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Compensate or Ignore? Meeting Control Robustness
Requirements through Adaptive Soft-Error Handling

Kuan-Hsun Chen, Björn Bönninghoff, Jian-Jia Chen, and Peter Marwedel
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Fig. 1: Avg. performance and fail rate in a LegoNXT ex-
periment in relation to the maximum observed number of
erroneous task instances for any sliding window size k = 16.

Abstract—To avoid catastrophic events like unrecoverable
system failures on mobile and embedded systems caused by
soft-errors, software-based error detection and compensation
techniques have been proposed. Methods like error-correction
codes or redundant execution can offer high flexibility and allow
for application-specific fault-tolerance selection without the needs
of special hardware supports. However, such software-based
approaches may lead to system overload due to the execution
time overhead. An adaptive deployment of such techniques to
meet both application requirements and system constraints is
desired. From our case study, we observe that a control task
can tolerate limited errors with acceptable performance loss.
Such tolerance can be modeled as a (m, k) constraint which
requires at least m correct runs out of any k consecutive runs
to be correct. In this paper, we discuss how a given (m, k)
constraint can be satisfied by adopting patterns of task instances
with individual error detection and compensation capabilities.
We introduce static strategies and provide a formal feasibility
analysis for validation. Furthermore, we develop an adaptive
scheme that extends our initial approach with online awareness
that increases efficiency while preserving analysis results. The
effectiveness of our method is shown in a real-world case study
as well as for synthesized task sets.

CATEGORIES AND SUBJECT DESCRIPTORS

C.4 [Performance of Systems]: Fault tolerance; D.4.7 [Or-
ganization and Design]: Real-time systems and embedded
systems

KEYWORDS

Real-time and embedded systems, Fault-Tolerance,
Application-aware Adaptation

I. INTRODUCTION

Due to rising integration density, low voltage operation, and
environmental influences such as electromagnetic inference

and radiation, mobile and embedded systems are subject to
transient faults in the underlying hardware [1], which may
corrupt the correct application execution state or incur soft-
errors. Depending on the types and locations, a transient fault
may severely affect the execution or even ultimately prevent
lead to system failures. To avoid catastrophic events like
unrecoverable system failures, fault tolerant techniques can be
applied at software or hardware levels exploiting redundancy
to detect and eventually correct faults. The advantages of
software-based approaches for error-correction codes (ECC),
redundant execution, etc. [2], [3], [4], [5], [6], lie in both the
flexibility and application-specific assignment of techniques
as well as in the non-requirement for specialized hardware.
However, the additional computation incurred by such meth-
ods, e.g., redundant executions and majority-voting, can lead
to 2x-3x execution time overhead in most of the cases, where
the system may not be feasible due to the overloaded execution
demand.

For most of the systems, the criticality of a task is typically
related to the selection of the methods previously described.
However, due to the (potential) inherent safety margins and
noise tolerance of control tasks, a limited number of errors
might be tolerable and might only downgrade control per-
formance; however, such limited errors might not lead to an
unrecoverable system state. An initial experiment demonstrates
this effect for a simple LegoNXT path-tracing application.
While constantly going forward, an independent decision is
made for each job to ”fail” and to result in the robot steering
towards the outside of the track, in which light-sensors are
read periodically to stay on a circular track. This error leads
either to an increase of steering actions, or in the worst case to
leaving the track, which is consequently marked as a failed run.
From the history of the errors, we can derive the maximum
number of occurring in a given window size k. In Figure 1, we
show the average covered distance (compared to the maximum
recorded) as well as the rate at which the experiment failed in
binned sets of errors per window. The window can start from
any instance as a sliding-window policy. From the previous
experiment, we observe that a control task can tolerate limited
errors. Such errors of a control task can be modeled as a (m, k)
constraint which enforces a number m of correct runs out of
any k consecutive instances to be correct.

In control theory literature, techniques have been proposed
to aid control applications to be stable if some signal samples
are delayed [7], [8] or dropped [9], [10]. Using the (m, k)
constraint to bound the delay occurrence [7], [8] or even more
flexible model for varying intervals [10] has been studied in
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Fig. 2: Overview of the considered control application

the literature. Motivated by our initial experiment, we can see
that the margin of tolerable errors (e.g., delayed, dropped,
wrong) during task execution as the (m, k) constraint allows
us to exploit the availability of different protection schemes
or ignore soft-errors occasionally, so that the overhead of
additional handling can be greatly decreased. If faults are
not crucial, adopting techniques such as interpolation, moving
average, and fuzzy design can mitigate the effect of soft-
errors. In case a fault results in a completely wrong result,
such samples can be dropped and it is applicable to compute
a new input by using the previous inputs [7], [9], [10].

In most of control systems, quality of control is the main
objective. However if the system is faulty, maintaining the
correctness of all executions by trivially using full Error
Detection and Correction (EDAC) to each task instance can be
very costly. On the other hand, the (m, k) constraint may only
provide a minimum acceptable control performance. Therefore,
only satisfying the (m, k) constraint by executing m instances
with EDAC and skipping the following k − m instances is
not sufficient. Our objective is to have high quality of control
most of time without paying too much resource, so that the
system can still be robust in the worst case. The goal of
this paper is to investigate how and when to compensate,
or even ignore errors, given that we can choose from different
techniques and evaluate the incurred overhead. With proper
run-time decisions, we can reduce the average utilization of
the system, which also results in energy reduction.

