITION problem instance are as-
signed lower priorities than task τ1 and higher priorities than
task τ3M+2. Since the integer numbers in the 3-PARTITION
problem instance are given in an arbitrary order, without loss
of generality, we index the tasks in τ2, τ3, . . . , τ3M+1 by the
given priority assignment, i.e., a lower-indexed task has higher
priority. (In fact, we can also assign all these 3M tasks with
the same priority level.)

For the rest of the proof, the task set created in Definition 2
is referred to as Tred.

Lemma 3: Tasks τ1, τ2, . . . , τ3M+1 in Tred can meet their
deadlines under the specified FP scheduling.

Proof: In FP scheduling, the segmented self-suspending
task τ3M+2 in Tred has no impact on the schedule of the
higher-priority tasks. Therefore, we can use the standard
schedulability test for FP scheduling to verify their schedula-
bility. The schedulability of task τ1 is obvious since C1 ≤ D1.
For i = 2, 3, . . . , 3M+1, task τi is schedulable under FP sche-
duling since Ci +

∑i−1
j=1

⌈
Di
Tj

⌉
Cj =

⌈
Di
T1

⌉
C1 +

∑i
j=2 Cj ≤⌈

Di
3V

⌉
V +MV = Di, where the last equality is due to

•
⌈
Di
3V

⌉
=
⌈
3MV/2

3V

⌉
=M/2 when M is an even number;

•
⌈
Di
3V

⌉
=
⌈
3MV/2+V/2

3V

⌉
=
⌈
M
2 + 1

6

⌉
= (M + 1)/2 when

M is an odd number.

The worst-case response time of task τ3M+2 happens
by using one of the release patterns with the conditions in
Lemma 4:

Lemma 4: The worst-case response time of task τ3M+2

in Tred under FP scheduling happens under the following
necessary conditions:

1) Task τ3M+2 releases a job at time 0. This job requests the
worst-case execution time per computation segment and
suspends in each self-suspension interval exactly equal to
its worst case.
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2) Task τ1 always releases one job together with each
computation segment of the job (released at time 0) of
task τ3M+2, and releases the subsequent jobs strictly
periodically with period 3V until a computation segment
of task τ3M+2 finishes. Task τ1 never releases any job
when task τ3M+2 suspends itself.

3) For i = 2, 3, . . . , 3M + 1, task τi only releases one job
together with one of the M computation segments of the
job (released at time 0) of task τ3M+2.

All the jobs and all the computation segments are executed
with their worst-case execution time specifications.

Proof: For completeness, the proof for the release pattern
is in Appendix A and [4].

For the j-th computation segment of task τ3M+2, suppose
that Tj ⊆ {τ2, τ3, . . . , τ3M+1} is the set of the tasks released
together with Cj3M+2 (under the third condition in Lemma 4).
For notational brevity, let wj be

∑
τi∈Tj Ci. By definition, wj

is a non-negative integer. Together with the second condition
in Lemma 4, we can use the standard time demand analysis
to analyze the worst-case response time Rj of the j-th com-
putation segment of task τ3M+2 (after it is released) under the
higher-priority interference contributed from {τ1} ∪ Tj . The
response time Rj of a computation segment Cj3M+2 is defined
as the finishing time of the computation segment minus the
arrival time of the computation segment.

For a given task set Tj (i.e., a given non-negative integer
wj), Rj is the minimum t with t > 0 such that

Cj3M+2+(
∑
τi∈Tj

Ci)+

⌈
t

T1

⌉
C1 = V +1+wj+

⌈
t

3V

⌉
V = t.

Since Rj only depends on the non-negative integer wj , we use
R(wj) to represent Rj for a given Tj . We know that V +1+
wj +

⌈
t

3V

⌉
V = t happens with ` ·3V < t ≤ (`+1) ·3V for a

certain non-negative integer `. That is, V +1+wj+
⌈
t

3V

⌉
V > t

when t is ` · 3V and V + 1 + wj +
⌈
t

3V

⌉
V ≤ t when t is

(`+ 1)3V . We know that ` is
⌈
V+1+wj

2V

⌉
− 1. Moreover,

R(wj) = ` · 3V + V + (V + 1 + wj − ` · 2V )

= 2V + 1 + wj + ` · V

= V + 1 + wj +

⌈
V + 1 + wj

2V

⌉
V.

This leads to three cases that are of interest:

R(wj) =


2V + 1 + wj if wj ≤ V − 1

4V + 1 if wj = V

V + 1 + wj +
⌈
V+1+wj

2V

⌉
V if wj > V

(3)
For example, if wj = 3V − 1, then R(wj) is 6V ; if wj is 3V ,
then R(wj) is 7V + 1.

With the above discussions, we can now conclude the
unique condition when task τ3M+2 misses its deadline in the
following lemma.

Lemma 5: Suppose that Tj ⊆ {τ2, τ3, . . . , τ3M+1} and
Ti ∩ Tj = ∅ when i 6= j. Let wj =

∑
τi∈Tj Ci. If a task

partition T1,T2, . . . ,TM exists such that
∑M
j=1R(wj) >

M(4V + 1) − V with R(wj) defined in Eq. (3), then task

τ3M+2 misses its deadline in the worst case; otherwise, task
τ3M+2 always meets its deadline.

Proof: By Lemma 4, task τ3M+2 in Tred is not schedu-
lable under the fixed-priority preemptive scheduling if and
only if there exists a task partition T1,T2, . . . ,TM such that∑M
j=1R(wj)+

∑M−1
j=1 Sj3M+2 = 6(M−1)V +

∑M
j=1R(wj) >

D3M+2 =M(4V +1)+ 6V (M − 1)−V . This concludes the
proof.

Instead of investigating the combinations of the task parti-
tions, we analyze the corresponding total worst-case response
time

∑M
j=1R(wj) for the M computation segments of task

τ3M+2 (by excluding the self-suspension time) by considering
different non-negative integer assignments w1, w2, . . . , wM
with

∑M
i=1 wi =MV and wi ≥ 0 in the following lemmas.

Lemma 6: If w1 = w2 = · · · = wM = V , then
M∑
j=1

R(wj) =M(4V + 1),

where R(wj) is defined in Eq. (3).

Proof: This comes directly by Eq. (3).

