
Task Mapping for Redundant Multithreading
in Multi-Cores with Reliability and

Performance Heterogeneity
Kuan-Hsun Chen1, Jian-Jia Chen1, Florian Kriebel2, Semeen

Rehman2, Muhammad Shafique2, Jörg Henkel2
1Department of Informatics, TU Dortmund (TUD), Germany

2Department of Informatics, Karlsruhe Institute of Technology (KIT), Germany
https://ls12-www.cs.tu-dortmund.de/

Citation: 10.1109/TC.2016.2532862

BIBTEX:
@article{DBLP:journals/tc/ChenCKRSH16,

author = {Kuan{-}Hsun Chen and
Jian{-}Jia Chen and
Florian Kriebel and
Semeen Rehman and
Muhammad Shafique and
J{\"{o}}rg Henkel},

title = {Task Mapping for Redundant Multithreading in Multi-Cores with Reliability and Performance Heterogeneity},
journal = {{IEEE} Trans. Computers},
volume = {65},
number = {11},
pages = {3441--3455},
year = {2016},
url = {https://doi.org/10.1109/TC.2016.2532862},
doi = {10.1109/TC.2016.2532862},

}

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works.

https://ls12-www.cs.tu-dortmund.de/
10.1109/TC.2016.2532862

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
T

C
.2

01
6.

25
32

86
2

Task Mapping for Redundant Multithreading in Multi-Cores
with Reliability and Performance Heterogeneity

Kuan-Hsun Chen1, Jian-Jia Chen1, Florian Kriebel2, Semeen Rehman2, Muhammad Shafique2, Jörg Henkel2
1Department of Informatics, TU Dortmund (TUD), Germany

2Department of Informatics, Karlsruhe Institute of Technology (KIT), Germany
Corresponding Author’s Email: kuan-hsun.chen@tu-dortmund.de

Abstract—Due to the architectural design, process variations
and aging, individual cores in many-core systems exhibit het-
erogeneous performance. In many-core systems, a commonly
adopted soft error mitigation technique is Redundant Multi-
threading (RMT) that achieves error detection and recovery
through redundant thread execution on different cores for an
application. However, task mapping and the task execution mode
(i.e. whether a task executes in a reliable mode with RMT
or unreliable mode without RMT) need to be considered for
achieving resource-efficient reliability. This paper explores how to
efficiently assign the tasks onto different cores with heterogeneous
performance properties and determine the execution modes of
tasks in order to achieve high reliability and satisfy the tolerance
of timeliness. We demonstrate that the task mapping problem
under heterogeneous performance can be solved by employing
Hungarian Algorithm as subroutine to efficiently assign the tasks
onto the cores to optimize the system reliability with polynomial
time complexity. To obtain the efficient task execution modes, we
also propose an iterative mode adaptation technique and guar-
antee the tolerable timing constraint. Our results illustrate that
compared to state-of-the-art, the proposed approaches achieve up
to 80% reliability improvement (on average 20%) under different
scenarios of chip frequency variation maps.

I. INTRODUCTION

Continuous technology scaling has led to multiple reliability
threats like soft errors, aging, and process variations [1–4].
Soft errors are transient faults in the underlying hardware
due to high-energy particle strikes, which can corrupt the
correct application execution state [1]. Most of the hardware
or software-level soft error mitigation techniques primarily
rely on full-scale redundancy [2]. At the hardware level,
vulnerability-aware adaptation of DMR (dual modular re-
dundancy) and TMR (triple modular redundancy) have been
conducted by exploiting extra hardware circuitry [3, 5]. How-
ever, these techniques inevitably incur significant area/power
overhead, which may not be feasible under the stringent
design constraints of embedded systems. At the software level,
several techniques have been proposed as well: Reliability-
driven transformation/compilation techniques [6, 7], selective
instruction redundancy [8, 9], and timeliness-aware fault-
tolerance [10].

Since modern mainstream processors are typically multi-
cores [11–14]1, exploiting idle cores for task redundancy

1Commercial examples are: Tilera chip with 100 cores [15], Intel’s Xeon
Phi [16] and SCC [17], Nvidia GPUs with 1024 processing elements [18].
Due to increasing core integration, emerging on-chip systems are envisaged
to contain 1000s of cores (according to the ITRS prediction: approximately
1500 cores by 2020 and > 5000 cores in 2026) [19].

provides additional means for soft error mitigation. State-of-
the-art techniques like [20–22] exploit idle cores to enable
spatial and temporal redundancy. In particular, the Redundant
Multithreading (RMT) techniques, like Intel’s CRT – Chip-
level Redundant Threading technology [23], execute redundant
copies of a given task on different cores in parallel and
perform error detection/recovery using comparison/voting on
the threads’ outputs. However, in modern many-core systems,
the individual cores may exhibit different frequencies due to
process variations [24], aging effects [25], and performance
heterogeneous (micro-)architecture designs [26].

For instance, process variations may lead to significant
frequency variations (e.g., up to 30% [24]). Process variations
result from manufacturing-induced variability and impreci-
sion, and manifest as chip-to-chip and core-to-core frequency
variations. The impact of the process variation aggravates
with scaling technology because, precisely manufacturing with
reduced dimensions is very difficult [2]. Therefore, this has
been envisaged as a critical reliability threat by industry [2, 27]
and various research groups [28, 29].

Core ID

Fr
e

q
u

en
cy

 (
G

H
z)

 7

6

5

4

3

2

1.2V

0.8V

7.3GHz 5.7 GHz

25%

50%

0 10 20 30 40 50 60 70 80
Src: Dighe et al. @ISSCC‘10

Fig. 1: Core-to-core variation [30].

Fig. 1 illustrates
the core-to-core fre-
quency variations of
28% at 1.2V and
59% at 0.8V for an
Intel’s 80-core test
chip [30]. Aging fur-
ther aggravates this
issue by inducing fre-
quency degradation at
run-time.

To resolve such issues, guardbanding, voltage/frequency
assignment and task scheduling at software level can be
applied [31]. Typically, at design time, one of the standard
industrial practices is to provide sufficient timing guardbands.
However, this may lead to a significant frequency drop by
a factor of ∆f (> 20% over its lifetime) [2, 32, 33]. 2 To
alleviate this performance loss, current research trends try to
relax these timing guardbands and salvage performance by
exploiting the inherent resilience to such variability or by
sophisticated run-time systems [28].

Another source of performance heterogeneity is iso-ISA

2According to [33–35], current processors typically incorporate guardbands
for a device lifetime of 7− 10 years considering both process variations and
aging.

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
T

C
.2

01
6.

25
32

86
2

performance-heterogeneous cores. That is, the architectural
designer may integrate cores with different microarchitec-
ture but having the same instruction set architecture (ISA).
This results in diverse performance/power properties, i.e.,
different cores exhibit different frequencies in the system to
accommodate the performance requirement with tolerable chip
temperature or power consumption. Prominent examples are
ARM big.LITTLE architecture [26] and Kumar et al. [36].

When applying the above-discussed state-of-the-art tech-
niques under multiple reliability threats (i.e., soft errors, aging
and process variations), these techniques may not be able to
perform at their full effectiveness. The interplay of multiple
reliability threats and performance heterogeneity introduces
non-trivial challenges for dependable execution, since any
approach which solely considers one specific aspect cannot
guarantee effectiveness under the other threats.