One way to comply to a given (m, k) constraint is to adopt
static patterns that preselect the instances that are executed
with EDAC to ensure reliability. For example, all the instances
can be classified statically to provide guarantees on the behav-
ior of the control loop [7]. This can be a reasonable approach
for very high fault rates. However, such over-provisioning at
the expense of high overheads is likely for low fault rates,
as reliable execution is enforced even if the constraint would
not be violated most of time. Thus, if only providing error
detection while removing the overhead of the correction, we
can design a run-time adaptive approach which exploits the
reliable executions and is restricted to the cases where the
constraint would actually be broken.

A. Contributions

In this paper, we study how to enforce the given (m, k)
constraints that quantify the inherent fault tolerances of peri-
odic tasks within a control application. Different scheduling
approaches are presented and analyzed. Figure. 2 illustrates
an overview of our contributions, detailed as follows:

• We show that the given (mi, ki) constraint of a task τi can
be achieved by preselecting the reliable instances with a
static pattern. We call this Static Pattern-Based Reliable
Execution (See Section IV).

• To validate the proposed approaches, we provide a suf-
ficient schedulability test based on a multiframe task
model [11] (See Section IV-B).

• We present an adaptive approach to decide the executing
task versions on-the-fly by monitoring the erroneous
instances with sporadic replenishment counters, such that
the amount of expensive reliable instances can be greatly
reduced under low soft-error rates (See Section V).

• To show the effectiveness of our approaches, we conduct
extensive simulations based on synthesized task sets and
a case study consisting of a practical robotic application
for the resulting overhead and utilization under different
strategies and error-rates (See Section VI).

II. SYSTEM MODELS

This section provides the models and notation used in this
paper. First we describe the control applications, for which we
state our problem. Then, we provide a definition of a per-task
constraint to denote its robustness requirements as well as a
generalized model of tasks with variable software-based error
handling methods.

A. Control Application Model

We consider a control application has a set of control tasks
Γ = {τ1, τ2, . . . , τN}, in which all the tasks are independent
and preemptive. For each control task, the output will be used
by itself afterwards to compute the next control activity with
the sampled data periodically. With the above periodic closed-
loop feedback control application, we model each control task
τi as a periodic task which is associated to period Ti, and the
relative deadline of task τi is characterized by Di. A control
task τi releases task instances (also called jobs) repeatedly
by a period Ti. For simplicity of presentation, we consider
implicitly-deadline tasks throughout the paper, in which Di is
equal to Ti for task τi. To quantify the inherent tolerance of
tasks to recover from previous instances that produced either
none or faulty output, each task τi in a control application
is associated to a robustness requirement denoted by tuple
(mi, ki), where mi and ki are both positive integers and
0 < mi ≤ ki. That is, mi out of any ki consecutive jobs
must be correct. We assume that the robustness requirement
(mi, ki) can be given by other means analytically [8] or
empirically [10].

2
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B. Soft-Error Handling on Task Level
Tasks and resources accessed by them can be protected

against soft-errors using software-based fault tolerance tech-
niques. Depending on selected method, error detection requires
introducing redundant execution, special encoding of data [12],
or control-flow checking [13]. To allow for recovery, additional
effort is required, e.g., increased redundancy and voters [14].
As not all errors lead to critical failures of a task, but might
only deviate the output [15], selective protection can raise
efficiency but reduce quality by allowing incorrect output [16].
Without restriction to a specific method, we consider tasks to
be available in three versions. Applying software-based fault-
tolerance, the least protected version only provides detection
of errors that would affect the remaining system, but allows
incorrect output values. This version is referred to as unre-
liable. By adding the required protection, we obtain a error-
detecting version. The third version has full error detection and
correction and is thus called reliable. To denote the respective
versions and the resulting execution time, we use τui for
the unreliable version of the task, and cui for its worst-case
execution time (WCET). When applying an error detection
technique, the task is instead denoted by τdi , having WCET
cdi . The notation for the error-correcting version is τ ri with
WCET cri . Due to the rising overhead for error detection as
well as for error correction, we assume that cui < cdi < cri
holds.

C. Schedulability and Scheduling
To schedule all the above control tasks on a uniprocessor,

we assume preemptive fixed-priority scheduling, which assigns
each task a unique priority level. This is widely used in
the industrial practice and is also supported in most real-
time operating systems. A schedule is feasible if all the tasks
meet their deadline under the specified (mi, ki) constraints.
Throughout this paper, we consider the system adopts Rate-
Monotonic (RM) scheduling to schedule the control tasks from
the scheduling queue. All the control tasks in this paper are
indexed from 1 to N , in which τ1 has the highest priority and
τN has the lowest one. Hence, T1 ≤ T2 ≤ · · · ≤ TN .

To test if an approach is feasible under our system model,
one way is to use the utilization bound from the seminal
result of Liu and Layland (L&L) [17]. In addition, the well-
known time-demand analysis (TDA) developed in [18] is
also applicable and tighter than L&L bound. However, both
may reject many task sets which are schedulable actually if
we pessimistically take the execution time of error-correcting
(reliable) version to represent the worst case execution time
of each task.

Although we only use RM scheduling for simplicity of
presentation, the proposed approaches are not limited to RM
scheduling. They can be easily extended for constrained-
deadline tasks, in which Di ≤ Ti, and the priority assignment
policy should be changed to Deadline-Monotonic.