Lemma 7: For any non-negative integer assignment for
w1, w2, . . . , wM with

∑M
i=1 wi =MV , if there exists a certain

index j with wj 6= V , then

M∑
j=1

R(wj) ≤M(4V + 1)− V,

where R(wj) is defined in Eq. (3).

Proof: Let X be the set of indexes such that 0 ≤ wj < V
for any j ∈ X. Similarly, let Y be the set of indexes such
that V < wj for any j ∈ Y. If j /∈ X ∪ Y, then wj is V .
(A concrete example of the following steps can be found in
Appendix B.)

If there exists j in Y with wj > 2V , since
∑M
i=1 wi =

MV , there must exist an index i in X with wi < V . We
can increase wi to w′i = V , which increases the worst-case
response time R(wi) by 2V −wi (i.e., from 2V +1+wi to 4V +
1). Simultaneously, we reduce wj to w′j = wj−(V −wi) > V .
Therefore, wi+wj = w′i+w

′
j . Moreover, the reduction of wj

to w′j also reduces the worst-case response time R(wj) by case

1) V − wi if
⌈
V+1+w′j

2V

⌉
is equal to

⌈
V+1+wj

2V

⌉
, and by case

2) V − wi + V if
⌈
V+1+w′j

2V

⌉
is not equal to

⌈
V+1+wj

2V

⌉
. In

both cases, we can easily see that the worst-case response time
is not decreased in the new integer assignment. Moreover, the
index j remains in Y and the index i is removed from set X.
We repeat the above step until all the indexes j in Y are with
wj ≤ 2V .

It is clear that X and Y are both non-empty after the above
step. For the rest of the proof, let X and Y be defined after
finishing the above step. Therefore, the condition wj ≤ 2V
holds for any j ∈ Y. Due to the pigeon-hole principle, when
Y is not an empty set, X is also not an empty set. Moreover,
for an element i in X, there must be a subset Y′ ⊆ Y and an
index ` ∈ Y′ such that∑

j∈Y′
(wj − V ) ≥ V − wi >

∑
j∈Y′\{`}

(wj − V ).
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That is, we want to adjust wi to V (i.e., wi is increased by
V −wi), and the set Y′\{`} is not enough to match the integer
adjustment V − wi and the set Y′ is enough to match the
integer adjustment V − wi. We now increase wi to V , which
increases the worst-case response time R(wi) by 2V − wi.
Simultaneously, we reduce wj to V for every j ∈ Y′ \ {`}
and reduce w` to w′` = w`− (V −wi−

∑
j∈Y′\{`}(wj −V )).

Since V < wj ≤ 2V for any j ∈ Y′ before the adjustment,
the adjustment reduces the worst-case response time R(wj) by
wj − V if j 6= ` and reduces R(w`) by w` − w′`. Therefore,
the adjustment reduces

∑
j∈Y′ R(wj) by exactly V − wi.

Therefore, the adjustment in this step to change wi in X and
wj in Y′ increases the overall worst-case response time by
exactly V time units.

By adjusting with the above procedure repeatedly, we will
reach the integer assignment w1 = w2 = · · · = wM = V with
bounded increase of the worst-case response time. As a result,
we can conclude that

∑M
j=1R(wj) ≤M(4V +1)−|X|V . By

the assumption
∑M
i=1 wi =MV and the existence of wj 6= V

for some j, we know that |X| must be at least 1. Therefore,
we reach the conclusion.

We can now conclude the coNP-hardness.

Theorem 1: The schedulability analysis for FP scheduling
even with only one segmented self-suspending task as the
lowest-priority task in the sporadic task system is coNP-
hard in the strong sense, when the number of self-suspending
intervals in the self-suspending task is more than or equal to
2 and Di ≤ Ti for every task τi.

Proof: The reduction in Definition 2 requires polynomial
time. Moreover, by Lemmas 4, 5, 6, and 7, a feasible solution
of the 3-PARTITION problem for the input instance exists if
and only if task τ3M+2 is not schedulable by the FP scheduling
when M ≥ 3. Therefore, this concludes the proof.

Corollary 1: Validating whether there exists a feasible
priority assignment is coNP-hard in the strong sense for
constrained-deadline segmented self-suspending task systems.

Proof: This comes directly from Theorem 1 and the only
possible priority level for task τ3M+2 to be feasible in Tred.

Remarks for Computational Complexity Although the
reduction in this section is limited to the special case with only
a segmented self-suspending task as the lowest-priority task,
the reduction can be easily extended for more than one self-
suspending task, e.g., by allowing task τ1 to suspend. However,
the above proof of the strong coNP-hardness does not hold
when the number of tasks is a constant or there is only one
self-suspension interval per task.

3.2 Implicit-Deadline Task Systems
The coNP-hardness in the strong sense for testing the

schedulability of task τn under FP scheduling can be easily
proved with the same input as in Tred by changing the periods
of the tasks as follows:

• For task τ1, we set D1 = 3V, T1 = 3V .
• For task τi with i = 2, ..., 3M + 1, we set Ti = Di =

10MV +M − 7V .
• For task τ3M+2, we set T3M+2 = D3M+2 = 10MV +
M − 7V .

Assume that τ3M+2 is the lowest-priority task. It is not difficult
to see that all the conditions in Lemma 4 still hold for
testing whether task τ3M+2 can meet its deadline or not (but
not for the worst-case response time if task τ3M+2 misses
the deadline). Therefore, the schedulability analysis for FP
scheduling even with only one segmented self-suspending task
as the lowest-priority task in the sporadic task system is
coNP-hard in the strong sense, when the number of self-
suspending intervals in the self-suspending task is more than
or equal to 2 and Di = Ti for every task τi.

However, the above argument does not hold if we assign
task τ3M+2 to the highest-priority level. Therefore, the above
proof does not support a similar conclusion for implicit-
deadline task systems to that for constrained-deadline task
systems in Corollary 1.

4 Negative Results for Speedup Factors
This section presents a concrete input task system to show

that any FP scheduling as well as several other scheduling
algorithms do not admit any constant speedup factors for the
dynamic self-suspension task model if self-suspension time
cannot be reduced by speeding up. We consider the following
specific task set with two implicit-deadline tasks:

• For task τ1, we set T1 = D1 = 1, S1 = 0, and C1 = B.
• For task τ2, we set T2 = D2 = 1

B2 , S2 = 1
B2 (1 − B),

and C2 = 1.