The goal of this paper is to achieve resource-efficient
soft-error resilient application execution in many-core sys-
tems under core-to-core frequency variations. The potential
applications may have competing scenarios of concurrently
executing, e.g., image recognition, data encryption, and secure
video conferences, in which various thread instances have to
process different sets of data. The key objective is to allocate
the tasks by using RMT to improve the overall dependability,
with respect to both timing and functional correctness while
also accounting for application tasks with multiple compiled
versions. Such multiple compiled versions with varying execu-
tion time and soft error vulnerabilities can be generated using
reliability-aware compilers like [37], [7], and [38] exhibiting
diverse performance and reliability properties. By adopting
multiple compiled versions, redundant thread executions, and
different frequencies of cores, we are able to fully utilize the
reliability optimization space at both software and hardware-
levels while exploring different area, execution time, and
achieved reliability tradeoffs. The timeliness can be defined
as the tolerated deadline miss rate, which is typically adopted
as the quality of service (QoS) metric in many practical real-
time applications.

In our previous work dTune [39], we have adopted a greedy
mapping of reliability-critical tasks onto high-frequency cores.
However, such an approach lacks effectiveness as the amount
of high-frequency cores is limited. Besides the benefit of exe-
cuting on high-frequency cores, the reliability degradation by
executing on low-frequency cores also needs to be considered
for all tasks at the same time. As shown in our motivational
example (see Section II-B), there may be scenarios where
assigning the reliability-critical task to the fastest core is not
reliability-wise beneficial, since the timeliness of the overall
system also needs to be satisfied. As far as we know, dTune is
the first approach adopting variation and aging aware RMT
with reliability-aware task mapping in many-core systems.
Comparing to reliability-aware task mapping works [40, 41],
we consider the system reliability to be affected by the tasks’
vulnerabilities and the frequencies of cores instead of the
system life-time.

To achieve high reliability and timeliness on many-cores,
in this paper we introduce reliability-driven task mapping
means which involves the determination of the task execution

Core%to%Core''
frequency'varia1ons'

Mul1ple'compiled''
Task'versions'

Ve
rs
io
n'
Se
le
c1
on

'
Pr
ep

ro
ce
ss
in
g'

'(S
ec
1o

n'
II.
D)
'

Communica1on'and'Dependency'
Model'(Sec1on'V)'

Execu1on'Modes''
Adapta1on(Sec1on'IV)'

Task'Mapping''
Approaches'(Sec1on'III)'

Ta
sk
s'a

nd
'C
or
es
'

As
sig

nm
en

t'w
ith

'th
e'

se
le
ct
ed

'v
er
sio

ns
'

Fig. 2: Overview of our technique, illustrating interactions
between different contributions for dependable application
execution.

modes, i.e., task execution with or without RMT, and task
allocation decisions, i.e., mapping the (redundant) tasks on
many-cores with heterogeneous performance characteristics.
Fig. 2 illustrates an overview of our novel contributions,
detailed as follows:
• We show that our studied problem can be reduced to

the minimum weight perfect bipartite matching problem
under two assumptions: 1) the execution modes are given,
and 2) all the tasks are without communication latency. A
well-known approach called Hungarian Algorithm can be
applied to find out an optimal solution, when all execution
modes are homogeneous. We show the optimality of the
approach for heterogeneous cases if the reliability penalty
of RMT task is negligible (See Section III).

• If the execution modes are not given, we propose an
iterative mode adaptation as a heuristic in combination
with the proposed task mapping approaches, such that
the execution mode of tasks can be determined under the
polynominal time complexity (See Section IV).

• We also present how to adopt a deterministic routing
algorithm, e.g., XY routing, to estimate the upper bound
of communication overhead on a common topology 2-
Dimension mesh, which can be utilized in our proposed
approaches (See Section V).

• To show the effectiveness of the proposed approaches, we
compare to the existing dTune [39] as the state-of-the-art
for different execution scenarios under various process
variation maps on 8× 8 cores (See Section VI).

II. PROBLEM DEFINITION

A. System Model

Hardware Architecture and Performance Variations:
We consider a many-core processor C = {c1, c2, ..., cM} with
M ISA-compatible RISC cores, which only has single thread
per core. Each core ci has its own instruction and data cache to
execute tasks. Due to the performance variance, e.g., process
variations [2, 42–44] and architectural design, each core ci
has its own frequency, denoted as fi. For notational brevity,
we index the M cores by a non-decreasing order of current
frequencies, i.e., fmax = f1 ≥ f2 . . . ≥ fM = fmin.

Redundant Multithreading (RMT): We consider RMT is
provided by Chip-level Redundant Multithreading (CRT) [23],
which executes the redundant threads of tasks in parallel
on different cores, and activates Triple Modular Redundancy

2

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
T

C
.2

01
6.

25
32

86
2

(TMR) mode [5] for soft-error detection and recovery. In this
paper, we only take TMR-based RMT into consideration, since
the overhead of voting mechanism is negligible compared to
the task’s total re-execution time in a DMR-based rollback.

Application Model: Consider that an application is given
as a task graph G =(Γ,E), where Γ is a set of N nodes
representing tasks, such that Γ = {τ1, τ2, ..., τN}. E is the
set of edges denoting task dependencies: E = {exy|(τx, τy)}.
Each task τi has Ki task versions: τi = {τi,1, τi,2, ..., τi,Ki}
generated by the reliability-aware compilation [7, 8]. Each task
τi has its own relative deadline Di for its all versions. Due to
the performance heterogeneity among the cores, the execution
time of task version τi,k depends on the core it is assigned to.
We assume the given mapping function Ci,k,m(e) denotes the
continuous cumulative distribution function of execution time,
in which the execution time of version τi,k is less than or
equal to e when it is executed on core cm. With this mapping
function, the deadline miss rate for a version τi,k on core cm
can be estimated as Eq.(1).

Pdm(τi,k, cm) = 1− Ci,k,m(Di) (1)

In addition, the expected execution time of task version
τi,k with the frequency of core cm is assumed to be given
as E(τi,k,cm), which can be calculated by the continuous
cumulative distribution function Ci,k,m(e) readily. For the
guarantee of timeliness, we assume that the set of tolerable
rate of deadline miss ρΓ = {ρ1, ρ2, . . . , ρi} can be given as
a hard constraint. Each task must be guaranteed to have the
probability of deadline miss rate lower than tolerable miss rate
ρi. According to Eq.(1), we consider version τi,k is feasible on
core cm, if it’s deadline miss rate Pdm(τi,k, cm) is not greater
than the given miss rate constraint ρi, i.e. Pdm(τi,k, cm) ≤ ρi,
in which 1 ≤ k ≤ Ki. If there is a task mapping that all
the tasks meet their tolerable miss rates with their feasible
versions, we consider it as a feasible solution.

Quantification of Task Reliability: To quantify the task
reliability, we assume a mapping function φ(τi,k, cm) can
be given that indicates the reliability penalty of task version
τi,k on core cm. In this paper, we set this reliability penalty
function as the probability that a fault during the execution of
version τi,k leads to a visible error when executing on core cm,
with the probability of failure for each instruction estimated
using the so-called Instruction Vulnerability Index [7, 45].
As the task vulnerability can be characterized/estimated by
the composition of the instructions, the task version which
has the lower vulnerability is assumed to provide a better
reliability penalty than the one with the higher vulnerability
on the same core. Conversely, as we can expect that transient
faults may happen more within the longer execution time, for
the same task version τi,k, executing on a higher frequency
core is assumed to have a better/lower reliability penalty than
executing on the lower one. This penalty function can be
set to any possible reliability penalty index as defined in the
work [39].

To quantify the overall dependability, in this paper the
objective function is defined in the following:

Definition 1: The overall reliability penalty of task set Γ,
denoted by φΓ, is the summation penalty of tasks given by

C1

C2

C3

Suspend

C1

C2

C4

Deadline MissVoting

Fig. 3: Example of TMR-based RMT. As the voter has to wait
for the slowest thread, the task has potential to miss deadline
on the low frequency core, where f1 > f2 > f3 >> f4.