III. PROBLEM OVERVIEW

In the following, we provide an exemplary task set to
demonstrate the issues at hand. From here, we provide our

Task (mi, ki) cui cdi cri Ti
τ1 (2, 4) 1 1 + ε 2 4
τ2 (1, 1) x x 5 8

TABLE I: Example task set properties

τ1 (2, 4)

τ2

τ2 misses its deadline!
0 2 4 6 8 10 12 14 16 18 20

(1, 1)

(a) τ1 is fully protected with reliable versions.

τ1 (2, 4)

τ2

0 2 4 6 8 10 12 14 16 18 20

(1, 1)

(b) The reliable version of τ1 is executed with a static distribution trivially.

τ1 (2, 4)

τ2

0 2 4 6 8 10 12 14 16 18 20

(1, 1)

(c) τ1 is dynamically compensated with a reliable execution on the forth instance.

τ1 (2, 4)

τ2

τ2 misses its deadline!
0 2 4 6 8 10 12 14 16 18 20

(1, 1)

(d) τ1 is not feasible if an additional fault occurring at t = 4.

Fig. 3: Different ways to deal with soft-errors: The red block
presents the reliable executions, the green block presents the
executions with error detection, and the yellow block presents
the unreliable version without any protection.

problem definition to be considered in the following sections.

A. Motivational Example

Suppose that we are given two tasks τ1 and τ2 with
properties as defined in Table I. To satisfy the given constraint
(m2, k2) = (1, 1), only τ r2 is valid for execution, which
requires computation time cr2 = 5 for each instance. Assuming
transient faults occur at t = 0 and t = 8, the example
in Figure 3 demonstrates execution scenarios for different
compensation strategies. For simplicity of presentation, the
provided diagram starts from time point t = 0.

If all τ1 instances are naively activated with τ r1 to prevent
any effects from soft-errors, τ2 is clearly not schedulable due
to processor overload in Figure 3a. The overall system utiliza-
tion is over 100%, i.e., 2

4 + 5
8 > 1. To enforce the constraint

(m1, k1) for τ1, one way is to statically distribute the execution
of reliable instances τ r1 and unreliable instances τu1 in an
alternating pattern. This static approach will be introduced
as Static Pattern-Based Reliable Execution in Section IV-A.
As shown in Figure 3b, directly executing τ r1 on the second
and forth instances will guarantee satisfaction of the constraint
(m1, k1) = (2, 4) and avoid the processor overload even all
the instances are erroneous. However, it is obvious that this
approach is over-provisioning, as the fault does not occur on
the second instance under this distribution of errors, in which

3
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the possibility of correctness is wasted. In addition, the overall
utilization now is 100%, which may not be good in terms of
energy-saving.

In this paper, we provide a run-time adaptive approach
called Dynamic Compensation that enhances Static Pattern-
Based Reliable Execution by recognizing the need to execute
reliable instances dynamically instead of having a static sched-
ule. As shown in Figure 3c, we can see that reliable execution
is only activated once on the fourth instance, since satisfaction
of the constraint (m1, k1) would only be broken if an error
occurs in this instance. If the fail rate of the system is low or
ki is larger than mi greatly, the amount of expensive reliable
executions can be reduced significantly in this way. However,
if there is an additional fault which occurs at t = 4, the above
dynamic approach may be infeasible as Figure 3d.

Throughout the above example, it is not difficult to see that
applying EDAC efficiently is not a trivial task. While (mi, ki)
robustness constraints need to be enforced, the schedulability
of the system also needs to be considered. If EDAC can
only be activated before the moment that the constraint would
be broken, the resulting reduction of execution time can be
utilized to save energy, which may be good to most mobile
and embedded devices with the limitation of battery capacity.

B. Problem Definition

From the above example, we state the problem addressed in
this paper as follows: Suppose that we are given a set of inde-
pendent and preemptive control tasks Γ = {τ1, τ2, . . . , τn},
where each task τi is associated to an individual (mi, ki)
constraint. Each task has one unreliable version τui without
applying fault detection, one unreliable version τdi with fault
detection, and one reliable version τ ri , where the WCETs are
cui , cdi , and cri , respectively. The objective is to efficiently
utilize the processor by reducing the amount and thus the
overhead of reliable instances τ ri such that the system can
satisfy both its hard real-time and (mi, ki) constraints while
maintaining low overall utilization without skipping any in-
stance.

IV. STATIC PATTERN-BASED RELIABLE EXECUTION

In this section, we show how to enforce the (mi, ki)
constraints by applying (m, k) static patterns to allocate the
reliable executions for task τi. While the adopted pattern
will affect the schedulability, stability, and flexibility, deciding
the most suitable pattern is out-of-scope of this work. The
scheduling analysis and the example are provided at the end
of this section.

A. Static Pattern and EDAC Operation

To fully utilize the fault tolerance, it should be clear that
the most efficient way is to execute the reliable version of
task τi only at the essential instances by which the amount of
reliable jobs is equivalent to mi for every ki consecutive jobs
for a (mi, ki) constraint. To ease the static analysis as well as
to reduce the implementation cost, we utilize the well-known
concept of (m, k)-patterns [19], [20] that defines a partitioning

of jobs within any ki consecutive jobs. To adopt the concept
to apply to our purpose, we define the partitioning as follows:

Definition 1: The (m, k)-pattern of task τi is a binary string
Φi =

{
φi,0, φi,1, . . . φi,(ki−1)

}
which satisfies the following

properties: φi,j is a reliable instance if φi,j = 1 and a
unreliable instance if φi,j = 0 and

∑ki−1
j=0 φi,j = mi.