In the above setting, we will implicitly assume that 0 < B ≤
0.25 and 1/B is a positive integer. For notational brevity, let
Tnegative be the above task set, consisting of these two tasks.
To prove the lower bounds of speedup factors, two steps will
be involved:

1) We will first show that this task set Tnegative can be in
fact feasibly scheduled by a simple heuristic algorithm
when the system runs at any speed faster than or equal
to 2B( 1/B−0.51/B−1 ) in Section 4.1.

2) We will then show that this task set is not schedulable by
several typical (well-motivated) scheduling algorithms at
the original speed 1 in Sections 4.2 and 4.3.

By these, we will conclude that the speedup factor of these
scheduling algorithms is at least 1

2B ( 1/B−1
1/B−0.5 ), formally stated

in Section 4.4. Since B can be arbitrarily small, this sec-
tion concludes that the typical scheduling algorithms in real-
time systems, including EDF, LLF, and FP, have unbounded
speedup factors (by a constant or by the number of tasks) for
the dynamic self-suspension task model.

4.1 How Much Can We Slow Down?
To prove the lower bound s of the speedup factor, we will

first show that the above task system Tnegative can still be
feasibly scheduled by running at a processor with speed 1

s .
We can start with the necessary condition stated in Lemma 2.
The necessary condition to have a feasible schedule is basically
identical to consider the corresponding ordinary sporadic task
set with τ1 and τ ′2 in which C ′2 = C2 and D′2 = T2−S2 = 1

B
and T ′2 = T2. By considering t = 1

B in Eq. (2), we know that∑
τi∈Tnegative

max

{
0,

(⌊
1/B − (Di − Si)

Ti

⌋
+ 1

)
· Ci
}

= 2.
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Therefore, we can conclude that this task set Tnegative cannot
be feasibly scheduled for any speed slower than 2

1/B = 2B.

Since the necessary condition in Lemma 2 looks pretty
pessimistic, it may leave a hope to rule out some speed higher
than 2B that is in fact not able to admit any feasible schedule.
We will design a specific scheduling algorithm for task system
Tnegative that can feasibly schedule tasks in Tnegative under
any speed higher than or equal to 2B( 1/B−0.51/B−1 ). This shows
that the necessary condition provided in Lemma 2 is actually
pretty tight for analyzing the speedup factors when B is small.

Towards this, we consider the following scheduling algo-
rithm that is specifically designed for the above two tasks:

• An unfinished job of task τ1 is executed at time t if 1)
task τ2 suspends at time t or 2) the laxity of the job of
task τ1 at time t equals to 0;

• otherwise an unfinished job of task τ2 is executed at time
t.

Here, the laxity of a job of task τ1 at time t is defined as
dj− t−c∗, where dj is the absolute deadline of the job and c∗
is the remaining execution time of the job. The above algorithm
is denoted as Algorithm R.

For the rest of the proof, we will implicitly assume that
the actual-case execution time and the actual-case suspension
time are the same as their corresponding worst cases. Figure 1
provides an illustrative example of task set Tnegative by using
Algorithm R at speed 1

s = 0.25 when B = 0.1. The job of
task τ2 finishes at time 95.6 ≤ D2 = 100 in this concrete
schedule. We have the following properties of Algorithm R.

Lemma 8: Suppose that a job of task τ1 arrives at time aj
on a processor with speed 1

s and the unfinished job of task
τ2 (arrived before aj) has not yet finished at time aj + 1 in
the schedule by using Algorithm R. Then, in the schedule by
using Algorithm R,

• Case 1: either task τ2 is executed for exactly 1 − Bs
amount of execution time in the time interval [aj , aj+1)
and task τ2 is executed again right at time aj + 1,

• Case 2: or task τ2 is executed for y amount execution
time in the time interval [aj , aj + 1) and suspends itself
for 1−y amount of time for some y with 0 ≤ y ≤ 1−Bs.
Proof: The execution time of task τ1 is Bs at speed 1/s.

Therefore, from aj to aj + 1, task τ2 can be executed by
at most 1 − Bs amount of time. If the job of task τ1 has
to preempt task τ2 since its laxity becomes 0 at some time
aj +1−Bs ≤ t < aj +1, then we reach Case 1. If the job of
task τ1 does not have to preempt task τ2, we reach Case 2.

Lemma 9: Suppose that a job of task τ1 arrives at time aj
on a processor with speed 1

s and the unfinished job of task τ2
(arrived before aj) finishes at time f in time interval [aj , aj+1)
in the schedule by using Algorithm R. Then, in the schedule
by using Algorithm R,

• Case 3: task τ2 is executed for y amount execution time
in the time interval [aj , aj + 1) and suspends itself for
f−aj−y amount of time for some y with 0 ≤ y < 1−Bs.
Proof: This is similar to Case 2 in Lemma 8.

In the example provided in Figure 1, we know that Case
1 holds for intervals [3, 4), [4, 5), [91, 92), and [93, 94), and
Case 3 holds for interval [95, 96). Case 2 holds for all the other
intervals [aj , aj + 1) with aj 6= 3, 4, 91, 93, 95 with aj < 96.

Theorem 2: AlgorithmR can feasibly schedule task τ1 and
task τ2 on a processor with speed 2B( 1/B−0.51/B−1 ).

Proof: According to Algorithm R, any job of task τ1 can
always be finished in time when its laxity at time t becomes
0. Therefore, task τ1 can be feasibly scheduled if Bs ≤ 1.

Now, we examine the schedulability of task τ2 under
Algorithm R. Suppose that a job of task τ2 arrives at time
r and finishes at time f ≤ r + T2 by using Algorithm R.
We do not have to consider any job of task τ2 arrived before
r if we can guarantee that the worst-case response time is
no more than the minimal inter-arrival time. Suppose that
task τ1 releases its jobs at time a1, a2, a3, . . . , a` such that
r ≤ a1 ≤ a2 ≤ · · · ≤ a` < f . By the definition of sporadic
tasks, we also know that ai + 1 ≤ ai+1. Moreover, we also
know that there may be a job of task τ1 arrived before r but
still has not finished yet at time r. We use a0 to denote the
arrival time of this job of task τ1. By definition r ≥ a0 ≥ r−1.

