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Abstract—For real-time embedded systems, self-suspending
behaviors can cause substantial performance/schedulability
degradations. In this paper, we focus on preemptive fixed-priority
scheduling for the dynamic self-suspension task model on unipro-
cessor. This model assumes that a job of a task can dynamically
suspend itself during its execution (for instance, to wait for shared
resources or access co-processors or external devices). The total
suspension time of a job is upper-bounded, but this dynamic
behavior drastically influences the interference generated by this
task on lower-priority tasks. The state-of-the-art results for this
task model can be classified into three categories (i) modeling
suspension as computation, (ii) modeling suspension as release
jitter, and (iii) modeling suspension as a blocking term. However,
several results associated to the release jitter approach have been
recently proven to be erroneous, and the concept of modeling
suspension as blocking was never formally proven correct. This
paper presents a unifying response time analysis framework for
the dynamic self-suspending task model. We provide a rigorous
proof and show that the existing analyses pertaining to the three
categories mentioned above are analytically dominated by our
proposed solution. Therefore, all those techniques are in fact
correct, but they are inferior to the proposed response time
analysis in this paper. The evaluation results show that our
analysis framework can generate huge improvements (an increase
of up to 50% of the number of task sets deemed schedulable) over
these state-of-the-art analyses.

I. INTRODUCTION

The periodic/sporadic task model has been recognized as
the basic model for real-time systems with recurring execu-
tions. The seminal work by Liu and Layland [24] considered
the scheduling of periodic tasks and presented the schedula-
bility analyses based on utilization bounds to verify whether
the deadlines are met or not. For decades, researchers in
real-time systems have devoted themselves to effective design
and efficient analyses of different recurrent task models to
ensure that tasks can meet their specified deadlines. In most
of these studies, a task usually does not suspend itself. That
is, after a job is released, the job is either executed or stays
in the ready queue, but it is not moved to the suspension
state. Such an assumption is valid only under the following
conditions: (1) the latency of the memory accesses and I/O
peripherals is considered to be part of the worst-case execution
time of a job, (2) there is no external device for accelerating
the computation, and (3) there is no synchronization between
different tasks on different processors in a multiprocessor or
distributed computing platform.

If a job can suspend itself before it finishes its computation,
self-suspension behaviour has to be considered. Due to the
interaction with other system components and synchroniza-
tion, self-suspension behaviour has become more visible in
designing real-time embedded systems. Typically, the resulting
suspension delays range from a few microseconds (e.g., a

write operation on a flash drive [17]) to a few hundreds of
milliseconds (e.g., offloading computation to GPUs [18], [26]).

There are two typical models for self-suspending sporadic
task systems: 1) the dynamic self-suspension task model, and
2) the segmented self-suspension task model. In the dynamic
self-suspension task model, e.g., [1], [2], [10], [16], [20],
[23], [27], in addition to the worst-case execution time Ci of
sporadic task τi, we have also the worst-case self-suspension
time Si of task τi. In the segmented self-suspension task
model, e.g., [5], [9], [14], [15], [21], [28], the execution
behaviour of a job of task τi is specified by interleaved
computation segments and self-suspension intervals. From the
system designer’s perspective, the dynamic self-suspension
model provides a simple specification by ignoring the juncture
of I/O access, computation offloading, or synchronization.
However, if the suspending behaviour can be characterized by
using a segmented pattern, the segmented self-suspension task
model can be more appropriate.

In this paper, we focus on preemptive fixed-priority
scheduling for the dynamic self-suspension task model on a
uniprocessor platform. To verify the schedulability of a given
task set, this problem has been specifically studied in [1], [2],
[16], [20], [27]. The recent report by Chen et al. [11] and the
report by Bletsas et al. [4] have shown that several analyses
in the state-of-the-art of self-suspending tasks [1], [2], [20],
[27] are in fact unsafe. Unfortunately, those misconceptions
propagated to several works [6], [7], [13], [19], [22], [30]–
[32] analyzing the worst-case response time for partitioned
multiprocessor real-time locking protocols. Moreover, Liu and
Chen in [23] provided a utilization-based schedulability test
based on a hyperbolic-form. Huang et al. [16] explored the
priority assignment under the same system model.

Furthermore, one result presented by Jane W. S. Liu in her
book ”Real-Time Systems” [25, p. 164-165] and implicitly
used by Rajkumar, Sha, and Lehoczky [29, p. 267] for an-
alyzing the self-suspending behaviour due to synchronization
protocols in multiprocessor systems, was never proven correct.
Contributions. The contributions of this paper are as follows:
• We provide a new response analysis framework for

dynamic self-suspending sporadic real-time tasks on a
uniprocessor platform. The key observation is that the
interference from higher-priority self-suspending tasks
can be arbitrarily modelled as jitter or carry-in terms.
• We prove that the new analysis analytically dominates all

the state-of-the-art results, excluding the flawed ones.
• We prove the correctness of the analysis initially proposed

in [25, p. 164-165] and [29, p. 267], which were never
proven correct in the state-of-the-art1.

1A simplified version of the proof of Theorem 1 to support the correctness
of [25, p. 164-165] and [29, p. 267] is provided in [8].



• The evaluation results presented in Section VIII show
the huge improvement (an increase of up to 50% of the
number of task sets that are deemed schedulable) over the
state-of-the-art.

II. TASK MODEL

We assume a system τ composed of n sporadic self-
suspending tasks. A sporadic task τi is released repeatedly,
with each such invocation called a job. The jth job of τi,
denoted by τi,j , is released at time ri,j and has an absolute
deadline at time di,j . Each job of task τi is assumed to have
a worst-case execution time Ci. Furthermore, a job of task τi
may suspend itself for at most Si time units (across all of its
suspension phases). When a job suspends itself, it releases the
processor and another job can be executed. The response time
of a job is defined as its finishing time minus its release time.
Successive jobs of the same task have to execute in sequence.

Each task τi is characterized by the tuple (Ci, Si, Di, Ti),
where Ti is the period (or minimum inter-arrival time) of τi
and Di is its relative deadline. Ti specifies the minimum time
between two consecutive job releases of τi, while Di defines
the maximum amount of time a job can take to complete its
execution after its release. It results that for each job τi,j ,
di,j = ri,j + Di and ri,j+1 ≥ ri,j + Ti. In this paper, we
focus on constrained-deadline tasks, for which Di ≤ Ti. The
utilization of a task τi is defined as Ui = Ci/Ti.

The worst-case response time (WCRT) Ri of a task τi is the
maximum response time among all its jobs. A schedulability
test for a task τk is therefore to verify whether its worst-case
response time is no more than its relative deadline Dk. In this
paper, we only consider preemptive fixed-priority scheduling
running on a single processor platform, in which each task
is assigned with a unique priority level. We assume that the
priority assignment is given beforehand and that the tasks are
numbered in a decreasing priority order. That is, a task with a
smaller index has a higher priority than any task with a higher
index, i.e., task τi has a higher-priority than task τj if i < j.

When performing the schedulability analysis of a specific
task τk, we will implicitly assume that all the higher priority
tasks (i.e., τ1, τ2, . . . , τk−1) are already verified to meet their
deadlines, i.e., that Ri ≤ Di,∀τi | 1 ≤ i ≤ k − 1.

III. BACKGROUND

To analyze the worst-case response time (or the schedula-
bility) of a task τk, one usually needs to quantify the worst-
case interference exerted by the higher-priority tasks on the
execution of any job of task τk. In the ordinary sequential
sporadic real-time task model, i.e., when Si = 0 for every task
τi, the so-called critical instant theorem by Liu and Layland
[24] is commonly adopted. That is, the worst-case response
time of task τk (if it is less than or equal to its period) happens
for the first job of task τk when (i) τk and all the higher-
priority tasks release their first jobs synchronously and (ii) all
their subsequent jobs are released as early as possible (i.e.,
with a rate equal to their periods). However, this definition of
the critical instant does not hold for self-suspending tasks.