It is not difficult to see that if we can guarantee the reliable
instances in (m, k)-pattern are all correct, a (mi, ki) constraint
can be enforced with a static (m, k)-pattern by definition. A
trivial way is to directly execute the reliable version, which is
called Reliable Execution (RE) for the rest of paper. However,
directly applying the reliable version on each reliable instance
is not the only option. Giving a try with an unreliable version
before directly executing the reliable version in a same period
may also be feasible to deliver the correct instances, which is
called Detection and Recovery (DR). To notate briefly, both
static approaches for the rest of paper will be denoted as SRE
and SDR, respectively.

For implementation, each control task τi can use an index
to point out the current instance on a (m, k)-pattern Φi with
given (mi, ki) constraint. When the current instance in Φi is
reliable, the reliable version and the unreliable version with
fault detection should be executed accordingly depending upon
the adopted strategy, i.e., RE or DR. In contrast (index points
to an unreliable instance), the control task keep executing
the unreliable version without fault detection safely. After all,
(mi, ki) constraint will be satisfied through RE or DR with
a static (m, k)-pattern that the number of reliable instances
within window size ki must be equal to mi.

B. Offline Scheduling Analysis

Due to the availability of multiple versions for each τi,
the periodic control tasks may have different execution times
depending upon the executing versions. To validate the system
schedulability, we can utilize the multiframe task model pro-
posed by Mok and Chen [11] for describing our task set. Each
task can be transformed to a multiframe real-time task τi with
ki frames, period Ti, and an array of different execution times,
i.e., {ci,0, ci,1, . . . , ci,ki−1}, in which the array of execution
times for each task can be determined by given (mi, ki)-
patterns. Without loss of generality, we assume each task has at
least two frames, i.e., ki ≥ 2. If a task has a (1, 1) constraint,
we can artificially create a multiframe task with two same
execution time frames.

Definition 2: Let Ψi(ρ) be the maximum of the sum of the
execution times of any ρ consecutive frames of task τi. For
brevity, we define Ψi(0) = 0.
It is also clear that Ψi(1) is maxki−1

j=0 ci,j and Ψi(2) is
maxki−1

j=0 (ci,j + ci,((j+1) mod ki)). It is not difficult to see

that Ψi(ρ) is equal to Ψi(ρ mod ki)+
⌊
ρ
ki

⌋∑ki−1
j=0 ci,j when

ρ > ki.
With the critical instant of multiframe task by Definition

5 in [11], the schedulability test of task τq can be given as
follows, in which there are q − 1 higher-priority multiframe
tasks τ1, τ2, . . . , τq−1:

4
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Task (mi, ki) cui cdi cri Ti
τ1 (2, 4) 1 2 3 4
τ2 (1, 1) x x 5 8

TABLE II: Task set properties for schedulability example

Lemma 1: Suppose that all the multiframe tasks with higher
priority than τq are schedulable under fixed priority scheduling
on a uniproccessor, i.e., τ1, τ2, . . . , τq−1. Multiframe task τq
is schedulable, if

∃t with 0 < t ≤ Tq and Ψq(1) +

q−1∑
i=1

Ψi

(⌈
t

Ti

⌉)
≤ t. (1)

Proof. This directly comes from Theorem 5 and Lemma 6
by Mok and Chen in [11]. By using the definition of critical
instant [11], we can ensure that the task τq must be schedulable
under fixed-priority assignment, if there exists a time point t,
where the worst case response time is less than deadline Tq .

Since Lemma 1 takes all the maximum interference of
higher priority jobs for task τq into account, we can adopt
Ψq to find out the maximum of the execution times among
the frames of τq in offline. After all, we can build a table for
the first ki entries to construct a look-up table, and derive Ψρ

in O(k2i ) for ρ = 1, 2, . . . , ki − 1. To test the schedulability,
all the considered frames in the test should be introduced by
the worst case that all the unreliable instances are assumed to
be erroneous. For those two different strategies, i.e., DR and
RE, their Ψi(ρ) should be different, since their peak frames
with the maximum execution time are different. Given pattern
Φi, the precise rules to can be defined as follows:

• DR: For each unreliable instance, the execution time
should be calculated as cui for the unreliable version
without fault detection. As the worst case is re-executing
τ ri after τdi in the same period, each reliable instance in
Φi should be calculated as cdi + cri .

• RE: For each unreliable instance, the execution time can
be set as cui . As the worst case is executing τ ri directly,
the execution time of each reliable instance in Φi is cri .

We show the differences as defined in Table II. Assume the
given pattern is E-pattern [7], task τ1 with (2, 4) constraint
can be represented as Φ1 = {0, 1, 0, 1}. For DR strategy,
according to the above rule, Φ1 =

{
cu1 , c

d
1 + cr1, c

u
1 , c

d
1 + cr1

}
.