Now, suppose that the processor is with speed 1
s , i.e., the

execution time of task τ2 is s at this speed. By Lemma 8, let
I be the sub set of the arrival times a1, a2, . . . , a` in which
Case 1 takes place. That is, the overal execution time of task τ2
executed in the intervals ∪i∈I[ai, ai+1) is exactly (1−Bs)|I|.
Moreover, in the other time intervals from a0 + 1 to f , i.e.,
[a0+1, f)\ (∪i∈I[ai, ai + 1)), task τ2 has to either execute or
suspend (i.e., Case 2 in Lemma 8 and Case 3 in Lemma 9).

By the definition of I, we know that 0 ≤ |I| ≤
⌈

s
1−Bs

⌉
−

1 < s
1−Bs .3 Therefore, the maximum overall suspension time

and execution time allowed for task τ2 in the time interval
[a0 + 1, a0 +

1
B2 ) ⊆ [r, r + 1

B2 ) is at least

|I|(1−Bs)+ 1

B2
−1−|I| = 1

B2
−1−|I|Bs > 1

B2
−1− Bs2

1−Bs
.

As a result, if

1

B2
− 1− Bs2

1−Bs
≥ C2s+ S2 = s+

1

B2
(1−B),

then task τ2 can be feasibly scheduled. That is, if

s ≤ 1/B − 1

1 +B(1/B − 1)
= (

1

2B
)

(
1/B − 1

1/B − 0.5

)
,

i.e., if 1
s ≥ (2B)

(
1/B−0.5
1/B−1

)
, then task τ2 can be feasibly

scheduled by Algorithm R under this reduced platform speed.

4.2 Fixed-Priority Scheduling
For task set Tnegative, setting task τ2 as the higher-priority

task makes task τ1 miss the deadline since C2 + C1 > T1.
Setting task τ1 as the higher-priority task also makes task τ2
miss the deadline. This can be proved by using the necessary
condition for fixed-priority scheduling provided in Lemma 1.
For any 0 < t ≤ T2 = 1

B2 , we have

C2 + S2 +

⌈
t

T1

⌉
C1 − t = 1 +

1

B2
(1−B) + dte ·B − t

≥1 +
1

B2
(1−B)− t(1−B) ≥a 1 +

1

B2
(1−B)−

1

B2
(1−B) > 0,

3The reason to have
⌈

s
1−Bs

⌉
− 1 instead of

⌊
s

1−Bs

⌋
is due to the fact

that task τ2 has not yet finished its execution at the end of an interval with
Case 1 in Lemma 8 and has to be resumed and executed. Therefore, if s

1−Bs
is an integer, there are at most s

1−Bs
− 1 such intervals in set I.
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τ1

τ2 t
0 1 2 3 4 5 6 90 91 92 93 94 95 96

Fig. 1: An example of task set Tnegative by using Algorithm R at speed 1
s
= 0.25 when B = 0.1. That is, the execution time of task τ1 is

0.4 at this platform speed and the execution time of task τ2 is 4 at this platform speed. Each smaller rectangle for task τ2 is for executing
task τ2 for 0.2 time unit. Each larger rectangle for task τ2 is for executing task τ2 for 0.6 time unit. The job of task τ2 finishes at time 95.6.

where ≥a is due to the assumption that 1 − B > 0. By the
above inequality, the necessary condition in Lemma 1 does
not hold for scheduling task τ2 as the lower-priority task.
Therefore, we know that assigning task τ1 as the higher-
priority task makes task τ2 miss the deadline.

Theorem 3: The speedup factor of any FP scheduling,
compared to the optimal scheduling policy, for dynamic self-
suspending task systems is not bounded by a constant.

Proof: By Theorem 2 and the fact that there does not
exist any feasible FP scheduling for Tnegative in the original
speed, the speedup factor of any FP scheduling is at least
( 1
2B )

(
1/B−1
1/B−0.5

)
, converging to ∞ when B approaches 0.

4.3 Unbounded Scheduling Algorithms
For the rest of this section, we provide a concrete job

release pattern of task set Tnegative to demonstrate the
unbounded speedup factors of several algorithms. Task τ1
releases jobs periodically from time 0 every one time unit.
One job of task τ2 arrives at time 0 and has the following
execution/suspension pattern:

• It first requests to run on the processor for ε amount of
time, and then it suspends for 1−B−ε amount of time; the
above execution/suspension pattern is repeated for 1

B2 (1−
B) iterations (times).

• Then, it requests 1− ε
B2 to run on the processor, followed

by a suspension interval length ε
B2 (1−B) + 1

B − 1.
• Then, it requests ε

B to run on the processor.

We assume that 0 < ε < B3. Recall that 0 < B ≤ 0.25.
Therefore, the overall execution time of the job of task τ2 is
ε
B2 (1−B)+1− ε

B2 +
ε
B = 1, and the overall self-suspension

time of the job of task τ2 is 1−B−ε
B2 (1 − B) + ε

B2 (1 − B) +
1
B − 1 = 1

B2 (1 − B). Hence, the above execution/suspension
pattern of task τ2 is valid. Our analyses for the unbounded
speedup factors of several algorithms are mainly based on the
observation made in the following lemma:

Lemma 10: For task set Tnegative, from time 0 to time
1
B2 (1−B), if the jobs of task τ1 are always with higher priority
than the job of task τ2, then either task τ1 or task τ2 misses
its deadline.

Proof: By the defined job release pattern, whenever task
τ1 is executed from time 0 to time 1

B2 (1 − B), task τ2
is blocked/preempted and τ2 does not suspend itself. The
schedule when t = 0, 1, 2, . . . , 1

B2 (1−B)− 1 is as follows:

• t = 0: the job of task τ1 finishes at B. Task τ2 executes
from B to B+ ε, suspends from B+ ε to 1, and resumes
at time 1.

• t = 1, 2, . . . , 1
B2 (1−B)− 1: the above pattern repeats.

There are two cases for the execution behavior in time interval
[ 1
B2 (1−B), 1

B2 (1−B) + 1):

• Case 1 - the job of task τ1 arrived at time 1
B2 (1 − B)

does not complete its execution of B time units: This
concludes the deadline miss of task τ1.