The analysis of self-suspending task systems requires to
model the self-suspending behavior of both the task τk under
analysis and the higher priority tasks that interfere with τk. The
techniques employed to model the self-suspension are usually
different for τk and the higher priority tasks. The worst-case
for τk happens when its jobs suspend whenever there is no
higher-priority job in the system. The resulting behavior is
therefore similar as if the suspension time Sk of task τk was

converted into computation time (see [16] for more detailed
explanations). Second, for the higher-priority tasks, we need
to consider the self-suspension behaviour that may result in
the largest possible interference for task τk. There exist three
approaches in the state-of-the-art that are potentially sound to
perform the schedulability analysis of self-suspending tasks:
• modeling the suspension as execution, also known as the

suspension-oblivious analysis (see Section III-A);
• modeling the suspension as release jitter (see Sec-

tion III-B);
• modeling the suspension as blocking time (see Sec-

tion III-C).
We later prove in Section VI that all these approaches are
analytically correct.

A. Suspension-Oblivious Analysis
The simplest analysis consists in converting the suspension

time Si of each task τi as a part of its computation time.
Therefore, a constrained-deadline task τk can be feasibly
scheduled by a fixed-priority scheduling algorithm if

∃t | 0 < t ≤ Dk, Ck + Sk +

k−1∑
i=1

⌈
t

Ti

⌉
(Ci + Si) ≤ t. (1)

B. Modeling the Suspension as Release Jitter
Another approach consists in modeling the impact of the

self-suspension Si of each higher priority task τi as release
jitter. Several works in the state-of-the-art [1], [2], [20], [27]
upper bounded the release jitter with Si. However, it has been
recently shown in [4] that this upper bound is unsafe and the
release jitter of task τi can in fact be larger than Si.

Nevertheless, it was proven in the same document [4]
that the jitter of a higher-priority task τi can be safely upper
bounded by Ri−Ci. It results that a task τk with a constrained
deadline can be feasibly scheduled under fixed-priority if

∃t | 0 < t ≤ Dk, Ck+Sk+

k−1∑
i=1

⌈
t+Ri − Ci

Ti

⌉
Ci ≤ t. (2)

C. Modeling the Suspension as Blocking Time
In [25, p. 164-165], Liu proposed a solution to study the

schedulability of a self-suspending task τk by modeling the
extra delay suffered by τk due to the self-suspension behavior
of each task in τ as a blocking time.2 This blocking time has
been defined as follows:

• The blocking time contributed from task τk is Sk.
• A higher-priority task τi can block the execution of task
τk for at most min(Ci, Si) time units.

An upper bound on the blocking time is therefore given by:
Bk = Sk +

∑k−1
i=1 min(Ci, Si). In [25], the blocking time is

then used to derive a utilization-based schedulability test for
rate-monotonic scheduling. Namely, it is stated that, if Ti = Di

for every task τi ∈ τ and Ck+Bk

Tk
+
∑k−1
i=1 Ui ≤ k(2

1
k −1), then

τk can be feasibly scheduled with rate-monotonic scheduling.
The same concept was also implicitly used by Rajkumar,

Sha, and Lehoczky in [29, p. 267] for analyzing the impact of
the self-suspension of a task due to the utilization of synchro-
nization protocols in multiprocessor systems. (See Appendix

2Even though the authors in this paper are able to provide a proof to support
the correctness, the authors are not able to provide any rationale behind this
method which treats suspension time as blocking time.



in the report [10] for details.) If the above argument is correct,
we can further prove that a constrained-deadline task τk can
be feasibly scheduled under fixed-priority scheduling if

∃t | 0 < t ≤ Dk, Ck +Bk +

k−1∑
i=1

⌈
t

Ti

⌉
Ci ≤ t. (3)

However, there is no proof in [25] nor in [29] to support the
correctness of those tests. Therefore, in Section VI, we provide
a proof (see Theorem 4) of the correctness of Equation (3).

IV. RATIONALE

Even though it can be proven that the response time analy-
sis associated with Eq.(3) dominates the suspension oblivious
one (see Lemma 15 in Section VI), none of the analyses
presented in Section III dominates all the others. Hence,
Eqs. (2) and (3) are incomparable. That is, in some cases
Eq. (3) performs better than Eq. (2), while in others Eq. (2)
outperforms Eq. (3).

Example 1. Consider the two tasks τ1 = (4, 5, 10, 10) and
τ2 = (6, 1, 19, 19). The worst-case response time of τ1 is
obviously 9 whatever the analysis employed. However, the
upper bound on R2 obtained with Eq. (2) is 15, while it is
19 with Eq. (3). The solution obtained with Eq. (2) is tighter.

Now, let us consider one more task τ3 = (4, 0, 50, 50).
Using Eq. (2), the worst-case response time R3 of task τ3
is upper bounded by the smallest t > 0 such that t = 4 +⌈
t+9−4

10

⌉
4+
⌈
t+15−6

19

⌉
6, which turns out to be 42. With Eq. (3)

though, B3 = 4 + 1 = 5 and an upper bound on R3 is given
by the smallest t > 0 such that C3 +B3 +

∑2
i=1

⌈
t
Ti

⌉
Ci ≤ t.

The solution to this last equation is t = 37. Therefore, Eq. (3)
provides a tighter bound on R3 than Eq. (2), while the opposite
was true for τ2.

In addition to the fact that Eqs. (2) and (3) are incompara-
ble, there are task sets for which both equations overestimate
the worst-case response time, e.g., in the following example.

Example 2. Consider the same three tasks as in Example 1.
As explained in Section III-B, the extra interference caused
by the self-suspending behavior of τ1 can be safely modeled
by a release jitter equal to R1 − C1 = 5. Similarly, the
extra interference caused by the self-suspension of τ2 can
be modeled by a blocking time equal to min(C2, S2) = 1
(see Section III-C). Hence, the worst-case response time R3

of τ3 is upper bounded by the smallest t > 0 such that
t = 4 + 1 +

⌈
t+5
10

⌉
4 +

⌈
t

19

⌉
6, which turns out to be 33. This

bound on R3 is smaller than the estimates obtained with both
Eqs. (2) and (3) (see Example 1).

Example 2 shows that a tighter bound on the worst-case
response time of a task can be obtained by combining the
properties of the analyses discussed in both Section III-B
and III-C. Therefore, in this paper, we derive a response time
analysis that draws inspiration from both Eqs. (2) and (3),
combining the best of each of them. As further proven in
Section VI, the resulting schedulability test dominates all the
tests discussed in Section III.

V. A UNIFYING ANALYSIS FRAMEWORK

In all this section, we implicitly assume that Ri ≤ Di,∀τi |
1 ≤ i ≤ k−1. This assumption is implicitly used as a fact in all
the theorems and lemmas. Therefore, the worst-case response
time or the schedulability of task τk has to be verified from

k = 1, 2, . . . , n. Here we only focus on the analysis of a certain
task τk, under the assumption that we have already validated
that Ri ≤ Di ≤ Ti,∀τi | 1 ≤ i ≤ k − 1 (by using any method
in this section or Section III). Our key result in this paper are
the two following theorems:

Theorem 1. Suppose that all tasks τ` | 1 ≤ ` ≤ k are
schedulable, (i.e., R` ≤ T`). Then, for any arbitrary vector
assignment ~x = (x1, x2, . . . , xk−1), in which xi is either 0 or
1, the worst-case response time Rk of τk is upper bounded by
the minimum t larger than 0 such that

Ck + Sk +

k−1∑
i=1

⌈
t+Q~x

i + (1− xi)(Ri − Ci)

Ti

⌉
Ci ≤ t (4)

where Q~xi
def
=
∑k−1
j=i (Sj × xj).