Therefore, by checking with Lemma 1, we can know that task
τ2 is unschedulable with DR strategy. When t = T2 = 10,

Ψ2(1) + Ψ1

(⌈
10

4

⌉)
> 10, (2)

where Ψ2(1) = cr2 and Ψ1(3) = cu1 + 2 × cd1 + 2 × cr1. For
RE strategy, pattern Φi can be transferred to {cu1 , cr1, cu1 , cr1}.
Again, we can test whether task τ2 is schedulable by Eq (3).
When t = 8,

Ψ2(1) + Ψ1

(⌈
8

4

⌉)
≤ 8, (3)

where Ψ2(1) = cr2 and Ψ1(2) = cu1 + cr1. Therefore, we know
the given tasks set is schedulable with RE strategy.

V. DYNAMIC COMPENSATION

As we reveal in the motivational example, it is too pes-
simistic to allocate the reliable instances strictly due to the
fact that soft-errors randomly happen from time to time. To
mitigate the pessimism, in this section, we propose an adaptive
approach, called Dynamic Compensation, to decide the execut-
ing task version on-the-fly by enhancing Static Pattern-Based
Reliable Execution and monitoring the erroneous instances
with sporadic replenishment counters. The idea is to execute
the unreliable instances and exploit their successful executions
to postpone the moment that the system will not be able to
enforce (mi, ki) constraint, in which the resulting distribution
of execution instances are still following the binary string of
static patterns in the worst case. Please note that, in Dynamic
Compensation we only consider version τdi for the execution
of unreliable instances in order to know whether the result of
unreliable version is correct or not.

A. Preprocessing

In Static Pattern-Based Reliable Execution, we only adopt
the minimum amount of reliable executions to enforce (mi, ki)
constraints without considering the positive impact of success-
ful unreliable instances. Here we provide a proof to show that
the successful executions of unreliable instances may postpone
the moment to adopt the static pattern Φi while enforcing the
(mi, ki) constraint in any consecutive ki instances.

Suppose that the static pattern Φi, which is a binary string,
is given as the initial input. In the dynamic compensation,
we can still count a successful execution of an unreliable
instance as a correct run. For the simplicity of presentation,
we define each successful execution of an unreliable instance
as S. Technically, such an S can be considered as a 1 in the
binary string. But, we need to carefully handle such cases to
ensure that the future instances can still satisfy the (mi, ki)
constraint. What we propose here is to greedily postpone the
adoption of the original binary string Φi. Therefore, this can be
imagined as if some S’s are inserted into the original binary
string. According to the definition, such insertions of S (or
even potentially consecutive S’s) are only possible before an
unsuccessful run of an unreliable instance, labeled as a 0. We
prove the following theorem to show that the above treatment
can still satisfy the (mi, ki) constraint:

Theorem 1: Given a control task τi with a (mi, ki) constraint
and static pattern Φi. If there are x successful executions of
τdi as S inserting into the sequence of operations, task τi can
still enforce (mi, ki) constraint with the given pattern Φi for
any consecutive ki jobs, in which x ≥ 0.
Proof. We can prove this by contradiction. Suppose that
the insertion of x successful executions S violate (mi, ki)
constraint from time t to t+ ki · Ti. By definition of (mi, ki)
constraint, the total amount of successful executions and
reliable jobs must be less than mi within time interval [t,
t+ki ·Ti]. The interval must start with an original job 0/1 or
a successful execution S including ki consecutive executions.

5
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(a) (b)

Fig. 4: Example of successful executions insertion in the proof
of Theorem 2, in which (a) is the original instances of τi and
(b) is the instances of τi after the insertion.

For ki consecutive executions, suppose there are x success-
ful executions. x successful executions S are inserted into the
original sequence of operations, and x original instances are
pushed out from the time interval. For example, the original
instances of τi can be shown as Figure 4a, in which x is 2 and
(mi, ki) = (3, 6). By the assumption of not satisfying (mi, ki)
constraint, the amount of reliable instances ”1”s must be less
than mi − x within time interval [t, t+ ki · Ti]. However, the
successful executions S can only be inserted before 0 which
implies that there are only at most x of ”1”s being pushed out
from the time interval as shown in Figure 4(b). It means that,
in time interval [t, t+ ki · Ti], the total amount of successful
executions and reliable instances is at least mi within the time
interval. Thus, we reach the contradiction.

By Theorem 1, we know that the successful executions of
unreliable instances can postpone the adoption of the static
pattern Φi while satisfying the (mi, ki) constraint in any
consecutive ki jobs. To capture the above advantage, we adopt
a set of sporadic replenishment counters to monitor the current
status of fault tolerance and aid the runtime adaptation. To
exploit the most amount of unreliable instances in (mi, ki)
constraint, we need to rearrange the given pattern so that the
binary string starts from 0 and ends with 1, i.e., the first
instance is unreliable and the last instance is reliable. After
rearranging, we count the number of partitions as pi, such that
one partition is composed of a group of consecutive unreliable
instances and a group of consecutive reliable instances. For
example, given a pattern Φi = {0, 1, 1, 0, 0, 1}, pi is 2, since
there are two partitions, i.e., {0, 1, 1} and {0, 0, 1}. We set
counter oi,j ∈ Oi and ai,j ∈ Ai, where i is index of tasks,
j ∈ {1, . . . , pi}, and pi is the number of partitions in task τi.
Counter oi,j is prepared to describe the number of unreliable
instances in each partition, whereas counter ai,j records the
number of reliable instances in the static pattern Φi. For the
above pattern Φi, the set of counters Ai will be set as {2, 1},
and Oi will be set as {1, 2}.