φΓ =
∑
τi∈Γ φ(τi,k, cm) under the miss rate constraint ρ,

where φ(τi,k, cm) is the reliability penalty of task version τi,k
executing on core cm.

Task Execution Modes: Each task τi has an execution
mode denoted by λi = {NR,TMR}, where NR denotes that
task τi is executed without RMT; TMR denotes TMR-based
RMT is activated for task τi. To execute a task in TMR-based
RMT, the task requires three cores to provide the majority-
voting mechanism. Let Gi be a subset of C. If Gi has three
elements, it is eligible for the task with TMR-based RMT,
which is called the core group for brevity. For the task set Γ,
we use a vector ~λ = (λ1, λ2, ..., λN) to denote the execution
decision of tasks. δ~λ denotes the demand of cores for satisfying
all the tasks in ~λ, which is equal to the number of NR tasks
plus three times the number of TMR tasks. For simplicity,
ΓTMR and ΓNR denote the set of tasks which are executed
in TMR mode or NR mode, respectively.

Observation of TMR-based RMT: Due to the advantage
of majority-voting, the reliability penalty of TMR-based RMT
task τi with version τi,k on core cm can be assumed to be a
negligible value ε, i.e., φ(τi,k, cm) = ε, where ε ≥ 0. However,
the majority-voting mechanism has to wait for all redundant
threads completing their jobs. As shown in Fig. 3, we can
observe that the fact that the slowest thread on core C3 will
dominate the execution time of task. If the redundant thread
on core C3 spends too much execution time, it may lead to
the violation of deadline constraint. Therefore, we can safely
estimate the execution time of task in RMT mode by the
execution time of its redundant thread on the lowest-frequency
core of assigned core group.

B. Motivational Example

In this subsection, we provide a motivational example to
explain why the greedy mapping is not good enough for the
task mapping. For simplicity, we only present the motivational
example for tasks by single version with given execution
modes. Suppose that we are given three tasks, i.e., τ1, τ2,
and τ3. Task τ1 has TMR-based RMT requirement but the
others have no redundancy. Five cores are sorted by their
frequencies beforehand. Now we consider the task mapping
problem to allocate the cores to three tasks for minimizing
the total penalty, where the reliability penalty of tasks on each
core are defined in Table Ia. As shown in Fig. 3, the penalty
value of Table Ia for τ1 depends on the frequency of lowest-
frequency core in the assigned core group. Please note, we
denote the penalty value as∞ to show the infeasible mapping

3

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
T

C
.2

01
6.

25
32

86
2

Penalty value c1 c2 c3 c4 c5
TMR− τ1 ε ε ε ε ∞
NR− τ2 0.10 0.15 0.20 0.25 0.30
NR− τ3 0.24 0.26 0.28 0.30 0.32

(a) Tasks reliability penalty on each core

Mappings Total penalty
τ1 → TMR(c3, c4, c5), τ2 → NR(c2), τ3 → NR(c1) ∞
τ1 → TMR(c1, c2, c3), τ2 → NR(c5), τ3 → NR(c4) 0.6
τ1 → TMR(c2, c3, c4), τ2 → NR(c5), τ3 → NR(c1) 0.54
τ1 → TMR(c2, c3, c4), τ2 → NR(c1), τ3 → NR(c5) 0.42

(b) The possible mappings and the total penalty

TABLE I: Individual penalty value and the possible mappings.

that violates the tolerance of deadline miss rate. With the
above setting, there are four visible assignments with different
penalty value as illustrated in Table Ib.

In the above example, we can check all the possible map-
pings to obtain the optimal result that will be 0.42 while the
miss rate constraint is not violated. In this example, τ1 cannot
adopt core c5 for RMT activation, since the tolerable miss rate
will be violated. By using the greedy mapping to assign the
tasks and cores, the total penalty of mappings is 0.6. RMT-
activated task τ1 uses core group {c1, c2, c3} for the minimal
communication overhead, and the reliability-wise critical task,
i.e., τ3, acquires the higher-frequency core c4 among the rest
of cores. Moreover, if the allocation of TMR-based RMT task
τ1 is not assigned properly, the total penalty of mappings may
be even worse in this example, i.e. ∞.

In the above example, we can observe that the greedy
mapping strategy is not good enough, since the reliability-
wise critical task is a suboptimal choice without considering
the total benefit of system. Moreover, the miss rate constraint
for each task should be considered to ensure the feasibility of
task mapping as well. As a consequence, it is clear that such
a task mapping problem requires better strategies, whereas
the straightforward exhaustive search is obviously not feasible
in practice with the expected high time complexity. It is not
difficult to see that, if the reliability penalty of task increases
non-linearly, it may lead to a result which is even worse than
the proportional setting of this example.

C. Problem Definition

As shown in the motivational example, even if all the tasks
have a single version, the task mapping problem still requires a
comprehensive strategy for the heterogeneity of reliability and
performance, in which some tasks are prohibited to execute
on the low-frequency cores due to their deadline miss rate
constraints. With the limited amount of redundant cores, we
have to consider how to decide the execution modes for each
task, i.e., NR or RMT, as different sets of execution modes
may lead to different inputs for task mapping problem.

Assume we are given a many-core processor C with M ISA-
compatible homogeneous RISC cores, and a set of tasks Γ with
multiple versions. Without loss of generality, the number of
cores M must be greater than or equal to the number of tasks
N . The studied problem can be divided into two sub-problems:

• Task Mapping: Given the execution modes ~λ and the
tolerable miss rate constraints ρΓ, we consider how to
select the executing version τi,k and allocate the cores
with corresponding frequency for each task τi, so that
the overall reliability penalty φΓ is minimized. For this
sub-problem, we classify the given execution modes into
two classes and propose two algorithms to minimize the
overall reliability penalty in Section III.

• Execution Modes Adaptation: The objective is to de-
termine the task execution modes ~λ without violating
the deadline miss rate. Without checking all the com-
binations, we propose an iterative mode adaptation to
efficiently determine the execution modes of tasks with
our mapping approaches so that the overall reliability
penalty is minimized (See Section IV).

For the simplicity of presentation, the above approaches are
presented with the assumption that there is no data dependen-
cies and communication among the tasks. After addressing
the studied problem ideally, we consider how to enhance our
system model to incorporate the overhead of execution time
for the data dependencies and communication in Section V.

D. Preprocessing for Version Selection

In terms of task, the assigned core(s) and the executing
version both have impacts on the reliability penalty and the
deadline miss rate. Moreover, different execution modes will
lead to different requirement of executing versions in terms
of reliability. Suppose τi does not need TMR-based RMT
and is assigned on core cm, the best version of task should
be a specific version with the minimal φ(τi,j , cm) while
satisfying the tolerable miss rate ρi. In contrast, assume that
τi requires TMR-based RMT and the lowest frequency core in
the assigned core group is cm. Due to the negligible penalty of
TMR-based RMT, the best version of task τ ′i,j,m should be a
performance-wise best version without violating the miss rate
constraint ρi on core cm.

Although we know the best versions of tasks depend upon
their execution scenarios, which include the frequencies of
assigned cores, the constraint of miss rates, and the vulnera-
bility of tasks, however, we can identify the best task version
for each core beforehand to mitigate the complexity of studied
problem. In case if no task version can satisfy the miss rate
constraint on core cm, we know that it is not feasible to run
the task on core cm. As a result, we can build up a reference
table ψ and record all the corresponding best versions τ ′i,j,m
in each entry ψ(τi, cm) as Eq.(2).