• Case 2 - the job of task τ1 arrived at time 1
B2 (1 − B)

completes its execution of B time units: At time 1
B2 (1−

B), the requested execution time of task τ2 is 1− ε
B2 >

1−B, due to the assumption 0 < ε < B3. The completion
of the job of task τ1 arrived at time 1

B2 (1−B) means that
task τ2 is blocked by task τ1 for B time units, and, for its
requested 1− ε

B2 execution time units, only 1− B time
units are executed from time 1

B2 (1−B) to time 1
B2 (1−

B)+1. The sum of the remaining execution time and the
remaining suspension time of task τ2 at time 1

B2 (1−B)
is 1− ε

B2 +
ε
B2 (1−B)+ 1

B −1+ ε
B = 1

B . Therefore, the
sum of the remaining execution time and the remaining
suspension time of task τ2 at time 1

B2 (1 − B) + 1 is
1
B − (1−B), which is strictly greater than the remaining
time (to the deadline), i.e., D2−( 1

B2 (1−B)+1) = 1
B−1.

Therefore, task τ2 misses its deadline.

By the following theorem, if a scheduling algorithm always
gives the jobs of task τ1 higher priority than the job of task
τ2 from time 0 to time 1

B2 (1−B), then the algorithm has an
unbounded speedup factor.

Theorem 4: For task set Tnegative, from time 0 to time
1
B2 (1 − B), if a scheduling algorithm always gives the jobs
of task τ1 higher priority than the job of task τ2, then the
speedup factor of the algorithm, compared to the optimal
scheduling policy, for dynamic self-suspending task systems
is not bounded by a constant or by the number of tasks.

Proof: By Theorem 2 and the fact that these schedules
are not feasible for Tnegative in the original speed due to
Lemma 10, the speedup factor of these algorithms must be at
least ( 1

2B )
(

1/B−1
1/B−0.5

)
, which converges to∞ when B is close

to 0.

EDF. Earliest-Deadline-First (EDF) scheduling gives the
job with the earliest absolute deadline the highest priority.
For EDF, the unbounded speedup factor for dynamic self-
suspension task systems was already provided by Huang et al.
[16]. The EDF schedule of our defined job release pattern also
fits the condition in Lemma 10 as well. A seemingly reasonable
extension of EDF is the suspension-aware EDF (SAEDF) as
follows:

• Suspension-aware absolute deadline at time t: the absolute
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deadline of the job minus S∗, where S∗ is the remaining
upper bound on the suspension time of the job.

In SAEDF, the job with the earliest suspension-aware absolute
deadline is scheduled.

Under SAEDF, we have to calculate the suspension-aware
absolute deadlines. Since task τ1 in Tnegative does not sus-
pend, its job arriving at time t has suspension-aware absolute
deadline t+1. The suspension-aware absolute deadline of task
τ2 can change over time. Here, we detail the calculation when
t = 0, 1, 2, . . . , 1

B2 (1−B)− 1 and the resulting schedule:

• t = 0: the job of task τ1 has the earliest suspension-aware
absolute deadline since D2 − S2 = 1

B2 − 1
B2 (1 − B) =

1/B ≥ 4 (due to our assumption B ≤ 0.25). The first job
of task τ1 finishes at time B. Task τ2 executes from B to
B + ε, suspends, and resumes at time t = 1.

• t = 1, 2, . . . , 1
B2 (1 − B) − 1: the above pattern repeats

since the suspension-aware absolute deadline of task τ2 at
time t is D2−(S2−t·(1−B−ε)) > 1

B+t−t·(B+B3) ≥
t + 1

B − ( 1
B2 (1 − B) − 1) · (B + B3) = t +��

1
B − (��

1
B −

1−��B)− (��B −B2 −B3) = t+ 1 +B2 +B3 > t+ 1.

Therefore, the schedule of SAEDF from time 0 to time 1
B2 (1−

B) is the same as the schedule defined in Lemma 10. As a
result, the schedule produced by SAEDF for our defined job
release pattern is not feasible.

Laxity-Based Scheduling Algorithms. We consider two
definitions of the laxity of a job at time t:

• Suspension-unaware laxity at time t: the absolute deadline
of the job minus (t+ e∗).

• Suspension-aware laxity at time t: the absolute deadline
of the job minus (t+ e∗ + S∗).

In the above definitions, e∗ is the (worst-case) remaining
execution time of a job, and S∗ is the (worst-case) remaining
suspension time.

The least-laxity-first (LLF) scheduling algorithm [23] is a
dynamic-priority scheduling algorithm. It gives the job with the
least laxity the highest priority. If the laxity is defined by using
the suspension-unaware laxity, the scheduling algorithm is
called suspension-unaware least-laxity-first (SULLF) schedu-
ling algorithm. If the laxity is defined by using the suspension-
aware laxity, the scheduling algorithm is called suspension-
aware least-laxity-first (SALLF) scheduling algorithm. Before
t ≤ 1

B2 (1 − B), the suspension-unaware laxity is trivially
greater than or equal to D2−t−C2 ≥ 1

B2 −( 1
B2 (1−B)+1)−

1 = 1
B − 2 ≥ 2 since 1

B ≥ 4 in our assumption. Therefore,
since the laxity of the jobs of task τ1 is no more than 1, the
schedule of SULLF from time 0 to time 1

B2 (1 − B) is the
same as the schedule defined in Lemma 10. However, we are
not able to construct a speedup factor lower bound of SALLF
by using the task set Tnegative, since the resulting schedule is
different from that in Lemma 10.

EDZL (earliest deadline zero laxity) is a preemptive hybrid-
priority scheduling policy in which the jobs with zero laxity
are given the highest priority and the other jobs are ranked by
their absolute deadlines [21]. If we adopt suspension-unaware
laxity for EDZL, the resulting schedule from time 0 to time
1
B2 (1−B) is the same as the schedule defined in Lemma 10
(since the suspension-unaware laxity is still positive).

For EDZL under suspension-aware laxity, the resulting
schedule remains the same as EDF/SAEDF from time 0 to

time 1
B2 (1 − B) since the suspension-aware laxity of task τ2

is greater than 0 (strictly) before t = 1
B2 (1−B)− 1 +B.