Theorem 2. Suppose that τk is not schedulable (i.e.,
Rk > Tk). For any arbitrary vector assignment ~x =
(x1, x2, . . . , xk−1), in which xi is either 0 or 1, we have
∀t|0 < t ≤ Tk,

Ck + Sk +

k−1∑
i=1

⌈
t+Q~x

i + (1− xi)(Ri − Ci)

Ti

⌉
Ci > t

where Q~xi
def
=
∑k−1
j=i (Sj × xj).

By Theorems 1 and 2, we can directly derive the following
schedulability test.

Corollary 1. If ∀τi | 1 ≤ i < k, Ri ≤ Ti, and if there is a
vector ~x = (x1, x2, . . . , xk−1) with xi ∈ {0, 1}, such that

∃t|0 < t ≤ Dk,

Ck + Sk +

k−1∑
i=1

⌈
t+Q~x

i + (1− xi)(Ri − Ci)

Ti

⌉
Ci ≤ t (5)

where Q~xi
def
=
∑k−1
j=i (Sj × xj), then the constrained-deadline

task τk is schedulable under fixed-priority.

Proof: Let t∗ be the first positive value of t respecting
Eq. (5). By the assumptions stated in the claim, t∗ exists and
t∗ is smaller than or equal to the deadline Dk. By Theorems 1
and 2, t∗ exists and is smaller than or equal to Dk only if τk
is schedulable.

The proof of correctness of Theorems 1 and 2, and hence
Corollary 1 is provided in Section V-A. Moreover, we will
later prove in Section VI, that Corollary 1 in fact dominates
all the analyses discussed in Section III.

We now use the same example as in Section IV, to
demonstrate how Corollary 1 can be applied.

Example 3. Consider the same three tasks used in Examples 1
and 2, i.e., τ1 = (4, 5, 10, 10), τ2 = (6, 1, 19, 19) and
τ3 = (4, 0, 50, 50). By the analysis in Example 1, R1 is upper
bounded by 9 and R2 is upper bounded by 15. Let us assume
R1 = 9 and R2 = 15 in the rest of this example. There
are four possible vector assignments ~x when considering the
schedulability of task τ3 with Corollary 1. The corresponding
procedure to use these four vector assignments can be found
in Table I. Among the above four cases, the tests in Cases 2
and 4 are the tightest.

Note also that the upper bound on R3 computed in Ex-
ample 3, is lower than the estimated worst-case response time
obtained in Example 2. The response time analysis presented
in Corollary 1 is therefore tighter than the simple combination
of existing analysis techniques as proposed in Example 2.



~x Case 1: (0, 0) Case 2: (0, 1) Case 3: (1, 0) Case 4:(1, 1)

(Q~x
1 , Q

~x
2 ) (0, 0) (1, 1) (5, 0) (6, 1)

condition of Eq. (5) 4 +
⌈

t+0+5
10

⌉
4 +

⌈
t+0+9

19

⌉
6 ≤ t 4 +

⌈
t+1+5

10

⌉
4 +

⌈
t+1+0

19

⌉
6 ≤ t 4 +

⌈
t+5+0

10

⌉
4 +

⌈
t+0+9

19

⌉
6 ≤ t 4 +

⌈
t+6+0

10

⌉
4 +

⌈
t+1+0

19

⌉
6 ≤ t

upper bound of R3 42 32 42 32

TABLE I: Detailed procedure in Example 3 for deriving the upper bound of R3, with R1 − C1 = 5 and R2 − C2 = 9.

A. Proof of Correctness
We now provide the proof to support the correctness of

the response time analysis presented in Theorem 1, whatever
the binary values used in vector ~x. Throughout the proof, we
consider any arbitrary assignment ~x, in which xi is either 0 or
1. For the sake of clarity, we classify the k− 1 higher-priority
tasks into two sets: T0 and T1. A task τi is in T0 if xi is
0; otherwise, it is in T1. Our analysis is also based on very
simple properties and lemmas enunciated as follows:

Property 1. In a preemptive fixed-priority schedule, the lower-
priority jobs do not impact the schedule of the higher-priority
jobs.

Lemma 1. In a preemptive fixed-priority schedule, if the
worst-case response time of task τi is no more than its period
Ti, removing a job of task τi does not affect the schedule of
any other jobs of task τi.

Proof: The proof is in Appendix in the report [10].
We now present the detailed proof of Theorems 1 and 2

using the properties stated above. Since the proof is quite long,
we will also provide examples to demonstrate the key steps in
the proof and lemmas to support intermediate results.

Let Ψ be a fixed-priority preemptive schedule of the task
system τ . Suppose that a job Jk of task τk arrives at time rk
and finishes at time fk. By the assumption of Rk ≤ Tk, we
have fk ≤ rk + Rk ≤ rk + Tk. We first prove that Eq. (4)
gives us a safe upper bound on fk − rk for any job Jk in Ψ
if Rk ≤ Tk. The proof is built upon the three following steps:

1) We discard all the jobs that arrive before rk and do not
contribute to the response time of Jk in the schedule Ψ.
We follow an inductive strategy by iteratively inspecting
the schedule of the higher priority tasks in Ψ, starting with
τk−1 until the highest priority task τ1. At each iteration,
a time instant tj is identified such that tj ≤ tj+1 (1 ≤
j < k). Then, all the jobs of task τj released before tj
are removed from the schedule and, if needed, replaced
by an artificial job mimicking the interference caused by
the residual workload of task τj at time tj .

2) The final reduced schedule is analyzed to characterize
important properties of the reduced schedule in Step 1.

3) We then prove that the response time analysis in Eq. (4)
is indeed an upper bound on the worst-case response time
Rk of τk.

Step 1: Reducing the schedule Ψ

Our purpose in this step is to discard all the jobs that arrive
before rk and have no impact on the response time of Jk in the
schedule Ψ. During this step, we iteratively build the schedules
from Ψk to Ψ1 mentioned above. Based on a given schedule
Ψj+1 (with 1 ≤ j < k), we build the fixed-priority schedule
Ψj such that the response time of Jk remains identical. At
each iteration, we define tj for task τj in the schedule Ψj+1

and build Ψj by removing all the jobs released by τj before
tj . We then prove that the response time of Jk in the reduced

fixed-priority schedule Ψ1 remains the same as the response
time of Jk in the original fixed-priority schedule Ψ.

Basic step (definition of Ψk and tk):

We define Ψk as the schedule in which (i) all high-priority
tasks τ1, . . . , τk−1 release their jobs at the exact same instants
as in Ψ, (ii) τk releases only one job at time rk, (iii) the low-
priority tasks τk+1, . . . , τn do not release any job, and (iv)
all jobs suspend their execution after the exact same execution
time as in Ψ. Moreover, since Jk is released at time rk and does
not finish strictly before fk, the total amount of idle time of the
system from rk to fk is at most Sk. In the converted schedule
Ψk, we further convert the idle time as part of the execution
time of Jk. After the conversion by considering suspension as
computation for job Jk, we know that the worst-case execution
time of Jk is upper bounded by C ′k = Sk + Ck. As already
discussed in Section III, such a conversion has been widely
used. For notational brevity, we denote this job Jk as a release
of task τ ′k = (Ck+Sk, 0, Dk, Tk). It is obvious that Ψk remains
as a fixed-priority schedule.

Lemma 2. The response time of Jk in Ψk is the same as the
response time of Jk in Ψ.

Proof: We know by Property 1 that the lower priority
tasks τk+1, τk+2, . . . , τn do not impact the response time
of Jk. Therefore, not releasing them has no impact on the
response time Jk. Moreover, since we assume that the worst-
case response time of task τk is no more than Tk, Lemma 1
proves that none of the jobs of task τk except Jk impacts the
schedule of Jk. Since all the other parameters (i.e., releases
and suspensions) that may influence the scheduling decisions
are kept identical between Ψ and Ψk, the response time of Jk
in Ψk is identical to the response time of Jk in Ψ.