B. Dynamic Compensation

For each task, we prepare a mode indicator Π to distinguish
the behaviors of dynamic compensation for different status
of task, i.e, Π ∈ {tolerant, safe}. If task τi cannot tolerate
any error in the following instances, the mode indicator will

Algorithm 1 Dynamic compensation of task τi with (mi, ki)

1: procedure dyn Compensation(mode Π, index j)
2: if Π is tolerant mode then
3: result = execute(τdi );
4: if Fault is detected in result then
5: oi,j = oi,j − 1;
6: Enqueue Error(oi,j);
7: if oi,j is equal to 0 then
8: Set Π to safe mode;
9: Set ` to ai,j ;

10: end if
11: end if
12: else
13: either Detection Recovery() or Reliable Execution();
14: ` = `− 1;
15: if ` is equal to 0 then
16: Set Π to tolerant mode;
17: j = (j + 1) mod ki;
18: end if
19: end if
20: Update Age(Oi);
21: end procedure

be set to safe and the compensation will be activated for
the robustness accordingly. If it can tolerate error in the
next instance, the mode indicator will be set to tolerant
and execute the unreliable version with fault detection. The
pseudo-code is presented in Algorithm 1, and can be detailed
as follows:

• Whenever an erroneous result is observed, the current
counter oi,j will be decreased by one unit (Lines 4-5).
After k instances, one unit needs to be increased back to
the same counter oi,j (Lines 6 and 20).

• When the current tolerance counter oi,j is equal to 0, now
the task is required to be executed in the safe mode. ` is
set to ai,j (Lines 7-9).

• In safe mode, ` will be decreased iteratively. When ` is
reduced to 0, the task turns back to tolerant mode and
update the index of partition j (Lines 14-17).

Particularly, there are two different strategies (Line 13):
• DR: The control task will first execute unreliable version

with fault detection. If there is a fault detected in the
result, the system has to re-execute the instance with the
reliable version immediately in the same period.

• RE: In safe mode, the control task will execute the
following instances with the amount of ai,j of reliable
versions obstinately.

Due to the flexibility of M and O, Algorithm 1 can be
adopted for any arbitrary pattern. To notate briefly, both
dynamic approaches for the rest of paper will be denoted as
DRE and DDR, respectively. We also notice that, in the worst
case, the resulting instances sequence will perform the same
as Static Pattern-Based Reliable Execution as the following:

Lemma 2: Given static pattern Φi, in the worst case that all
the unreliable instances are erroneous, Dynamic Compensation
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will follow the static pattern Φi to execute EDAC as Static
Pattern-Based Reliable Execution accordingly.
Proof. This is based on the proof as Theorem 1, by taking the
fact that there is no successful unreliable versions inserting to
the static pattern. If there is no insertion in the binary string
of static pattern Φi, Dynamic Compensation will have the
same execution sequence of instances as Static Pattern-Based
Reliable Execution on allocating EDAC.

C. Feasibility Test

Based on Lemma 2, thus, we can directly apply the sched-
ualibility test in Section IV-B to test the feasibility for the
worst case, where all unreliable instances are applying an
error detection technique. For (m, k) constraints, the following
theorem shows that it can be satisfied by applying Algorithm 1:

Theorem 2: By applying Algorithm 1 with a given pattern
Φi, the control task τi will always enforce (mi, ki) constraint
in any consecutive ki jobs even in the worst case.
Proof. We can prove this property directly. Suppose that given
interval of ki consecutive executions of task τi. There must
be two cases, either some of unreliable instances are correct
or all the unreliable instances are never correct.

For the first case, if the output of unreliable instances
are correct, by applying Algorithm 1, the system will keep
execute the unreliable instance without changing the dynamic
counters. By Theorem 1, we know that the correct execu-
tion of unreliable instances only postpone the adoption of
static patterns Φi, so that the amount of correct instances
is at least mi and (mi, ki) constraint is still enforced in
any consecutive k jobs instances. For the second case that
all the unreliable instances are erroneous, Lemma 2 shows
that Dynamic Compensation will perform as same as Static
Pattern-Based Reliable Execution, which enforces (mi, ki)
constraint by given pattern Φi. Thus, we can conclude that
(mi, ki) constraint will be satisfied by applying Algorithm 1
even in the worst case.

VI. EVALUATION AND DISCUSSION

In this section, we use experiments to demonstrate the
effectiveness of our approaches. We compare our approaches
and some baseline approaches as shown in Figure 5, listed as
follows:

• Fully Robust (FR): The system only runs the reliable
versions. This is the most robust against potential errors.

• SRE-Φ: The system directly executes a reliable version
if the current instance of Φ is reliable (see Section IV).

• SDR-Φ: The system gives a chance to execute an unreli-
able version with fault detection when the current instance
of Φ is reliable. If any fault is detected, a reliable version
is executed immediately (see Section IV).

• DRE-Φ: By applying Algorithm 1, the system starts to
execute reliable versions if the current fault tolerance
counter is depleted (see Section V).

• DDR-Φ: By applying Algorithm 1, when the tolerance
counter is depleted, the system executes an unreliable
version with fault detection again. If the result is not

SRE
0 2 4 6 8 10 12 14

SDR
0 2 4 6 8 10 12 14

DRE
0 2 4 6 8 10 12 14

DDR
0 2 4 6 8 10 12 14

Fig. 5: Example illustrates the differences. Given R-pattern (2,
3), i.e., Φ = (0, 1, 1). Suppose soft-errors happen in second
and third instances. Yellow block is unreliable. Brown block
is the version with detection. Red block is reliable.

correct, a reliable version is executed immediately (see
Section V).