4.4 Unbounded Speedup Factors
We conclude this section with the following theorem.

Theorem 5: The speedup factor of FP, EDF, suspension-
aware EDF, EDZL, suspension-aware EDZL, and SULLF
scheduling algorithms, compared to the optimal scheduling
policy, for dynamic self-suspending task systems is not
bounded by a constant or by the number of tasks.

Proof: This comes from Theorem 4 and the discussions
in Section 4.3.

5 Utilization Bounds and Speedup Factors
In this section, we provide the utilization bounds and

speedup factors for RM scheduling. Due to space limitations,
we only consider implicit-deadline task systems here. Similar
arguments can be made for constrained-deadline task systems
under DM scheduling. For brevity, we sort the tasks by their
priority levels. Task τ1 has the highest priority, whereas task
τn has the lowest priority. For the rest of this section, suppose
that τ1, τ2, . . . , τk−1 have been already verified to meet their
deadlines. We are interested to analyze whether task τk can
meet its deadline or not.

In [27, p. 164-165], Liu proposed a solution to study the
schedulability of a self-suspending task τk by modeling the
extra delay suffered by τk due to the self-suspension behavior
of each higher-priority task as a blocking time. This blocking
time has been defined as follows:

• The blocking time contributed from task τk is Sk.
• A higher-priority task τi can block the execution of task
τk for at most min(Ci, Si) time units.

The correctness of the above analysis has been recently
proved by Chen et al. [8] as a special case in a uni-
fied response-time analysis framework.4 Suppose that γk =

maxk−1i=1

{
max{1, SiCi }

}
. For testing whether task τk is schedu-

lable by RM scheduling, as proved by Chen et al. [8], we can
validate whether

∃t | 0 < t ≤ Tk, Ck+Sk+

k−1∑
i=1

(⌈
t

Ti

⌉
+ γk

)
Ci ≤ t. (4)

Since γk ≤ 1, this can be considered as if the first
job from the higher-priority task τi under the schedulability
analysis doubles its execution time. Liu and Chen [25] showed
that the above schedulability test leads to the utilization-
based hyperbolic test

(
Ck+Sk
Tk

+ 2
)∏k−1

i=1 (1 + Ui) ≤ 3. A
more precise analysis in the following lemma comes from the
utilization-based schedulability test framework k2U [5].

Lemma 11: An implicit-deadline system is schedulable by
using RM scheduling if for each task τk in T,(

Ck + Sk
Tk

+ 1 + γk

) k−1∏
i=1

(1 + Ui) ≤ 2 + γk, (5)

4The reader may wonder why this is called blocking time. The terminology
by modeling self-suspension time as blocking time was introduced by Liu in
[27, p. 164-165]. Although the correctness of the schedulability test has been
recently provided in [8], there is no clear evidence or logical explanation why
we can call this as blocking time.
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where γk = maxk−1i=1

{
max{1, SiCi }

}
.

Proof: This comes directly by using the utilization-based
schedulability test framework k2U [5]. The sketched proof is
in Appendix A.

Recall that the example Tnegativ used in Section 4 shows
that the utilization bound of any FP scheduling is close to
0 if there is a task with very long self-suspension time.
Therefore, there is no constant utilization bound or constant
speedup factor for any FP scheduling algorithm neither if
we do not constrain the self-suspension time. For the rest of
this section, we demonstrate some positive results when the
self-suspension time is constrained. The following theorems
provide the utilization bounds and the speedup factors under
different conditions by using the hyperbolic bound in Eq. (5):

• Theorem 6 shows that the speedup factor (respectively, the
utilization bound) is 1/ ln( 2+λ1+λ ) (respectively, ln( 2+λ1+λ )) if
Si ≤ λCi for each task τi in T.

• Theorem 7 shows that the speedup factor (respectively, the
utilization bound) is 1/ ln( 3

2+σ ) (respectively, ln( 3
2+σ )) if

Si + Ci ≤ σTi for each task τi in T.

Therefore, if the suspension time of each task is upper bounded
by its worst-case execution time, Theorem 6 shows that the
utilization bound can still be ln(3/2) ≈ 0.4054. Moreover, if
(Ci+Si)/Ti is small enough for each τi in T, i.e., σ is small
enough, the utilization bound of RM is still ln( 3

2+σ ).

Theorem 6: If Si ≤ λCi for each task τi ∈ T, then task
τk is schedulable by RM scheduling if

∑k
i=1 Ui ≤ ln( 2+λ1+λ ).

Moreover, the speedup factor of RM scheduling for such a
case is 1

ln( 2+λ
1+λ )

.

Proof: By the definition, we know Sk/Ck ≤ λ and
γk ≤ λ. Therefore, we can reformulate the schedulability test
in Lemma 11 into

(
Ck+Sk
Tk

+ 1 + λ
)
≤ (Uk + 1)(1 + λ). If

task τk is not schedulable by using the schedulability test in
Lemma 11, we know that (Uk + 1)(1 + λ)

∏k−1
i=1 (Ui + 1) >

(2+λ), which implies that
∏k
i=1(Ui+1) > (2+λ)/(1+λ). The

infimum
∑k
i=1 Ui such that

∏k
i=1(Ui + 1) > (2 + λ)/(1 + λ)

happens when Ui =
(

(2+λ)
(1+λ)

) 1
k − 1. Therefore, task τk is

schedulable under RM if the utilization bound
∑k
i=1 Ui ≤

k

((
(2+λ)
(1+λ)

) 1
k − 1

)
holds, which converges to ln( 2+λ1+λ ) when

k is sufficiently large. Therefore, we reach the conclusion
for the utilization bound. The speedup factor is simply the
reciprocal of the utilization bound.

Theorem 7: Suppose that σ = maxτi∈T
Ci+Si
Ti

. The
speedup factor of RM scheduling for such a case is 1

ln( 3
2+σ )

.

Proof: The proof is similar to Theorem 6 and left to
Appendix A.

If speeding up the platform can also reduce the self-
suspension time, we show that the suspension-coherent
speedup factor of RM scheduling for implicit-deadline dy-
namic self-suspending task systems is a constant.

Theorem 8: The suspension-coherent speedup factor of
RM scheduling for implicit-deadline dynamic self-suspending
task systems is 3.621432.