To allow the induction defined below, we also define tk as
the release time of Jk (i.e., tk

def
= rk).

Induction step (definition of Ψj and tj with 1 ≤ j < k):

We define four cases in order to build Ψj from Ψj+1.

Case 0. If all the jobs of task τj are released at or after tj+1 in
schedule Ψj+1, then we define Ψj as being identical to Ψj+1

and set tj
def
= tj+1.

Now, let us consider that task τj releases at least one job
before tj+1 in Ψj+1. Let rj be the arrival time of the last job
released by τj before tj+1 in Ψj+1 and let Jj denote that job.
By definition, rj < tj+1. Let c∗j be the remaining execution
time of Jj at time tj+1 in Ψj+1. By definition, 0 ≤ c∗j ≤ Cj .
In the rest of the proof, c∗j is called τj’s residual workload.

We start by setting Ψj to be identical as Ψj+1. Then, all the
jobs of task τj that arrive before rj are immediately removed
from Ψj . That is, all jobs released in Ψj have identical
suspension and execution behavior as in Ψj+1, and task τj
does not release any job before rj in Ψj . There are three cases
to decide how we include or exclude Jj in Ψj as follows:



τ1

τ2

τ3

τ4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

f4t4t3
.

(a) Ψ, Ψ4 and Ψ3

τ1
release an artifical job of τ2 at time 6

τ2

τ3

τ4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

f4t4t3
t2

t1

(b) Ψ2 and Ψ1

Fig. 1: An illustrative example of Step 1 in the proof of Theorem 1 when ε = 0.1.

Case 1. If τj ∈ T1 and Jj does not complete its execution by
tj+1 in the schedule Ψj+1 (i.e., c∗j > 0), then tj

def
= rj and

Jj is included in Ψj . In this case, task τj releases its jobs at
exactly the same instants in Ψj+1, i.e., at and after rj .
Case 2. If τj ∈ T1 and Jj completes its execution before or
at tj+1 in the schedule Ψj+1 (i.e., c∗j = 0), then tj

def
= tj+1

and Jj is further removed and excluded from Ψj . In this case,
task τj releases its jobs at exactly the same instants in Ψj+1

after rj .

Case 3. If τj ∈ T0, then tj
def
= tj+1 and (i) τj releases its jobs

at the same instants in Ψj+1 after rj (i.e., exclude Jj in Ψj),
and (ii) an artificial (or additional) job Ja with execution time
Ca

def
= c∗j and the same priority as τj is released at time tj+1.

This artificial job follows the same execution and suspension
behavior as job Jj after tj+1.

After the above procedures, it is obvious that the resulting
schedule Ψj remains as a fixed-priority schedule.

Lemma 3. The response time of Jk in Ψj is the same as the
response time of Jk in Ψj+1.

Proof: If Case 0 is applied, then Ψj and Ψj+1 are
identical. The response time of Jk is thus unchanged and the
claim trivially holds.

For the rest of the proof, we use the four following facts:
Fact 1. For any ` such that j ≤ ` < k, there is t` ≤ t`+1 and
τ` does not release any job before t` in Ψj .
Fact 2. No job of τk, . . . , τn are released before tk in Ψk.
Fact 3. By the assumption that Rj ≤ Dj ≤ Tj for
j = 1, 2, . . . , k − 1, removing all the jobs of task τj arrived
before rj has no impact on the schedule of any other job
released by τj (Lemma 1) or any higher priority job released by
τ1, . . . , τj−1 (Property 1). Moreover, by Facts 1 and 2, no task
with a priority lower than τj (tasks τj+1, . . . , τn) release jobs
before tj+1 in Ψj+1. Therefore, removing the jobs released and
completed by τj before rj does not impact the schedule of the
jobs of τj+1, . . . , τn. Consequently, we can safely remove all
the jobs of task τj arrived and completed before tj+1 without
impacting the response time of Jk.
Fact 4. Since by Facts 1 and 2, no task with a priority lower
than τj (tasks τj+1, . . . , τn) releases jobs before tj+1 in Ψj+1,
replacing Jj with the created artificial job (which has the same
execution and suspension behavior as Jj from tj+1) has no
impact on the schedule of τj+1, . . . , τn in Ψj+1.

We now consider the three remaining cases:
In Case 1, Ψj is built from Ψj+1 by removing all the jobs
released by τj before rj . All the excluded jobs have therefore

completed their execution at tj+1 and by Fact 3, this has no
impact on the execution of any job executed after tj+1 and
thus on the response time of Jk.
In Case 2, Ψj is built from Ψj+1 by removing all the jobs
released by τj before tj+1. Since Jj completes before tj+1, by
Fact 3, none of the excluded jobs impacted the response time
of Jk. The response time of Jk in Ψj thus remains unchanged
in comparison to its response time in Ψj+1.
In Case 3, all the jobs of τj released before tj+1 are removed
and the job of task τj arrived at time rj is replaced by a new
job released at time tj+1 with execution time c∗j and the same
priority as τj . By Facts 3 and 4, the interference generated
by τj and the additional job on job released at or after tj+1

remains identical between Ψj and Ψj+1. Thus, the response
time of Jk is unchanged.
Conclusion of Step 1:

This iterative process is repeated until producing Ψ1. The
procedures are well-defined and it is therefore guaranteed that
Ψ1 can be constructed. A pseudo-code of Ψ1’s generation
procedure can be found in Appendix in the report [10]. Note
that after each iteration, the number of jobs considered in the
resulting schedule has been reduced, yet without affecting the
response time of Jk, as proven in the following lemma.

Lemma 4. The response time of job Jk in Ψ1 is the same as
the response time of Jk in Ψ.

Proof: By Lemma 2, the reponse time of τk in Ψk is
identical to the response time of Jk in Ψ. And by inductively
applying Lemma 3, we get that the response time of τk in Ψk

is identical to the response time of τk in Ψk−1, Ψk−2, . . . , Ψ1.
This proves the lemma.

Example 4. Consider 4 tasks τ1 = (1, 1, 6, 6), τ2 =
(1, 6, 10, 10), τ3 = (4, 1, 18, 18) and τ4 = (5, 0, 20, 20). We
assume x1 = 1, x2 = 0 and x3 = 1. Figure 1(a) depicts a
possible schedule Ψ4 of those tasks. We assume that the first
job of task τ1 arrives at time 4 + ε with 0 < ε < 0.5. The
first job of task τ2 suspends itself from time 0 to time 5 + ε,
and is blocked by task τ1 from time 5 + ε to time 6 + ε. After
executing ε amount of time, the first job of task τ2 suspends
itself again from time 6 + 2ε to 7. The schedule in Figure 1(a)
is drawn for ε = 0.1.

In the schedule illustrated in Figure 1(a), f4 is 20 − ε.
Based on the definition of tk, t4 = 7. Then, we set t3 to 6 by
applying Case 1. The schedule Ψ3 is identical to the original
schedule Ψ4. When considering task τ2, we know that J2 is
the job of task τ2 arrived at time r2 = 0 < t3. Since task
τ2 belongs to T0, by applying Case 3, we have t2 = t3 = 6
and the residual workload c∗2 is 1. Then, we remove job J2

from the schedule and create an artificial job with execution



time c∗2 that is released at time t2 and assign the artificial job
the same priority level as task τ2. Note that this artificial job
can still suspend itself. Therefore, the schedule Ψ2, as drawn in
Figure 1(b), is slightly different from Ψ3, shown in Figure 1(a).
Yet, the response time of J4 is unchanged. Finally, t1 is set to
4+ ε by applying Case 1 since J1 (arrived at time r1 = 4+ ε)
has not completed yet at time t2 = 6. The schedule Ψ1 is
identical to the schedule Ψ2.