τ ′i,j,m = arg1≤j≤Ki

{
minφ(τi,j , cm) if λi is NR
minE(τi,j,cm) if λi is TMR , (2)

in which the miss rate ρi should be satisfied, i.e.,
Pdm(τi,j , cm) ≤ ρi. If τi executes on core cm without RMT,
we evaluate the penalty of each version τi,j and pick the
version with the minimal reliability penalty φ(τi,j , cm). If τi
requires TMR-based RMT, the performance-wise best version
will be selected for increasing the resilience while meeting
deadline. If there is no feasible version to select, we fill the
entry with infinite reliability penalty to present the infeasibility.

4

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
T

C
.2

01
6.

25
32

86
2

III. TASK MAPPING PROBLEM

In this section, we present the idea of our task mapping
approaches under the assumption that the execution modes for
all the tasks are already known beforehand, i.e., ~λ is given.
For simplicity of presentation, we assume a set of independent
tasks. With given execution modes, the task mapping problems
can be classified to two different cases, i.e. Homogeneous
Execution Modes and Heterogeneous Execution Modes.

A. Homogeneous Execution Modes

In this subsection, we show that Hungarian Algorithm [46]
can be the subroutine of our approach to solve the case that
all the tasks require a homogeneous execution mode in time
complexity O(N3). There exists two cases: either all the tasks
are executed by TMR-based RMT mode, or none of them
requires RMT. We will focus on the former case, and explain
how to cope with the latter case at the end of this section.

For the sake of completeness, we link both cases to the well-
known minimum weight perfect bipartite matching problem
(MWPBM). In the MWPBM problem, there is a bipartite
graph G = (V,E) with two disjoint subsets X ⊆ V and Y ⊆ V,
where E is the set of edges between X and Y. Each edge e in
E is associated with a weight w(e). The MWPBM problem
is to find out a perfect matching of maximum weight where
the weight of matching M is given by w(M) =

∑
e∈M w(e).

We use the terms X, Y, and w(M) to refer to the MWPBM
problem; the terms C, Γ, and φΓ to refer to our problem,
where φΓ =

∑
τi∈Γ φ(τi,k, cm). For the rest of this paper, the

way we use the bipartite graph is defined as the following:
Definition 2: To build bipartite graph G = (V,E), we take

the tasks as the nodes in subset X, and the cores as the nodes
in subset Y, in which X ∪ Y = V, and X ∩ Y = ∅. With
version selection table ψ, each weight of edge e ∈ E can be
referred to a corresponding entry ψ(τi, cm) which connects
two specific nodes, i.e., τi in X and cm in Y.

RMT Execution for All Tasks: In this case, each task
needs three cores to execute TMR-based RMT mode. Al-
though all the tasks have the same demanded number of cores
for the redundancy, the way we group and assign the cores will
affect their deadline miss rate. According to the observation
on TMR-based RMT, we know that the execution time of each
task in TMR-based RMT mode relies on the lowest frequency
core in its assigned core group. Therefore, to increase the
feasibility of core grouping for the following task mapping
procedure, an optimal grouping of cores should have the max-
imal summation of frequencies from each lowest frequency
cores among all the groups. The following theorem shows
that the optimal core grouping can be obtained by grouping
every three cores {ci, ci+1, ci+2} ,∀i = 1, 4, 7, . . . , (δ~λ − 2)
consecutively.

Theorem 1: Given a set of cores C with variation,
grouping every three adjacent cores {ci, ci+1, ci+2} ,∀i =
1, 4, 7, . . . , (δ~λ − 2) may obtain the optimal grouping which
has the maximal summation of frequencies from each lowest
frequency cores among all the groups.

Proof: First of all, it is not difficult to see that the first δ~λ
high-frequency cores are definitely used in an optimal solution
and formed into N groups, in which each group has 3 cores.

c1#

c2#

c3#

c4#

c5#

c9#

c6#

c7#

c8#
swap#

c1#

c5#

c8#

c2#

c4#

c9#

c3#

c6#

c7#

(a)#

c1#

c5#

c7#

c2#

c4#

c9#

c3#

c6#

c8#

(b)#

or#

G’
1# G’

2# G’
3# G’

1# G’
2# G’

3# G*
1# G*

2# G*
3#

Fig. 4: Example of two swapping scenarios in case 1 in the
proof of Theorem 1. In this example, ci is c7, cj is c8, and ck
is c9. After swapping, the frequencies of cores are increased
from f7 + f8 + f9 to f3 + f8 + f9.

Suppose that there is an optimal grouping solution, in which
c1 is in group G′1, c2 is in group G′2, and c3 is in group G′3.
We only consider the case that G′1 6= G′2 6= G′3, as the other
cases are simpler than this case. Let ci, cj , ck be the lowest-
frequency cores in each of these three groups. Without loss
of generality, we index these three cores such that i < j < k,
in which i ≥ 4 by definition. Therefore, ck can be in any
of the three groups in this index rule and the summation of
frequencies among these groups is fi + fj + fk.

Now, we (1) swap c2 in G′2 and the second fast core in group
G′1 and (2) swap c3 in G′3 and the lowest-frequency core in
group G′1. These three groups now are called G∗1,G∗2,G∗3. The
lowest-frequency core in G∗1 is c3, which does not have lower
frequency than the ci. Moreover, after swapping, either the
lowest-frequency core in G∗2, or the lowest-frequency core in
G∗3 is core ck. So, there are two cases:
• Case 1: lowest-frequency core in G∗2 is ck: This implies

that the lowest-frequency core of G′2 is also ck, due to
the fact that the swapping procedure does not change the
lowest-frequency core in group G′2. If core ci is in G′3 and
core cj is in G′1, then after swapping the lowest-frequency
core of G∗3 is cj . Similarly, if core ci is in G′1 and core cj
is in G′3, then after swapping the lowest-frequency core
of G∗3 remains as cj . We illustrate these two scenarios in
Fig. 4, where the first and second scenarios of the three
groups G′1,G′2,G′3 are in Fig. 4a and Fig. 4b, respectively.
Therefore, for such a case, we show that the lowest-
frequency core in G∗3 is cj .

• Case 2: lowest-frequency core in G∗3 is ck: For such a
case, with the similar procedure as in Case 1, we can
show that the lowest-frequency core in G∗2 is cj .

As a result, the grouping G∗1,G∗2,G∗3 has higher total frequency
(with respect to the lowest-frequency cores in the three groups)
where f3 +fj+fk < fi+fj+fk and G∗1 = {c1, c2, c3}. If we
continue swapping, we can eliminate all differences between
the grouping G′1,G′2,G′3 and the consecutive core grouping
{ci, ci+1, ci+2} ,∀i = 1, 4, 7, . . . , (δ~λ − 2) without decreasing
the total frequency of the solution. Therefore, we reach the
conclusion.

Based on Theorem 1, the task mapping problem can be
transformed to be equivalent to the MWBPM problem with N
tasks and N groups, {ci, ci+1, ci+2} ,∀i = 1, 4, 7, . . . , (3N −
2). Therefore, we can construct the corresponding bipartite
graph and adopt Hungarian Algorithm as the subroutine to

5

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
T

C
.2

01
6.

25
32

86
2

Algorithm 1 Homogeneous Execution Modes

Input: set of tasks Γ; vector ~λ with execution modes for tasks, ∀λi ∈ {NR, TMR};
set of cores C; best versions table ψ;

Output: Mapping M with the set of selected versions;
1: List∗c ← ∅;
2: if All execution modes are TMR then
3: for cj ∈ C, j ← 1, 4, . . . , δ~λ−2

do
4: //Assign the core grouping by Theorem 1
5: List∗c ∪ Gj =

{
cj , c(j+1), c(j+2)

}
;

6: end for
7: else if All execution modes are NR then
8: List∗c ← C.head(δ~λ);
9: end if

10: G ← build Bipartite Graph with Γ, List∗c , and ψ;
11: M← find the mapping by HungarianAlgorithm(G);
12: if φΓ is ∞ then
13: return FAIL

14: end if

find an optimal assignment with the minimal overall reliabil-
ity penalty while all the miss rate constraints are satisfied.
According to the preprocessing, we can ensure that if a task
is not feasible to execute on a certain core, the value of
corresponding entry in table φ must be infinity. With the above
setting, it is clear that if φΓ is infinity, there is no feasible
assignment with such an input set of tasks Γ and cores C.
Up to here, it should be also clear how to handle the case
when none of the tasks require RMT execution. That is also a
perfect matching problem by assigning N tasks to N cores.