Proof: The proof is similar to Theorem 7. We use the
inequality in Eq. (11) by taking the worst-case setting of γk as
1. If we are also able to reduce the suspension time by speeding
up, the execution time plus the suspension time becomes
Ck+Sk

s by running the platform at speed s. Therefore, we
are interested to know the minimum Ck+Sk

Tk
and

∑k−1
i=1 Ui ≤∑k

i=1 Ui for the condition in Eq. (11) when γk = 1. This
is equivalent to solving the equality (x + 2)ex = 3. The
equality holds when x = x∗ = lambertw(3 · e2) − 2,
where lambertw(z) is the Lambert W function, i.e., z =
lambertw(z)elambertw(z). Therefore, either Ck+Sk

Tk
> x∗ or∑k−1

i=1 Ui > x∗. The suspension-coherent speedup factor is
hence 1/x∗ ≈ 3.621432.

6 Conclusion and Discussions
The coNP-hardness of the (exact) schedulability test prob-

lem under FP scheduling shows that adding a segmented self-
suspending sporadic task makes the schedulability analysis
much more complicated than the ordinary sporadic task sys-
tems without self-suspension. There have been a significant
amount of efforts analyzing FP scheduling for dynamic self-
suspending sporadic task systems, e.g. [1]–[3], [16], [18], [25],
[28]. However, the gap between the optimal fixed-priority
schedule and the optimal schedule (with respect to the speedup
factor) can be unbounded, as shown in this paper. We also
show how to extend the classical dynamic-priority scheduling
algorithms, i.e., EDF, LLF, and EDZL, to be suspension-aware.
Unfortunately, all these algorithms, except suspension-aware
LLF, have also unbounded speedup factors.

Interestingly, the difficulty of the scheduler design problem
in dynamic self-suspending task systems may simply come
from the definition of the quantification metrics: the speedup
factor. If the suspension time of each task is upper bounded
by its worst-case execution time, then, we show that RM
scheduling has a constant speedup factor and a constant
utilization bound. If σ = maxτi∈T

Ci+Si
Ti

is small enough, the
speedup factor of RM scheduling for such a case is 1/ ln( 3

2+σ ),
which is far below the worst-case scenario demonstrated in
Section 4. Moreover, if the suspension time can also be reduced
by speeding up coherently, then we show that RM scheduling
has a constant suspension-coherent speedup factor.

However, the negative example used in Section 4 does
not invalidate the effectiveness (with respect to the speedup
factor) of SALLF (suspension-aware least laxity-first) or FPZL
(fixed-priority zero-laxity) scheduling algorithms. These two
scheduling algorithms may be useful, but their corresponding
schedulability analyses are also unknown when there are
dynamic self-suspending tasks.
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Appendix
Appendix A: Proofs

Proof of Lemma 2. Assume that the condition in Eq. (2)
is not satisfied. That is, there exists a certain t∗ > 0 such
that

∑
τi∈T max

{
0,
(⌊

t∗−(Di−Si)
Ti

⌋
+ 1
)
· Ci
}
> t∗. Then,

we prove that there exists a valid release pattern that cannot
be schedulable by using any scheduling algorithm. Let a be a
positive number. We release the first job of each task τi at time
a−Si, and each task suspends from a−Si to a. After the first
job of task τi, the subsequent jobs are released periodically at
time a− Si + Ti, a− Si + 2Ti, . . . with the same suspension
and execution pattern.

For this specific release pattern, the task set can be ac-
tually imagined as if each self-suspending sporadic task τi
becomes an ordinary sporadic task without self-suspension.
The equivalent sporadic task of task τi has an effec-
tive relative deadline Di − Si, execution time Ci, and
period Ti. The existence of t∗ implies that the demand∑
τi∈T max

{
0,
(⌊

t∗−(Di−Si)
Ti

⌋
+ 1
)
· Ci
}

of task execution
from a to a + t∗ (usually called the demand bound function
in the literature) is strictly greater than the interval length t∗.
Therefore, it is not possible to feasibly schedule this release
pattern of task set T.

Proof of Lemma 4.
There are a few properties for the necessary condition of

the worst-case release pattern:

1) We only have to check one job execution of task τn.
2) All the higher-priority tasks only release their jobs be-

tween the arrival time and the finishing time of each
computation segment of task τn.

3) All the self-suspension intervals of task τn always take
the worst case. All the jobs and all the computation
segments are executed with their worst-case execution
time specifications.

The proof of the above properties can be found in [4]. These
three properties were also implicitly used in [29]. We can now
use the above properties to prove Lemma 4. For task τ1 in
Tred, since T1 < Sjn for any j = 1, 2, . . . ,M − 1, the release
pattern of task τ1 is independent from the computation seg-
ments. This is formally proved in Property 2 in [4]. Moreover,
since Ti > Dn for i = 2, 3, . . . , 3M+1, such a higher-priority
task τi in Tred only releases one job together with one of the
M computation segments of the job (under analysis) of task
τn. This is formally proved in Property 3 in [4]. By putting
all the above conditions together, we reach the conclusion for
Lemma 4.

Proof of Lemma 11. This comes directly from Lemma
13, that can be proved by using the k2U framework in [5].
The automatic parameter derivation procedure for the k2U
framework has been recently developed by Chen et al. [6], i.e.,
Corollary 1 in [6], as a powerful tool for the k2U framework.
The details can be found in [5], [6]. Here, we sketch the
proof for completeness in Lemma 13. We can directly link
the schedulability test in Eq. (4) to Eq. (8), by setting C ′k as
Ck + Sk and γ as γk. This results in the test in Eq. (5).