Step 2: Analyzing the reduced schedule Ψ1

We now analyze the properties of the final fixed-priority
schedule Ψ1 in which all the unnecessary jobs have been
removed. This step is based on the simple fact that for any
interval [t1, t) with t ≤ fk, there is

idle(t1, t) + exec(t1, t) = (t− t1) (6)

where exec(t1, t) is the amount of time during which the
processor executes tasks within [t1, t), and idle(t1, t) is the
amount of time during which the processor remains idle within
the interval [t1, t).

We first provide an upper bound on idle(t1, t) (see
Lemma 5 and Corollary 2), then on exec(t1, t) (see Lemmas 6
to 9). Finally, in Lemma 10, we combine those results with
Eq. (6) in order to characterise the schedule Ψ1 in [t1, fk).

We start our analysis with idle(t1, t) when t1 < t ≤ fk. Let
σj be the amount of time during which the processor remains
idle within [tj , tj+1) in Ψ1.

Lemma 5. For j = 1, 2, . . . , k − 1, σj = xj × σj ≤ xj × Sj .

Proof: If Case 1 is applied on τj when we build Ψj in Step
1, (i) xj = 1, (ii) tj is set to the release time rj of the job Jj ,
and (iii) Jj has not completed its execution yet at time tj+1.
By (ii) and (iii), the amount of time during which the processor
may remain idle within [tj , tj+1) is at most the suspension time
Sj of τj . Thus, σj ≤ Sj . And by (i), σj = xj ×σj ≤ xj ×Sj .

If Cases 0, 2 or 3 is applied on τj when we build Ψj in
Step 1, then tj is equal to tj+1 and by definition, σj = 0. It
results that σj = xj × σj ≤ xj × Sj .
Corollary 2. For i = 1, 2, . . . , k − 1, ∀t|ti < t ≤ ti+1,

idle(t1, t) ≤
i∑

j=1

xjσj ≤
i∑

j=1

xjSj (7)

Proof: Since ti < t ≤ ti+1, idle(t1, t) ≤
∑i
j=1 σj . And

by Lemma 5, idle(t1, t) ≤
∑i
j=1 xjσj ≤

∑i
j=1 xjSj

Example 5. As shown in the schedule in Example 4, the total
idle time from 4+ ε to 20− ε, i.e., from 4+ ε to 5+ ε and from
6+2ε to 7, is 2−2ε, which is upper-bounded by S1 +S3 = 2.

We now consider exec(t1, t) when t1 < t ≤ fk. Be-
cause there is no job released by lower priority tasks than
τ ′k in Ψ1, we only focus on the execution of the tasks
(τ1, τ2, . . . , τk−1, τ

′
k). Let execj(t1, t) be the (accumulative)

amount of time that task τj is executed in the schedule Ψ1 in
the time interval (t1, t]. By the construction of the schedule
Ψ1, we know that execj(t1, tj) must be equal to 0 since task
τj is not executed between t1 and tj . Therefore, execj(t1, t)
is equal to execj(tj , t) if t > tj .

Lemma 6. ∀t|tk ≤ t < fk, the (accumulative) amount of time
that task τ ′k is executed from tk to t is execk(tk, t) < C ′k.

Proof: Since the finishing time of job Jk is at time fk in
schedule Ψ1, the condition holds by definition.

Lemma 7. If task τj ∈ T1, then ∀∆ ≥ 0 we have

execj(tj , tj + ∆) ≤W 1
j (∆)

where

W 1
j (∆)

def
=

⌊
∆

Tj

⌋
Cj + min

{
∆−

⌊
∆

Tj

⌋
Tj , Cj

}
. (8)

Proof: If task τj ∈ T1, then Case 0, 1 or 2 is applied when
building Ψ1 in Step 1. In this case, Ψ1 does not contain any job
of task τj arrived before tj (i.e., no residual workload of τj at
time tj). Furthermore, execj(tj , tj+∆) is maximized when the
jobs released by τj after tj are actually executing, and hence
do not suspend themselves (i.e., τj acts as a sporadic tasks
without self-suspension). Since, as shown in the literature [3],
W 1
j (∆), which is usually called workload function, is an upper

bound on the amount of execution time that a sporadic task can
execute without self-suspension, we know that execj(tj , tj +
∆) of τj from tj to tj + ∆ is upper bounded by W 1

j (∆).

Lemma 8. If τj ∈ T0, then ∀∆ ≥ 0 we have

execj(tj , tj + ∆) ≤ Ŵ 0
j (∆, c∗j )

where

Ŵ 0
j (∆, c∗j ) =


W 1

j (∆) if c∗j = 0

∆ if c∗j > 0 and ∆ ≤ c∗j
c∗j if c∗j > 0 and c∗j < ∆ ≤ ρj
c∗j +W 1

j (∆− ρj) if c∗j > 0 and ρj < ∆

(9)

and ρj = (Tj −Rj + c∗j ).

Proof: If task τj ∈ T0, then Case 0 or 3 is applied when
building Ψ1 in Step 1. Therefore, there might be a job Jj
arrived before tj with a residual workload 0 ≤ c∗j ≤ Cj at
time tj . The case when c∗j = 0 is identical to the proof of
Lemma 7. We now consider the cases where c∗j > 0. Since by
assumption Rj ≤ Dj ≤ Tj , task τj respects all its deadlines
and the worst-case response time, the absolute deadline of the
job Jj of τj that is not completed yet at tj , must be at least
tj + c∗j . Therefore, the earliest arrival time of a job of task
τj strictly after tj is at least tj + c∗j + (Tj − Rj) = tj +
ρj . Since there is no other job of task τj released in [tj , ρj)
except the artificial job with the residual workload c∗j created
based on Jj , we know that execj(tj , tj +∆) is upper bounded
by min

{
∆, c∗j

}
for ∆ ≤ ρj , thereby proving cases 2 and

3 of Eq. (9). Furthermore, by assumption Jj completes its
execution before or at tj + ρj . Therefore, following the same
proof as Lemma 7, execj(tj + ρj , tj + ∆) is upper bounded
by W 1

j (∆− ρj) when ∆ > ρj . This proves the fourth case of
Eq. (9).

For notational brevity, let W 0
j (∆)

def
= Ŵ 0

j (∆, Cj). We also
prove that, for any ∆ ≥ 0, W 0

j (∆) ≥ Ŵ 0
j (∆, c∗j ):

Lemma 9. ∀∆ ≥ 0, W 0
j (∆) ≥ Ŵ 0

j (∆, c∗j ).

Proof: The proof is based on simple observations of the
workload function. The proof is in Appendix in the report [10].

Now that we have derived upper bounds on the idle time
idle(t1, t) and the execution time execj(tj , tj + ∆) of each
task τj executed in Ψ1, we inject those results in Eq. (6) in



order to derive properties on the schedule in any interval [t1, t)
for any t1 < t < fk.

Lemma 10. ∀t | ti ≤ t < ti+1 where i = 1, 2, . . . , k − 1

i∑
j=1

(
xj · (W 1

j (t− tj) + σj) + (1− xj) ·W 0
j (t− tj)

)
≥ t− t1. (10)

And, ∀t | tk ≤ t < fk,

C′k +

k−1∑
j=1

(
xj · (W 1

j (t− tj) + σj) + (1− xj) ·W 0
j (t− tj)

)
> t− t1.

(11)

Proof: We combine the three following facts:
1. By Eq. (6), idle(t1, t) + exec(t1, t) = t− t1.