As a result, we summarize our approaches as Algorithm 1
to comprehensively handle both cases (all tasks are protected
under TMR-based RMT or none of the tasks are protected). If
the tasks require the RMT execution, we prepare a core group
list List∗c to record the cores for each group with the optimal
grouping of cores by Theorem 1 (line 5). If none of the tasks
require RMT execution, we choose the first δ~λ cores from C
and record in List∗c (line 8). Then, the corresponding bipartite
graph G can be constructed by Γ, List∗c , and ψ by Def. 2.
With the bipartite graph G, we can find the minimum weight
bipartite perfect matching and assign the tasks and cores with
mapping M by Hungarian Algorithm and the bipartite graph
including the information of possible mappings (line 11). In
particular, if the total weight of mapping is infinity, we know
that there is no feasible assignment to satisfy the miss rate
constraint (lines 12-14).

According to the perfect matching property, preprocessing,
and definition of G, we can ensure that Algorithm 1 will deliver
a feasible mapping M for tasks and cores, where each core
only appears once in a specific core group while the miss rate
constraint is satisfied. The time complexity is dominated by
Hungarian Algorithm with 2N nodes, i.e. O(N3).

B. Heterogeneous Execution Modes

In this subsection, we consider the task mapping problem
with arbitrary ~λi as the heterogeneous execution modes. For
such a case, the approach in Section III-A by reducing the
assignment problem to the MWPBM problem is no longer
applicable, since the bipartite graph cannot be built due to
the unknown properties of core grouping in optimal solutions.

However, we observe that it is beneficial to assign the cores
of TMR-based RMT tasks before NR tasks, as the TMR-based

RMT tasks are fully protected with a negligible reliability
penalty ε. No matter which cores are assigned to TMR-based
RMT tasks, their reliability penalty is always negligible. In
order to supply more resilient cores in terms of performance
for the NR tasks, the frequencies of assigned cores for TMR-
based RMT tasks should be as low as possible. Therefore,
we propose our approach for this heterogeneous case, which
consists of two parts: assigning TMR-based RMT tasks and
assigning NR tasks. Algorithm 2 presents the pseudo code
for the two portions of tasks assignment with heterogeneous
execution modes.

Assigning TMR-based RMT tasks: First of all, si de-
notes the resilience of TMR-based RMT task by the lowest
acceptable core frequency of task τi as Eq.(3) (line 4 in
Algorithm 2)

si = arg1≤j≤ δ~λ
{ψ(τi, cj) 6=∞, and ψ(τi, cj+1) =∞} ,

(3)
where ψ(τi, cδ~λ+1) is set to a dummy version with ∞ penalty
for notational brevity. To maximize the number of tasks
satisfying their deadline, the assignment of TMR-based RMT
tasks should start from the most resilient task, which accepts
the lowest frequency core among all the redundant cores.

To find out the most resilient tasks, we sort all the TMR-
based RMT tasks by a non-increasing order of csi ’s speed,
and re-index them by the sorted list, in which ties are broken
arbitrarily (line 6). The assigning procedure starts from the
most resilient task τk, which has the maximum index sk
of cores in C, with the lowest-frequency group Gk, where
Gk = {csk−2, csk−1, csk |sk ≥ 3} (line 8). Then, we exclude
the cores of Gk from C and consider the next resilience-
wise task τk−1 (line 9). For task τi, si should be the lowest
frequency core among the rest of cores, if the original si is
assigned to the task already (lines 11-13). By repeating the
above procedure, the frequencies of assigned cores will be as
low as possible which satisfies the minimal requirement of
core frequency for each TMR-based RMT task.

Assigning NR tasks: After assigning the TMR-based
RMT tasks, the rest of cores and NR tasks can be transformed
to MWPBM problem as Section III-A. As a result, we can
make a bipartite graph G (line 18) by Def. 2 and finish a
perfect matching M by Hungarian Algorithm with the minimal
φΓ as the optimal result (line 19). If the procedure cannot
find a feasible mapping, the algorithm returns that there is
no feasible solution (lines 20-22). With the TMR-based RMT
tasks assignment and the perfect matching property, we can
ensure that the mapping assignment M derived by Algorithm 2
is feasible for tasks and cores, where each core is only assigned
to one unique task while all the miss rate constraints in ρΓ are
satisfied. The time complexity is similar as Algorithm 1, which
is dominated by the Hungarian Algorithm, i.e., O(N3).

The solution derived from Algorithm 2 can be proved to be
optimal in terms of overall reliability penalty if there exists a
feasible solution for the input. If we try to handle TMR and
NR tasks concurrently, there is no efficient way to decide the
core grouping beforehand. However, as the reliability penalty
of TMR tasks are negligible, we can reach the optimality as
shown in the following theorem.

6

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
T

C
.2

01
6.

25
32

86
2

Algorithm 2 Heterogeneous Execution Modes

Input: set of tasks Γ; vector ~λ with execution modes for tasks, ∀λi ∈ {NR, TMR};
set of cores C; best versions table ψ;

Output: Mapping M with the set of selected versions;
1: //Assigning TMR tasks
2: List∗c ← C; ListL ← ΓTMR;
3: for each τi ∈ ListL do
4: find out si based on Eq.(3);
5: end for
6: sort ListL by si and re-index them;
7: //τk has the maximum index as sk
8: M← assign Gk =

{
c(sk−2), c(sk−1), csk |sk ≥ 3

}
to τk;

9: remove the cores of Gk from List∗c ;
10: for each τi ∈ ListL, i = (k − 1), (k − 2), . . . , 1 do
11: if si > s(i+1) − 3 then
12: si ← s(i+1) − 3;
13: end if
14: M← assign τi with Gi =

{
c(si−2), c(si−1), csi

}
;

15: remove the cores of Gi from List∗c ;
16: end for
17: //Assigning NR tasks
18: G ← build Bipartite Graph with ΓNR, List∗c , and ψ;
19: M← find the mapping by HungarianAlgorithm(G);
20: if φΓ is ∞ then
21: return FAIL;

22: end if

Theorem 2: Given a set of cores C, a set of tasks Γ,
heterogeneous execution modes of tasks ~λ, and tolerable
deadline miss rates ρΓ. Algorithm 2 provides a feasible task
mapping with the minimal overall reliability penalty under
heterogeneous execution modes ~λ.

Proof: As the reliability penalty of TMR-based RMT is
a negligible value ε in our model, the overall reliability φΓ

under heterogeneous execution modes can be reformulated
from Def. 1 to:

φΓ =
∑

τi∈ΓNR

φ(τi,k, cm), cm ∈ C. (4)

According to Eq.4, we can observe that the overall reliability
φΓ fully relies on the frequencies of assigned cores for NR
tasks, if all TMR-based RMT tasks are feasible to execute with
their assigned cores. Therefore, we know that the delivered
task mapping will be an optimal mapping if the assigned cores
of NR tasks have the maximal summation of frequencies to
obtain the minimal overall reliability penalty.