Before proving Lemma 13, we give one definition and one
important lemma from the k2U framework [5].5

5Here, we use C′k instead of Ck .
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w1 R(w1) w2 R(w2) w3 R(w3) w4 R(w4) w5 R(w5) w6 R(w6) X Y
∑6
j=1R(wj)

0 2V + 1 3.5V 7.5V + 1 0.4V 2.4V + 1 0.6V 2.6V + 1 1.5V 4.5V + 1 0 2V + 1 {1, 3, 4, 6} {2, 5} 21V + 6
V 4V + 1 2.5V 5.5V + 1 − − − − − − − − {3, 4, 6} {2, 5} 21V + 6
− − 1.5V 4.5V + 1 − − − − − − V 4V + 1 {3, 4} {2, 5} 22V + 6
− − V 4V + 1 V 4V + 1 − − 1.4V 4.4V + 1 − − {4} {5} 23V + 6
− − − − − − V 4V + 1 1V 4V + 1 − − ∅ ∅ 24V + 6

TABLE II: An example of Lemma 7

Definition 3 (Chen, Huang, and Liu [5]): A k-point ef-
fective schedulability test is a sufficient schedulability test of
a fixed-priority scheduling policy, that verifies the existence of
tj ∈ {t1, t2, . . . tk} with 0 < t1 ≤ t2 ≤ · · · ≤ tk such that

C ′k +

k−1∑
i=1

αitiUi +

j−1∑
i=1

βitiUi ≤ tj , (6)

where C ′k > 0, αi > 0, Ui > 0, and βi > 0 are dependent
upon the setting of the task models and task τi.

Lemma 12 (Chen, Huang, and Liu [5]): For a given k-
point effective schedulability test of a scheduling algorithm,
defined in Definition 3, in which 0 < tk and 0 < αi ≤ α, and
0 < βi ≤ β for any i = 1, 2, . . . , k− 1, task τk is schedulable
by the scheduling algorithm if the following condition holds

C ′k
tk
≤

α
β + 1∏k−1

j=1 (βUj + 1)
− α

β
. (7)

Lemma 13: Suppose that Ti ≤ Tk, for each task τi ∈
hp(τk), where hp(τk) is the set of the tasks with higher-priority
than task τk in the fixed-priority scheduling algorithm, i.e.,
rate-monotonic (RM). For a schedulability test

∃0 < t ≤ Tk s.t. C ′k +
∑

τi∈hp(τk)

(⌈
t

Ti

⌉
Ci + γCi

)
≤ t, (8)

where γ ≥ 0, task τk is schedulable if(
C ′k
Tk

+ (1 + γ)

) ∏
τi∈hp(τk)

(Ui + 1) ≤ 2 + γ. (9)

Proof: The proof is a special case of Corollary 1 in [6].
Let gi be

⌊
Tk
Ti

⌋
and ti be giTi. By Ti ≤ Tk for i = 1, 2, . . . , k,

we know that gi ≥ 1. We index the tasks in hp(τk) ∪ {τk}
according to non-decreasing ti. Therefore, the left-hand side
of Eq. (8) at time t = tj is upper bounded by

C′k +

k−1∑
i=1

(⌈
tj
Ti

⌉
Ci + γCi

)

≤0 C′k +

j−1∑
i=1

(⌈
Tk

Ti

⌉
Ci + γCi

)
+

k−1∑
i=j

(⌈
ti
Ti

⌉
Ci + γCi

)

≤1 C′k +

j−1∑
i=1

((gi + 1)Ci + γCi) +

k−1∑
i=j

(giCi + γCi)

= C′k +

k−1∑
i=1

(giCi + γCi) +

j−1∑
i=1

Ci

=2 C′k +

k−1∑
i=1

(gi + γ)

gi
tiUi +

j−1∑
i=1

1

gi
tiUi, (10)

where the inequality ≤0 comes from t1 ≤ t2 ≤ · · · ≤ tj ≤

tj+1 ≤ · · · ≤ tk = Tk in our index rule, the inequality ≤1

comes from
⌈
Tk
Ti

⌉
≤
⌊
Tk
Ti

⌋
+ 1 = gi + 1, and =2 comes from

the setting that Ci = UiTi =
1
gi
tiUi. That is, the test in Eq.

(8) can be safely rewritten as

(∃tj |j = 1, 2, . . . , k), C ′k +

k−1∑
i=1

αitiUi +

j−1∑
i=1

βitiUi ≤ t,

where Ui = Ci/Ti, αi = gi+γ
gi
≤ 1 + γ and βi = 1

gi
≤ 1 for

i = 1, 2, . . . , k − 1. Therefore, we use α = 1 + γ and β = 1
and apply Lemma 12 to reach the conclusion of this lemma.

Proof of of Theorem 7. Suppose that task τk is not
schedulable by RM scheduling due to the failure to pass
the schedulability test in Lemma 11. Without loss of gen-
erality, we assume Ck + Sk ≤ Tk here for proving the
speedup factor. By the fact that the arithmetical mean is
greater than or equal to the geometric mean, we know that
(
∏k−1
i=1 (1 + Ui))

1
k−1 ≤ (1 +

∑k−1
i=1 Ui
k−1 ), which implies that∏k−1

i=1 (1 + Ui) ≤ (1 +
∑k−1
i=1 Ui
k−1 )k−1 ≤ e

∑k−1
i=1 Ui . Therefore,(

Ck + Sk
Tk

+ 1 + γk

) k−1∏
i=1

(1 + Ui) > 2 + γk

⇒
(
Ck + Sk
Tk

+ 1 + γk

)
e
∑k−1
i=1 Ui > 2 + γk. (11)

⇒
k−1∑
i=1

Ui > ln

(
2 + γk

Ck+Sk
Tk

+ 1 + γk

)
≥1 ln

(
3

Ck+Sk
Tk

+ 2

)
.

The inequality ≥1 is due to the fact that 0 ≤ γk ≤ 1
and the implicit assumption Ck + Sk ≤ Tk. Therefore, by
contrapositive, we reach the conclusion of the utilization bound

ln

(
3

Ck+Sk
Tk

+2

)
for RM scheduling. The speedup factor is

simply the reciprocal of the utilization bound.

Appendix B: An example of Lemma 7
We use an example to illustrate how the procedure in

Lemma 7 operates. Suppose that w1 = 0, w2 = 3.5V,w3 =
0.4V,w4 = 0.6V,w5 = 1.5V,w6 = 0 when M = 6
and V is an integer multiple of 10. We will start from
X = {1, 3, 4, 6} and Y = {2, 5}. As shown in Table II,
the operation makes

∑6
j=1R(wj) increase. Note that the

conclusion
∑M
j=1R(wj) ≤ M(4V + 1) − |X|V in Lemma 7

was for |X| = {3, 4} in this example when wj < 2V for any
j ∈ Y.
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