In general, our approaches as software-based solutions can
work well with the other techniques which require the bounded
occurrence of delayed/dropped samples [7], [9], [10], [8].
Although the analyses of control stability with the bounded
delayed/dropped samples have been studied, these existing
solutions can be considered as the above baseline approaches,
i.e., FR and SRE. Specifically, applying static patterns to
guarantee the presence of mandatory instances in [7] can be
considered as the SRE approach. Running in an open loop for
each invalid sample followed by a certain number of reliable
instances in [8] is also similar as SRE approach. In [9], [10],
while the sample does not appear in time, the previous control
value is held for the next loop, in which all the instances are
fully reliable as FR strategy to prevent from soft-errors.

The evaluation is performed with two separate experiments:
a case study with a practical robotic application and a simula-
tion of synthesized task sets. For the case study, we extend
a self-balancing robotic application, i.e., NXTway-gs [21],
with a fault injection mechanism and apply our compensation
schemes. Here all the feasible (m, k) constraint are obtained
by experiments in advance. We show the utilization for varying
fault-rates and (m, k) constraints, and determine the maximum
feasible slowdown for this system. To further investigate the
relationship of utilization and schedulability, we adopt Lemma
1 in the simulation experiment, to report the success ratio in
terms of the schedulability for different proposed schemes and
different given patterns. For the given patterns, we only apply
two well-known static (m, k)-patterns [19], [20], which are
R-pattern and E-pattern as shown in Table III.

A. Case Study

We consider a well-studied self-balancing application, i.e.,
a two wheeled mobile robot [21] on LEGO Mindstorms NXT
equipped with a ARM7 microprocessor with a bootloader
modified to run the nxtOSEK. There are three periodic real-
time control tasks with different properties: (1) Balance Con-
trol, (2) Path Control, (3) Distance Control, which are related
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Fig. 6: Overall Utilization after applying different approaches on Task Path, where lower is better. Two horizontal bars
represent the maximum (0.457) and the minimum utilization (0.265).

(m,k) R-pattern E-pattern
(3,10) 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 1 0 0 1
(5,10) 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1
(7,10) 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1

TABLE III: Iterations of R-patterns and E-patterns

to a Gyroscopic Sensor, two Light Sensors, and an Ultrasonic
Sensor respectively. The sensors sample their environment at
a given rate and are connected as slaves to an I2C peripheral
bus. Values are obtained by a master controller that initiates
reads from the sensors.

It has been shown that this operation can be suspected
to radiation-induced faults and software-based hardening is
applicable [6]. While different techniques are available to
harden the complete application, it lies well beyond the scope
of this paper to apply and evaluate system-wide fault-tolerance
that e.g. considers control-flow and memory errors. Instead, we
focus on the access to the sensors, which are connected via
the I2C periphery bus. While the applicability of sophisticated
software fault-tolerance mechanisms has been shown for I2C
implementations [6], the sensor data is crucial to the control
application and thus serves our purpose.

1) Fault Injection and Task Versions: To demonstrate the
system under the threat of transient faults, we use a simplified
error model and define that for each independent sampling, the
value may deviate from the true value with a probability pfault
per instance. By providing proxies to the original calls that
effectively access the bus to read the sensor values, we provide
an unreliable version that heuristically injects errors to the re-
turned value. An error detecting proxy is then provided with an
according overhead [6], and a reliable proxy that uses majority
voting. Within these three versions of the control tasks, all calls
to read the sensors are replaced with the proxies, and, for the
error detection version, the comparison result is propagated to
signal the success of the respective task. The execution times
for each task version are profiled and shown in Table IV, along
with the respective task periods in microsecond and feasible
(mi, ki) constraints, i.e., (1, 1), (3, 10), (3, 5) respectively. The

robustness requirements are again derived from experiments
similar to Section I where the self-balancing robot needs to
follow a given monitor while keeping balance, where the fault
rate was kept at pfault = 30%. Within the experiment, the
R-Pattern is used for both dynamic and static approaches.

2) Experimental Results: In this experiment, we show the
overall utilization to compare the effectiveness of our different
schemes. In addition, we vary the (mi, ki) constraint of
the Path Control task to show the corresponding impact on
utilization. In order to calculate the overall utilization, we
monitor the number of executed instances of each task version
and multiply these by the profiled execution times. In addition,
we acquire a maximum utilization resulting from applying the
FR scheme, which is 0.457, and serves as our baseline as it
represents the overall utilization in absence of our method,
and with full protection against errors. The minimum overall
utilization is 0.265 and is obtained by using the unreliable
version for all task instances, resulting in no protection against
soft-errors.