As the candidate cores for NR tasks are the remaining cores
after mapping the TMR-based RMT tasks, the assigned cores
for TMR-based RMT tasks must have the lowest summation
frequencies (for those lowest frequency cores in each group) to
let the remaining cores have the maximal summation frequen-
cies. The core grouping in Algorithm 2 groups every three
adjacent low-frequency cores, which guarantees the optimal
feasibility for TMR-based RMT tasks by Theorem 1 and
the lowest frequencies among the candidate cores. In the
following, we will prove that the assignment for TMR-based
RMT tasks in Algorithm 2 based on the above grouping which
can find out an optimal mapping such that the rest of cores
for NR tasks have the maximal summation of frequencies.

Assume there is an optimal task mapping between TMR-
based RMT tasks and core groups as Fig. 5(a), and the
mapping Fig. 5(b) is the result of Algorithm 2, in which the
core groups are sorted by their lowest frequency core, i.e.,
g1 > g2 > g3 > g4. Then there are two cases:

τ1

τ2

τ3

g1

g2

g3

g4

m2 '

Core GroupsTasks

m3 '

m1 '

(a)

τ1##
τ2#
τ3#

g1#
g2#
g3#
g4#

m1#

m2#

m3#

#Core#Groups#Tasks#

(b)

Fig. 5: Example of task mappings for RMT tasks and core
groups in the proof of Theorem 2, in which (a) is an optimal
solution and (b) is delivered by Algorithm 2.

• Case 1: There are two consecutive mappings in a dif-
ferent order in Fig.5(a) than they are in Fig. 5(b): For
such a case, we swap the order for these two consecutive
mappings, i.e., m′2 and m′3, and they become m2 and
m3. After the swapping procedure, the total frequency of
remaining cores will be the same, as the assigned cores
for TMR-based RMT tasks are not changed..

• Case 2: There is an element of Fig. 5(a) not in Fig. 5(b)
and an element of Fig. 5(b) not in Fig. 5(a): We swap
g1 and g2 for the element of mapping m′1, and now m′1
becomes m1. As the rest of the cores are changed from
group g1 to g2, we know that the total frequency of rest
of the cores is not less than before i.e, g2 < g1.

As a result, the swapping procedure shows that the delivered
mapping is no worse than before. The differences between
Fig. 5(a) and Fig. 5(b) are eliminated without worsening the
total frequency of the solution. We know that the delivered
mapping is as good as any optimal solution in which the rest
of cores have the maximal total frequency. As the optimality
of Hungarian Algorithm has been proved in [46], the delivered
task mapping must be optimal with the minimal overall
reliability penalty. As a consequence, we reach the conclusion
that the delivered task mapping by Algorithm 2 is optimal.

IV. EXECUTION MODES ADAPTATION

Until now, the assumption was that the execution modes of
tasks ~λ are given. In this section, we present an iterative mode
adaptation which determines the execution modes of tasks with
the proposed mapping approaches in Section III-B.

To minimize the overall reliability penalty, it is beneficial
to execute as many tasks as possible in TMR-based RMT
mode. However, which tasks should execute in TMR-based
RMT mode is not that trivial to determine. Some tasks may
suffer from their higher vulnerability, whereas some of tasks
may suffer from their tighter deadline miss rate.

Intuitively, activating the TMR-based RMT mode for the
task with the highest reliability penalty is a reasonable way to
decrease the overall reliability penalty as the greedy approach
in [39]. However, the task with the ”highest reliability penalty”
is only relative to a specific core frequency, e.g., on the highest
frequency core. If we greedily execute this task in the TMR-
based RMT mode, all the possible task mappings for the rest
of tasks may even lead to an inferior overall system reliability.
In addition, we are not able to know how a task is vulnerable

7

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
T

C
.2

01
6.

25
32

86
2

Algorithm 3 Modes Adaptation and Task Mapping
Input: set of tasks Γ; set of cores C; best versions table ψ;
Output: Mapping M with the set of selected versions;

1: //Mapping the first case
2: Vector~λ ← assign all execution modes of tasks as NR;
3: M← apply Algorithm 1 with Γ and C to find out the mapping;
4: if φΓ is ∞ then
5: return FAIL;
6: end if
7: find out task τh with the highest penalty in mapping M;
8: for each τh, τh ∈ ΓNR do
9: λh ← assign the execution mode of task τh as TMR;

10: M← apply Algorithm 2 to find out the task mapping;
11: if φΓ is ∞ then
12: restore λh to NR
13: end if
14: check the next τh in mapping M;
15: end for

under the core grouping, as the core grouping for TMR-
based RMT execution is still unknown at this moment. Since
checking all the combinations of execution modes may not be
possible, here we propose an iterative approach exploiting our
task mapping approaches as the subroutine to guarantee the
feasibility and efficiency of execution modes.

Algorithm 3 presents the pseudo-code of mode adaptation.
It first adopts Algorithm 1 to find out the mapping between
the tasks and cores for the initial case that none of the tasks
require TMR-based RMT execution, which helps us find out
a reasonable reference to upgrade the execution modes (lines
2-3). Then, the following procedure is repeated until there is
no more improvement. At first, we consider the task with the
maximal reliability penalty in the current mapping solution
(line 7). The objective is to upgrade one more task from NR
to TMR-based RMT with the current solution for the reliability
improvement. For this task, we greedily upgrade its mode by
picking up two unused cores that can satisfy the miss rate
constraint of the task. If the upgrade is feasible, we can adopt
Algorithm 2 to find out the next mapping M (lines 9-10);
otherwise, we rollback the infeasible upgrade (line 12). Then,
we continue the procedure finding the next high penalty task
for upgrading from NR to TMR (line 14). When there is no
more improvement and all the tasks are considered, we can
terminate the iterative procedure.

Algorithm 3 may deliver a feasible mapping M and mini-
mize the system reliability penalty φΓ with as many as possible
RMT tasks. The time complexity is only scaled by the number
of tasks N , which is still applicable to be used online.

V. COMMUNICATION AND DEPENDENCY

In this section, we present how to deal with the communica-
tion and dependency among the tasks when we considering the
task mapping problem on a many-core processor. We consider
the communication fabric with the most popular deterministic
routing algorithm, i.e., XY routing (proven to be deadlock-
free) [47], on the most common topology, i.e., 2-Dimension
(2D) mesh. Since the many-core processor only has a single
thread per core, to parallelize the execution of dependent
tasks and utilize all the redundant cores concurrently, one
way is to adopt the well-known technique, i.e., software
pipelining, to dispatch the dependencies into different pipeline
stages, where the dependent inputs of tasks can be transformed

P2#

P1#

(0,2)# (1,2)# (2,2)#

(0,1)# (1,1)# (2,1)#

(0,0)# (1,0)# (2,0)#

P2#

P1#

(0,2)# (1,2)# (2,2)#

(0,1)# (1,1)# (2,1)#

(0,0)# (1,0)# (2,0)#

(a)

c9#

c6#

c2# c3#

(0,2)# (1,2)# (2,2)#

(0,1)# (1,1)# (2,1)#

(0,0)# (1,0)# (2,0)#

c6#

c2# c3#

(0,2)# (1,2)# (2,2)#

(0,1)# (1,1)# (2,1)#

(0,0)# (1,0)# (2,0)#

RMT#

RMT#

(b)

Fig. 6: The communication on 2D mesh topology with XY
routing. In (a), pipelines P1 and P2 have the communication.
In (b), RMT adopts {c2, c6, c9} and {c2, c3, c6}, respectively.

ck#

cj#

ci#

4# 3# 4#

3# 2# 3#

4# 3# 4#

Fig. 7: Example of the maximal distance/hops estimation in
a 3x3 mesh. The maximal distance will be 4 if the task is
assigned to ci. It can be bounded by 2, if it assigned to cj .

by the predecessors before the execution of next pipeline
stage. With the software pipelining, we can consider the task
mapping with the data dependencies on all the redundant cores
concurrently. We assume that the communication overhead is
significantly less than the computation overhead, so that the
system reliability may not be dramatically changed.