2. By Corollary 2, idle(t1, t) ≤
∑i−1
j=1 xjσj for all t | ti ≤ t <

ti+1 and i = 1, 2, . . . , k − 1.3

3. By the construction of the schedule Ψ1, we know that
execj(t1, tj) = 0 since task τj is not executed between t1 and
tj . Therefore, execj(t1, t) = 0 if t < tj and execj(t1, t) =
execj(tj , t) if t > tj . Since xj = 0 if τj ∈ T0 and
xj = 1 if τj ∈ T1, by Lemmas 7, 8 and 9, we have for
all t | ti ≤ t < ti+1 and i = 1, 2, . . . , k − 1,

exec(t1, t) =

i∑
j=1

execj(t1, t) =

i∑
j=1

execj(tj , t)

≤
i∑

j=1

(
xj ·W 1

j (t− tj) + (1− xj) · Ŵ 0
j (t− tj , c∗j )

)

≤
i∑

j=1

(
xj ·W 1

j (t− tj) + (1− xj) ·W 0
j (t− tj)

)
(12)

Therefore, combining Corollary 2, Eq. (12) and Eq. (6),
we obtain Eq. (10).

Moreover, since τ ′k does not complete its execution strictly
before fk and because, by definition, τ ′k does not self-suspend,
we also know that idle(tk, t) = 0 for tk ≤ t < fk. Therefore,
using Corollary 2, we get for all t | tk ≤ t < fk

idle(t1, t) ≤
k−1∑
j=1

xjσj . (13)

Furthermore, by Lemma 6, execk(tk, t) < C ′k for t < fk.
Therefore, adding execk(tk, t) to Eq. (12), we get for all t |
tk ≤ t < fk

exec(t1, t) < C′k +

k−1∑
j=1

(
xj ·W 1

j (t− tj) + (1− xj) ·W 0
j (t− tj)

)
.

(14)

Combining Eqs. (13), (14) and (6), we obtain Eq. (11).

Example 6. Consider the same 4 tasks as in Example 4, for
which a possible schedule was depicted in Figure 1 when ε is
very close to 0. We have x1σ1 = 1, x2σ2 = 0 and x3σ3 =
1− 2ε. The corresponding functions W 1

1 (t− t1), W 0
2 (t− t2),

W 1
3 (t − t3) are illustrated in Figure 2 when ε is close to 0

and R2 = 10. As can be seen in Figure 2, the inequalities of
Eqs. (10) and (11) clearly hold.

3The readers may think of using the condition idle(t1, t) ≤
∑i−1

j=1 xjSj in
Eq. (7) to replace σj with Sj . But, this will create a serious problem in Step
3 later, since we cannot always guarantee that t∗i ≤ ti for i = 1, 2, . . . , k in
Step 3 if we do so in Step 2. Such a treatment should not be applied at this
moment here.

Before moving to Step 3, the following lemma is useful
for setting the upper bounds of the workload functions.

Lemma 11. For any ∆ > 0, we have

W 1
j (∆) ≤

⌈
∆

Tj

⌉
Cj (15)

W 0
j (∆) ≤

⌈
∆ +Rj − Cj

Tj

⌉
Cj (16)

Proof: The upper bound of W 1
j (∆) is trivial. Therefore,

we focus on the upper bound of W 0
j (∆).

If 0 < ∆ ≤ Cj , then by Eq. (9), W 0
j (∆) = ∆ ≤ Cj ≤⌈

∆+Rj−Cj

Tj

⌉
Cj .

If ∆ > Cj , then by the third and fourth case of Eq. (9)

W 0
j (∆) ≤ Cj +W 1

j (∆− (Tj −Rj + Cj))

≤ Cj +

⌈
∆− Tj + (Rj − Cj)

Tj

⌉
Cj =

⌈
∆ +Rj − Cj

Tj

⌉
Cj .

Step 3: Creating a Safe Response-Time Upper Bound
The conditions in Lemma 10 cannot be used directly since

the values tj (j = 1, 2, . . . , k) are unknown in the general
case. Therefore, Step 3 constructs a safe response-time analysis
based on the conditions specified by Eqs. (10) and (11) in
Lemma 10. Our goal in this step is to prove that Eq. (4) in
Theorem 1 covers all the cases listed in Lemma 10 for any
fixed-priority schedule Ψ1 generated from schedule Ψ.

Our proof strategy is to first artificially move ti to t∗i for
i = 1, 2, . . . , k such that t∗i ≤ ti. We define t∗i as follows:

t∗i
def
=

{
t1 if i = 1

t∗i−1 + xi−1 × σi−1 if i = 2, 3, . . . , k
(17)

and we prove that t∗i is indeed smaller than or equal to ti.

Lemma 12. t∗i ≤ ti for i = 1, 2, . . . , k.

Proof: By the definition of σi, we know that σi ≤ ti+1−ti
for i = 1, 2, . . . , k − 1. Therefore, for i = 2, 3, . . . , k,

ti = t1 +

i−1∑
j=1

(tj+1 − tj) ≥ t1 +

i−1∑
j=1

σj ≥ t1 +

i−1∑
j=1

xjσj = t∗i

since xj ∈ {0, 1} for any j = 1, 2, . . . , i − 1. Finally, the
property trivially holds for i = 1.

Lemma 13. ∀t | t∗k ≤ t < fk,

C ′k+

k−1∑
j=1

xj ·W 1
j (t−t∗j )+(1−xj) ·W 0

j (t−t∗j ) > t−t∗k. (18)

Proof: Because tj ≥ t∗j by Lemma 12, we have ∀∆ ≥ 0

W 1
j (∆) ≤W 1

j (∆ + (tj − t∗j )) (19)

W 0
j (∆) ≤W 0

j (∆ + (tj − t∗j )). (20)

It results that, for j = 1, 2, . . . , k−1, W 1
j (t−tj) ≤W 1

j (t−
t∗j ) and W 0

j (t − tj) ≤ W 0
j (t − t∗j ) for any t ≥ tj . Injecting

those two inequalities into Eq. (10) ∀t | t∗k ≤ t < tk leads to4

k−1∑
j=1

xj · (W 1
j (t− t∗j ) + σj) + (1− xj) ·W 0

j (t− t∗j ) ≥ t− t1,

4This holds since the interval [t∗k, tk] is fully covered by the interval [t1, tk].
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Fig. 2: The workload function for the three higher-priority tasks in
Example 4 when ε is very close to 0. Solid black line: W 1

1 (t −
t1) when t ≥ t1, Dashed black line: W 0

2 (t − t2) when t ≥ t2,
Dotted black line: W 1

3 (t−t3) when t ≥ t3, where the three workload
functions are 0 if t− tj < 0 for j = 1, 2, 3, Blue line (the only linear
function from t = 4 in this figure): t − t1, Red line (marked by
Eq. (10) and Eq. (11)): left-hand side of Eq. (10) when t < 7 and
left-hand side of Eq. (11) when 7 ≤ t < 20.

and because by Eq. (17), t∗k
def
= t1 +

∑k−1
j=1 xjσj , we get

k−1∑
j=1

xj ·W 1
j (t− t∗j ) + (1− xj) ·W 0

j (t− t∗j ) ≥ t− t∗k, (21)

since C ′k ≥ Ck > 0, it finally holds that

C′k +

k−1∑
j=1

xj ·W 1
j (t− t∗j ) + (1− xj) ·W 0

j (t− t∗j ) > t− t∗k. (22)

Similarly, injecting Eqs. (19) and (20) into Eq. (11) ∀t |
tk ≤ t < fk leads to

C′k +

k−1∑
j=1

xj ·W 1
j (t− t∗j ) + (1− xj) ·W 0

j (t− t∗j ) > t− t∗k. (23)

By Eq. (22) (valid for ∀t | t∗k ≤ t < tk) and Eq. (23) (valid
∀t | tk ≤ t < fk), we prove the lemma.