Figure 6 presents the results for the self-balancing ap-
plication described above for different (mi, ki) constraints
and varying fault rates. We observe that as the fault rate
increases, the overall utilization of dynamic compensations
also rises, since the requirement of reliable executions is
increased within the application execution. On the other hand,
we can notice that SRE-R will always be constant for a fixed
(mi, ki) constraint, as the overall utilization is deterministic
by the amount of job partitions. Using SDR-R results in lower
utilization, as it benefits from the dynamic reaction according
to the fault distribution. When the fault rate is as low as
0.1 and the (mi, ki) constraint equals (3, 10), the probability
of activating reliable executions is rare, and, hence, both
dynamic compensation approaches, i.e., DRE-R and DDR-
R, can closely achieve the minimum overall utilization. On
the other hand, when the fault rate is as large as 0.3 and
the (mi, ki) constraint is tight, i.e., (7, 10), the difference
between SRE-R and both dynamic approaches is limited. We
also observe that, given a tight (m, k) constraint, the SDR-R
approach results in lower utilization than DRE-R. While for
small m, SDR-R will most likely compensate for an error that
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Task Name m k Period (us) Unreliable Version (us) Detection Version (us) Reliable Version (us)
Balance 1 1 4000 X X 435

Path 3 10 1000 99.267 102.598 291.139
Distance 3 5 3000 99.933 103.93 173.217

TABLE IV: Properties of task versions in nxtOSEK-GS [21], which are associated with data sampling of Gyroscopic Sensor,
Light Sensor, and Ultrasonic Sensor respectively.

DDR−R, m=3

DDR−R, m>3

DRE−R, m=3

DRE−R, m>3

0.0 0.5 1.0 1.5 2.0

Slowdown

Feasibility Range

Fig. 7: Maximum slowdown for the LegoNXT application
where a worst-case schedule is still feasible.

can safely be ignored, it benefits from being able to run the
unprotected task version at higher m/k ratios.

3) Utilization and Feasibility: Among all the results, we
can observe that DDR-R always outperforms the other ap-
proaches in reducing the overall utilization. However, recalling
that DDR-R will execute a detection instance followed by a
reliable instance in case of an error, the DDR-R approach
will require much execution time in the worst-case, i.e., when
having a sufficient amount of consecutive errors. Even though
DDR-R provides more opportunities to prevent the execution
of expensive reliable instances, the schedulability test for
this worst-case might fail. This is especially important when
considering to slow down execution by means of DVFS, e.g.
to save energy, so using Equation 1, we can determine the
maximum allowed slowdown where the worst-case will pass
the scheduling test. The results are shown in Figure 7, where
the feasible ranges for all m > 3 for the Path Control Task
constraint collate as the worst-cases are identical. The obser-
vation that, while showing lower utilization in the experiment,
the DDR-R scheme will be harder to schedule, thus leads us
to the evaluation of synthetic task sets regarding schedulability
of the different approaches for varying utilization.

B. Synthesized Task Sets

We apply the UUniFast [22] method to generate a set of
utilization values with the given goal. We use the approach
suggested by Davis and Burns [23] to generate the task periods
according to an exponential distribution. We show the result
with the bounded period values from 1us to 1000us between
largest and smallest periods. We define the utilization Ui of
multiframe task τi based on its peak frame. Since there are
only three frame types (versions) in our studied problem, i.e.,
τui , τ

d
i , and τ ri , we take τ ri as the peak frame and set its WCET

as cri = TiUi. For the other task versions, we set cui = cri /3
and cdi = cui ·121% to emulate the software-only fault detection
(i.e., SWIFT+PROFiT [24]) and error recovery. The cardinality
of the task sets is 10, and ki is uniformly distributed in the

range [3, 10]. For each ki, mi is set accordingly by different
ratio of over all m/k.

Figure 8 illustrates the simulation results. It should be
clear that the success ratios of the schedulability tests for the
approaches (except FR) are highly dependent on the ratio m/k.
If m/k increases, the flexibility of using different protection
schemes decreases. No matter which pattern the approaches
use, we can observe that the maximum of the execution times
Ψi among the frames of task τi are really close when m/k
ratio is high. We can also observe that both RE approaches,
i.e, SRE-R and SRE-E, perform better (with respect to the
success ratio of schedulability) than the other approaches in
all the simulated cases.

We can observe that the strategies using E-patterns, i.e.,
SRE-E and SDR-E, are always better, in terms of the success
ratio, than the same strategies using R-patterns, i.e., SRE-R
and SDR-R, in our simulations. The reason is from the dis-
tribution of reliable instances. As E-patterns evenly distribute
the reliable instances, in general, there are less consecutive
reliable instances in a strategy using E-patterns than those
in the same strategy using R-patterns. Therefore, for a low
priority task, the interference from the higher priority tasks
under E-patterns is usually less than the case with R-patterns.
When m/k is high, e.g., to 0.7 or even 0.9, we can notice
that both SDR schemes, i.e., SDR-R and SDR-E, are clearly
inferior to the others because SDR needs to provide certain
mechanisms to achieve fault detection and re-execution.

VII. CONCLUSION

While embedded systems used for control applications are
liable to both hard real-time constraints and fulfillment of
operational objectives, the inherent robustness of control tasks
can be exploited when applying error-handling methods to deal
with transient soft-errors induced by the environment. When
expressing the resulting task requirement regarding correctness
as a (m, k) constraint, scheduling strategies based on task
versions with different types of error protection become appli-
cable. We have introduced both static- and dynamic-pattern-
based approaches, each combined with two different recovery
schemes. These strategies drastically reduce utilization com-
pared to full error protection while adhering to both robustness
and hard real-time constraints. To ensure the latter for arbitrary
task sets, a schedulability test is provided formally. From the
evaluation results, we can conclude that the average system
utilization can be reduced without any significant drawbacks
and be used, e.g., to save energy. This benefit can be increased
with further sophistication, however, finding feasible schedules
also becomes harder.
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Fig. 8: Success ratio comparison for different static approaches with two patterns, i.e., R-pattern and E-pattern
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