For the given task graph G, we prepare πi to denote
whether task τi has a predecessor: πi is equal to 1 if task
τi has a predecessor; otherwise, πi is 0. Although all the
dependent tasks can execute at the same time with software
pipeline, the communication of dependent pipelines has to be
considered with the allocation of assigned cores. As shown
in Fig. 6(a), the different allocation of assigned cores, may
lead to a different communication distance. In addition, the
TMR-based RMT also has internal communication among
the redundant threads for the majority-voting mechanism. As
shown in Fig. 6(b), the allocation of cores dedicated for TMR-
based RMT execution has to be considered for avoiding any
unnecessary performance penalty.

In general, the communication overhead can be estimated
by considering the data size, the required cycles per hop, and
the distance of communication. However, the realistic distance
of communications can only be calculated after the allocation
of the tasks and cores is done. To mitigate the uncertainty, we
propose to estimate the overhead with the maximal distance
on the 2D mesh to cover the worst execution scenario. As
shown in Fig. 7, if a task is assigned to core ci in a 3×3 mesh
topology, the maximal distance will be 4 hops as ci to ck. If
it is assigned to the pipeline on core cj , the maximal distance

8

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
T

C
.2

01
6.

25
32

86
2

will be 2 hops as cj to ck. Therefore, by applying XY routing,
the maximal distance of communication on core cm, denoted
by qm can be calculated statically.

For the communication of dependent pipelines, the execu-
tion time overhead can be estimated by the input data size
of task and the maximal distance qm of assigned core cm of
pipeline as the following:

∆in(τi, cm) = qm × inputData size(τi) (5)

Similarly, since the majority-voting mechanism has to wait
for all the output data of the redundant threads, the internal
communication in RMT can be estimated by the output data
size of task and the maximal distance qm of assigned core cm
as the following:

∆out(τi, cm) = qm × outputData size(τi) (6)

Assume the data transfer spends µ cycles per hop. Since
the communications prolong the execution time of tasks, the
interval between the release and deadline is reduced by all the
possible communications as the following:

D′i = Di − µ · (λi ·∆out(τi, cm) + πi ·∆in(τi, cm)) (7)

As a consequence, the deadline miss rate of task as Eq.(1) with
the pipeline on core cm should be reformulated as Eq.(8):

Pdm(τi,k, cm) = 1− Ci,k,m(D′i) (8)

With the reformulated deadline miss rate Eq.(8), we can
incorporate the communication overhead into our proposed
approaches. Please note that the applicability is not limited
to XY routing. The approximation can be easily extended for
the other deterministic routing algorithms by changing Eq.(5)
and (6) accordingly.

If none of the tasks require RMT execution, Algorithm 1
is still optimal to the task mapping with the data dependency
due to the optimality of Theorem 1 and Hungarian Algorithm
for the worst case. However, if the compatibility of cores is
arbitrary to each task, Theorem 1 can not hold any more, in
which the feasibility and frequencies do not have the absolute
relation. Even if a core has the highest frequency among the
others, it may not be suitable for the task which has significant
communication overhead. As the cores’ positions also affect
the feasibility of mappings, it is not good enough to determine
the assignment sequence only by the frequencies of cores.

Algorithm 4 takes the above issues into consideration and
solves the task mapping problem with the communication
and data dependencies. At first, we have to reformulate the
deadline miss rate of task versions in the best versions table
ψ with Eq.(8) (line 2), which can be done in the preprocessing.
To present the impact of communication, we denote the
number of available cores for task τi as ai, which can be
obtained by calculating the number of feasible entries in the
reformulated best version table ψ (line 3). Then, we sort the
tasks with the corresponding ai by a non-increasing order.
(line 4). The assignment starts from the task with the minimal
number of available cores and assign three lower frequency
cores among the available cores (lines 5-12). If the task cannot
be satisfied by the remaining available cores, it is clear that

Algorithm 4 Task Mapping with Data Dependency
Input: set of tasks Γ; set of cores C; best versions table ψ;
Output: Mapping M with the set of selected versions;

1: ListL ← ΓTMR, Listc ← C;
2: reformulate best versions table ψ with Eq.(8);
3: calculate the number of available cores ai for ΓTMR;
4: sort and re-index ListL by ai;
5: for each τi ∈ ListL, i = 1, 2, . . . , k do
6: //τk has the minimal number of available cores
7: assign three lower frequency cores to τi in Listc;
8: remove the assigned cores from Listc;
9: if τi is not able to activate RMT then

10: return FAIL;
11: end if
12: end for
13: //Assigning NR tasks
14: G ← build Bipartite Graph with ΓNR, Listc, and ψ;
15: M← find the mapping by HungarianAlgorithm(G);
16: if φΓ is ∞ then
17: return FAIL;

18: end if

there is no further feasible solution (lines 9-11). By checking
all the RMT tasks, all the assigned cores and TMR tasks are
excluded as the procedure in Section III-B. As the rest of
tasks are only NR tasks in Γ, we follow the same procedure
as Algorithm 2 to build up the bipartite graph and find out a
perfect matching M by Hungarian Algorithm with the minimal
φΓ (lines 14-18). Please note that, in case of dependent tasks
where the predecessor output has soft errors, we assume that
the errors can be recovered by task re-execution before it is
served to its dependent task, which is similar to dTune [39].

Consequently, we can find out a reasonable task mapping M
by using Algorithm 4 and the reformulated versions table ψ.
The time complexity is the same as Algorithm 2, i.e., O(N3).

VI. RESULTS AND DISCUSSION

A. Experimental Setup

To evaluate the performance of our schemes, we use the
same setting as dTune [39]. The overview of the experimental
setup is shown in Fig. 8 and briefly explained in the following.
More details can be found in [7, 48, 49].

We deploy 7 functions mixed with a complex video encoder
“H.264” from an embedded benchmark MiBench [50]: (1)
SAD, (2) ADPCM, (3) CRC, (4) SusanS, (5) SHA, (6) SATD,
and (7) DCT, where the data dependencies are as follows:
• DCT → SAD → SATD
• ADPCM → CRC
• SUSAN → SHA
Each application function is compiled with a reliability-

driven compiler, which is based on the GCC framework.
Different reliable function versions are generated by apply-
ing different reliability-driven transformations [7, 51] and a
reliability-driven instruction scheduling algorithm [45]. These
reliable function versions provide trade-off points for relia-
bility vs. performance. Fig. 9(a) shows an example in our
setup that different function versions under the same frequency
core have different performance. A subset of Pareto-optimal
versions is selected and used by the run-time system. For each
compiled version, we estimate the performance and the values
of reliability penalties under two different fault rates, i.e.,
η = 10−6 and 10−7 (in the unit of #fault/cycles) to realize

9

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
T

C
.2

01
6.