Lemma 14. ∀θ | 0 ≤ θ < fk − t∗k,

C ′k +

k−1∑
j=1

⌈
θ +Xj + (1− xj)(Rj − Cj)

Tj

⌉
Cj > θ, (24)

where Xj is
∑k−1
`=j x`σ`.

Proof: By Eq. (17), we have t∗j = t∗k −
∑k−1
`=j x`σ`.

Therefore, ∀t | t∗k ≤ t < fk, we have
t − t∗j = t − t∗k +

∑k−1
`=j x`σ` = t − t∗k + Xj for every

j = 1, 2, . . . , k − 1. By using Lemma 11 and t − t∗j
above, we can rewrite the condition in Lemma 13 as C ′k +∑k−1
j=1

(
xj

⌈
t−t∗k+Xj

Tj

⌉
Cj + (1− xj)

⌈
t−t∗k+Xj+Rj−Cj

Tj

⌉
Cj

)
>

t − t∗k, ∀t | t∗k ≤ t < fk. Since xj is either 0 or 1, this is
equivalent to ∀t | t∗k ≤ t < fk,

C ′k +

k−1∑
j=1

⌈
t− t∗k +Xj + (1− xj)(Rj − Cj)

Tj

⌉
Cj > t− t∗k

By replacing t− t∗k with θ, we reach the conclusion.
Proof of Theorem 1. The condition in Lemma 14
implies that the minimum θ with θ > 0 and C ′k +
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Fig. 3: The workload function for the three higher-priority tasks in
Example 4 when ε is very close to 0. Solid black line: W 1

1 (t −
t∗1) when t ≥ t∗1, Dashed black line: W 0

2 (t − t∗2) when t ≥ t∗2,
Dotted black line: W 1

3 (t−t∗3) when t ≥ t∗3, where the three workload
functions are 0 if t− t∗j < 0 for j = 1, 2, 3, Blue line (the only linear
function from t = 6 in this figure): t− t∗k = t− 6, Red line (marked
by Eq. (21) and Eq. (23)): left-hand side of Eq. (21) when t < 7 and
left-hand side of Eq. (23) and Eq. (18) when 7 ≤ t < 20, Purple line
(marked by Eq. (18) when 6 ≤ t < 7), Gray dotted line (marked by
Eq. (24)) by setting θ = t− 6.

∑k−1
j=1

⌈
θ+Xj+(1−xj)(Rj−Cj)

Tj

⌉
Cj = θ is larger than or equal

to fk− t∗k ≥ fk− tk and therefore provides an upper bound on
any job Jk released in any schedule Ψ. However, the condition
in Lemma 14 still requires the knowledge of σi. Yet, it is
straightforward to see that

∑k−1
j=1

⌈
θ+Xj+(1−xj)(Rj−Cj)

Tj

⌉
Cj

is maximized when Xj is the largest. Since by Lemma 5
Xj =

∑k−1
`=j x`σ` ≤

∑k−1
`=j x`S` = Q~xj , we reach the

conclusion of the correctness of Theorem 1 when replacing
Xj with Q~xj in the previous equation.

Example 7. We consider Example 4 when ε is very close to
0 to illustrate Step 3 in the proof of Theorem 1. For such a
case, t∗1 = 4, t∗2 = 5, t∗3 = 5, and t∗4 = 6. Figure 3 presents
the corresponding relations of the inequalities in Step 3. As
shown in Figure 3, all the inequalities in Eqs. (21), (23), (18),
and (24) hold.

As mentioned at the beginning of this section, all the
lemmas and corollaries proven above are valid for any job
in any schedule Ψ where all the jobs respect their deadlines.
Yet, those results are still valid for the first job of task τk that
misses a deadline in a schedule Ψ (if such a job exists). This
allows us to prove Theorem 2 below.

Proof of Theorem 2. By the assumption that Rk > Tk, there
exists a schedule Ψ such that the response time of at least
one job of τk is strictly larger than Tk. Let Jk be the first
job in the schedule Ψ that has response time larger than Tk.
Suppose that Jk arrives at time rk. When job Jk is released
at time rk, there is no other unfinished job of task τk. By
Lemma 1, we can safely remove all the other jobs of task τk
arrived before rk without affecting the response time of Jk.
It is rather straightforward to see that removing all the other
jobs of task τk arrived after rk also does not change the fact
that Jk finishes after rk + Tk. Let fk be the time at which Jk
finishes in the above schedule after removing the other jobs of
task τk. We know that fk − rk > Tk.

Then, we can follow all the procedures and steps in
the proof of Theorem 1 to reach the same conclusion in
Lemma 14, which implies Theorem 2 by setting Xj ≤ Q~xj for
j = 1, 2, . . . , k−1 since fk−rk > Tk and C ′k = Ck+Sk.



VI. DOMINANCE OVER THE STATE OF THE ART

In this section, we prove that the schedulability test pre-
sented in Corollary 1 dominates all the existing tests in the
state-of-the-art, in the sense that if a task set is deemed
schedulable by either of the tests presented in Section III, then
it is also deemed schedulable by Corollary 1.

Lemma 15. The schedulability test of task τk provided by
Eq. (3) dominates that of Eq. (1).

Proof: For any t > 0, it is straightforward to see that

Ck + Sk +

k−1∑
i=1

⌈
t

Ti

⌉
(Ci + Si)

≥Ck + Sk +

k−1∑
i=1

Si +

k−1∑
i=1

⌈
t

Ti

⌉
Ci

≥Ck + Sk +

k−1∑
i=1

min(Ci, Si) +

k−1∑
i=1

⌈
t

Ti

⌉
Ci

and by using the definition of Bk (i.e., in Section III-C), we
get

Ck + Sk +

k−1∑
i=1

⌈
t

Ti

⌉
(Ci + Si) ≥ Ck +Bk +

k−1∑
i=1

⌈
t

Ti

⌉
Ci

Therefore, Eq. (3) will always have a solution which is smaller
than or equal to the solution of Eq. (1). This proves the lemma.

Lemma 16. The schedulability test presented in Corollary 1
dominates the schedulability test provided by Eq. (2).

Proof: Consider the case where x1 = x2 = · · · = xk−1 =
0. Eq. (5) becomes identical to Eq. (2) for this particular vector
assignment. Therefore, if Eq. (2) deems a task set as being
schedulable, so does Corollary 1. This proves the lemma.

Lemma 17. The schedulability test presented in Corollary 1
dominates the schedulability test provided by Eq. (3).

Proof: In this proof, we first transform the worst-case
response time analysis presented in Corollary 1 in a more
pessimistic analysis. We then prove that this more pessimistic
version of Corollary 1 provides the same solution as Eq. (3),
which then proves the lemma. Due to space limitation, the
proof is in Appendix in the report [10].

Theorem 3. The schedulability test presented in Corollary 1
dominates the schedulability tests provided by Equations (1),
(2), and (3).

Proof: It is a direct application of Lemmas 15, 16 and 17.

As a corollary of this theorem, it directly follows that all
the response time analyses discussed in Section III are in fact
correct. This provides the first proof of correctness for Eq. (3),
which was initially presented in [25] but never proven correct.

Theorem 4. The schedulability tests provided by Eqs (1), (2),
and (3) are all correct.

Proof: It directly results from the two following facts,
(i) by Theorem 3, the schedulability test presented in Corol-

lary 1 dominates the schedulability tests provided by
Equations (1), (2), and (3);

(ii) as proven in Section V-A, Corollary 1 is correct.

VII. LINEAR APPROXIMATION

To test the schedulability of a task τk, Corollary 1
implies to test all the possible vector assignments ~x =
(x1, x2, . . . , xk−1) to get the tightest result (under our anal-
ysis). Therefore, 2k−1 possible combinations should be tested,
implying exponential time complexity. In this section, we thus
provide a solution to reduce the time complexity associated to
Corollary 1. Indeed, using a linear approximation of the test
in Eq. (5), a good vector assignment can be derived in linear
time.

By the definition of the ceiling operator, it holds that:

Ck + Sk +

k−1∑
i=1

⌈
t+
∑k−1

`=i x`S` + (1− xi)(Ri − Ci)

Ti

⌉
Ci

≤Ck + Sk +

k−1∑
i=1

(
t+
∑k−1

`=i x`S` + (1− xi)(Ri − Ci)

Ti
+ 1

)
Ci

=Ck + Sk +

k−1∑
i=1

(
Ui · t+ Ci + Ui(1− xi)(Ri − Ci) + Ui

k−1∑
`=i

x`S`

)
(25)

Moreover, using the simple algebra property that for any
two vectors ~a and~b of size (k−1) there is

∑k−1
i=1 ai

∑k−1
j=i bj =∑k−1

j=1 bj
∑j
i=1 ai, we get that

∑k−1
i=1 Ui

∑k−1
`=i x`S` =∑k−1

i=1 xiSi
∑i
`=1 U`. Hence, injecting this last expression in

Eq. (25), it holds that

Ck + Sk +

k−1∑
i=1

⌈
t+
∑k−1

`=i x`S` + (1− xi)(Ri − Ci)

Ti

⌉
Ci

≤Ck + Sk +

k−1∑
i=1

(
Ui · t+ Ci + Ui(1− xi)(Ri − Ci) + xiSi

i∑
`=1

U`

)

It results that the minimum positive value for t such that

Ck + Sk +

k−1∑
i=1

(
Uit+ Ci + Ui(1− xi)(Ri − Ci) + xiSi

i∑
`=1

U`

)
≤ t

(26)

is an upper bound on the worst-case response time Rk of τk.
Observing Eq. (26), the contribution of xi can be individu-

ally determined as Ui(Ri−Ci) when xi is 0 or Si(
∑i
`=1 U`)

when xi is 1. Therefore, whether xi should be set to 0 or 1
can be decided by individually comparing the two constants
Ui(Ri−Ci) and Si(

∑i
`=1 U`). Eq. (26) is therefore minimized

when xi = 1 if Ui(Ri−Ci) > Si(
∑i
`=1 U`) and when xi = 0

otherwise. We denote the resulting vector by ~xlin , where, for
each higher-priority task τi,

xlini =

{
1 if Ui(Ri − Ci) > Si(

∑i
`=1 U`)

0 otherwise
(27)

The following properties directly follow.

Property 2. For any t > 0, the vector assignment ~xlin
minimizes the solution to Eq. (26) among all 2k−1 possible
vector assignments.

Theorem 5. Let rbfk(t, ~xlin) be the left hand side of Eq. (26).
Task τk is schedulable under fixed-priority if

rbfk(Dk, ~x
lin) ≤ Dk. (28)
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Fig. 4: Number of schedulable task sets over 1000 randomly generated task sets.

Proof: It directly follows from Corollary 1 and the fact
that, by construction, Eq. (26) upper bounds Eq. (4). Note that
rbfk(t, ~xlin) can be expressed as A+

∑k−1
i=1 Uit with a constant

A > 0 (independent from t). Therefore, if the condition in
Eq. (26) holds for a certain 0 < t < Dk with A+

∑k−1
i=1 Uit ≤

t, then the inequality A+
∑k−1
i=1 UiDk ≤ Dk also holds.

Property 3. The time complexity of both deriving ~xlin and
testing Eq. (26) is O(k).

VIII. EXPERIMENTS

In this section, we present experiments conducted on
randomly generated task sets. Five schedulability tests are
compared, namely, the suspension oblivious approach (Sec-
tion III-A), the modeling of suspension as release jitter (Sec-
tion III-B), the analysis that models the suspension as a block-
ing term (Section III-C), the generic framework of Corollary 1
(called ECRTS 16 in the plots) and the schedulability test
of Theorem 1 based on the vector defined in Eq. (27) in
Section VII (called ECRTS 16 linear in the plots). In those
experiments, the tasks are assumed to be scheduled with rate
monotonic and have implicit deadlines (i.e., Di = Ti).

The task sets were generated using the randfixedsum
algorithm presented in [12]. Let C ′i denote the sum of Ci and
Si (i.e., C ′i

def
= Ci +Si). The modified utilization of τi is then

given by U ′i
def
= C ′i/Ti and the total modified utilization is

U ′
def
=
∑n
i=1 U

′
i . The task generator uses the randfixedsum

algorithm to generate n values of U ′i (one for each task) with
total modified utilization U ′. A period Ti is then randomly
generated from a uniform distribution spanning from 100 to
10000. The value C ′i = U ′i × Ti is then divided in the two
components Ci and Si using a random ratio ri from a uniform
distribution between a value rmin and rmax depending of the
specific experiment performed. That is, Si

def
= ri×C ′i and Ci =

(1 − ri) × C ′i. Each point in the plots of Figure 4 represents
the number of task sets that were deemed schedulable by the
respective algorithm over 1000 experiments.

Four different types of experiments are reported in this
paper. The first one is illustrated in Figure 4a. It presents the
evolution of the number of task sets deemed schedulable when
the number of self-suspending tasks increases. The number of
tasks n is varied from 4 to 10 for a total modified utilization
U ′ of 0.95. As can be seen in Figure 4a, at the exception of the
suspension oblivious analysis, the performance of the tests is
barely influenced by the number of tasks. In fact, the number
of task sets found schedulable by the test of Corollary 1 and
the linear test of Section VII slightly increases with the number

of tasks. It is the opposite behavior in the suspension oblivious
approach. One can already conclude from this plot that the tests
developed in this paper perform way better than the state-of-
the-art. Furthermore, the difference between the performance
of Corollary 1 and its linear version is quite small, thereby
making the linear test a practical and useful analysis.

The second experiment is presented in Figure 4b and shows
the evolution of the performance of the tests with respect to
the length of the total suspension time of a task when the
total modified utilization U ′ and the number of tasks are kept
constant. The value of rmax is then varied from 10% to 90%,
hence increasing the number of tasks with high suspension
times. The value rmin is kept constant at 5%, so as to keep a
certain diversity in the suspension behavior of each task. As
expected, the suspension oblivious approach does not accept
any task set since the total modified utilization is equal to
100%. For the other tests however, the number of schedulable
task sets increases when the suspension times become larger.
Indeed, the actual workload, which accounts only for the
WCET Ci, decreases when Si increases. Again, one can see
the improvement of the tests of this paper over the state-of-
the-art. Interestingly, one can also witness the incomparability
of the jitter-based and the blocking based schedulability tests.

The last two plots (Figures 4c and 4d), present the results
obtained when the total modified utilization increases but
the distribution of suspension times and the number of tasks
remain identical. As expected, the number of schedulable task
sets decreases when the utilization increases. The improvement
of Corollary 1 over the state-of-the-art is still high when sus-
pension times are in average smaller than the execution times
of the tasks (see Figures 4c). However, when the suspension
time becomes larger than the execution time of the task (see
Figures 4d), the release jitter-based test performs almost as
well as Corollary 1 since the best vector assignment is usually
to set all the xi to 0 for such cases.

IX. CONCLUSION

In this paper, we studied the preemptive fixed-priority
scheduling of dynamic self-suspending tasks running on a
uniprocessor platform. This paper presents a unifying response
time analysis framework in Theorems 1 2 and Corollary 1. We
show that this result analytically dominates all the existing
analyses presented in Section III, and, by doing such, we
also implicitly proved the correctness of all these analyses.
Although Corollary 1 requires exponential time complexity,
we show that a simpler algorithm presented in Section VII
can help accelerate the analysis while outputting good results.
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