25
32

86
2

Our In-house Reliability-Aware Many-Core Simulator

Configurable Fault
Generation and Injection

Manycore ISS

(a)

Core1 Core2

Core9 Core10

Core17Core18

Core25Core26

Core33Core34

Core41Core42

Core49Core50

Core57Core58

Core3 Core4 Core5 Core6 Core7 Core8

Core11Core12 Core13Core14Core15Core16

Core19Core20Core21 Core22Core23Core24

Core27Core28Core29 Core30Core31Core32

Core35Core36Core37 Core38Core39Core40

Core43Core44 Core45Core46Core47Core48

Core51Core52 Core53Core54Core55 Core56

Core59Core60 Core61Core62Core63Core64

Core-to-Core
Frequency
Variation

Map

Reliability Analysis

Estimating Masking Probabilities

Logic

Simulation

(Model Sim)

P
ro

c
e

s
s

o
r

S
y

n
th

e
s

is

Application
Activity

Activity file /
Signal

Probabilities
(.vcd)

Standard

Delay File

(.SDF)

Application
Executables

Gate-Level Netlist VHDL Files

RT Penalty

NetList

Parser
Estimation of

Logical

Masking

ProbabilitiesFind Gate Paths

Techn.
Library
(TSMC
45 nm)

Logic Synthesis
(Synopsys Design

Compiler)

Performance Estimation

Other
Compiler
Blocks

Transfor-
mations

Instruction
Scheduling

Protection

Error Logging & Characterization

Vulnerability Estimation

Reliability-
Driven

Compiler

Applications

Circuit
Graph

Generator

S
y

s
te

m
 S

o
ft

w
a

re

Fig. 8: Experimental setup with reliability-driven compiler,
system software, and processor simulator.

high fault scenarios as adopted by the related works [52, 53].
The reliability penalty for each function/task is estimated using
the approach of [7, 49].

Overall, our framework employs a reliability-aware many-
core simulator with integrated configurable fault generation
and injection modules. Each core implements the SPARC-v8
ISA (used in LEON2 and LEON3 cores), which is generated
using the ArchC architecture description language and related
tools [54]. We extended the simulator with in-house developed
configurable fault generation and injection modules, and error
analysis/logging functionalities. These are required to perform
an in-depth reliability/vulnerability analysis. For accurate reli-
ability estimation, we synthesized the LEON3 cores using the
Synopsys Design Compiler for a TSMC 45 nm technology
library to obtain area, frequency, and logical masking prob-
abilities. We performed gate-level error masking/propagation
analysis on the netlists to obtain logical masking probabilities
of different processor components. These probabilities are then
used to obtain the instruction vulnerabilities that are later used
to estimate task reliability penalties; see detailed procedure
in [7, 49]. For fault scenario generation, different parameters
(like number of bit flips per fault, fault rate using the neutron
flux calculator [55] and coordinates of a given location,
fault distribution, etc.) are used. Faults in different processor
components are randomly injected (as also done in [3, 56])
during the execution of a given function version. Their effects
on the application output are monitored using an error logger.
Errors are categorized based on the severity from the user’s
perspective (e.g., application failure, incorrect output, correct
output). The results of the fault injection experiments are used:
(1) to estimate the software-level vulnerability and masking
properties of the applications; and (2) to analyze the reasons
for application failures, e.g., accessing prohibited memory
regions and non-decodable instructions.

We evaluate our mapping approach as Algorithm 2, the
mode adaptation approach as Algorithm 3, and Algorithm 4
with the generated reliability penalty value, different execution
modes, and cores performance heterogeneity. For evaluation,
we generate 128 different execution modes for the above 7
functions, i.e., 27, to test our approaches and the greedy map-
ping approaches used in dTune. Depending upon the perfor-
mance heterogeneity, the infeasible scenarios in the evaluation

ADPCM SHA SUSAN
0

1000

2000

3000

4000

5000

6000

A
v
g
.

E
x
e
cu

ti
o
n
 T

im
e

[K
C

y
cl

e
s]

v0 v1 v2 v3 v0 v1 v2 v3 v4 v0 v1 v2

(a)

1 8 15 22 29 36 43 50 57 64
0.5

0.6

0.7

0.8

0.9

1.0

w
 =

 0
.1

1 8 15 22 29 36 43 50 57 64
0.5

0.6

0.7

0.8

0.9

1.0

w
 =

 0
.2

1 8 15 22 29 36 43 50 57 64
0.5

0.6

0.7

0.8

0.9

1.0

w
 =

 0
.3

Core Number

N
o
rm

a
liz

e
d
 F

re
q
u
e
n
ci

e
s

(b)

Fig. 9: Examples of the experimental setup: (a) Performance
of different on the same frequency core; (b) Core-to-core
frequency variation in normal distrbution for 8× 8 cores.

are excluded. To simulate the performance heterogeneity of
cores, the evaluation is performed by three different scenarios
with variations ω on 8×8 cores as follows:
• Grouping Frequency Levels: such scenarios are for

evaluating architectures with heterogeneous performance,
e.g., ARM big.LITTLE architecture [26]. We evaluate
four different frequency levels in a multi-core processor.
We assume the performance variation is ω, where the
cores are with frequencies f1, (1−ω)f1, (1−2ω)f1, and
(1− 3ω)f1.

• Uniform distribution: Based on the variation model of
[42], we uniformly generate the frequencies of cores from
the highest one f1 to the lowest one fM to consider
process variations.

• Normal distribution: The various frequencies of cores
are normally distributed/generated [57] in the range of
(0, 1] ·f1 with the mean 1−ω and standard deviation σ =
0.05 to consider process variations. As it is possible that
the normal distribution has a random variable greater than
1 or less than 0, we take such cases to the corresponding
boundary conditions.

Considering real-word scenarios on performance variations,
we only evaluate our proposed approaches while ω is up to
30% [24]. Fig. 9(b) shows the example variation scenarios
under normal distribution. For simplicity of presentation, we
set all the individual miss rate ∀ρi ∈ ρΓ with the same rate ρ.

For each configuration of core frequencies, we generate 500
different processors with different variations, and report the
average results. As we are not aware of any other state-of-
the-art related works, we normalize our results to the greedy
mapping and compare the efficiency with the same set of task

10

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
T

C
.2

01
6.

25
32

86
2

versions and core configurations for fairness, in which the
normalized ratio is calculated as φγ of the resulting solution
divided by φγ of the greedy mapping. By definition, the lower
normalized penalty ratio is better.

B. Simulation Results for Task Mapping

In these simulations, we evaluate our mapping approach
with all the possible execution modes. Each bar in the pre-
sented figures is obtained by averaging the reliability results
through these 128 different execution modes. Since the greedy
mapping cannot guarantee the feasibility of the task mapping,
it may be possible that the greedy mapping is not a feasible
one to meet the miss rate constraint.

Simulation without Data Dependency: Fig. 1 in the
supplementary material shows the evaluation results under two
different fault rates, i.e., 10−6 and 10−7. Overall, we can
observe that our approach outperforms the greedy mapping
approach, and the average improvement is around 20% among
all the cases. In particular, the improvement can be up to 80%
(0.2 in the bar plot) when the fault rate is 10−7 under Grouping
Frequency Levels. In such scenarios, the reliability penalties
may play a minor role, whereas the greater penalties of timing
constraint violations dominate the value of the penalty func-
tion. Moreover, when the variations of performance among
the cores are higher, our approach is typically more effective
than the greedy mapping approach. It is because our approach
prevents the severe degradation of reliability, in which the
cores are not grouped properly. Please note, if the design
constraints are too strict, none of the approaches can deliver a
feasible solution. Even if there exists a feasible solution, there
is no space to further improve the reliability among different
approaches.

In case the difference of frequencies between different
grouping levels is large enough, the greedy mapping approach
may suffer from the sequential assignment of cores, in which
the task with RMT mode may have severe performance
degradation due to the domination of its lowest-frequency core
in the majority-voting. In particular, the most improvement can
reach up to 80% when ω = 0.3, η = 10−7, and ρΓ = 5%.

Interestingly, we can observe that the improvement is not
significant under the scenario of uniform distribution. Among
all the possible combinations, the differences of overall reli-
ability penalty between both approaches are not significant,
since the frequencies of the cores are degraded smoothly.
Nevertheless, our task mapping approaches can still perform
well in some cases. For example, in the lower fault rate as
10−7, the improvement can be up to 31%, when the tolerable
miss rate is higher, i.e, ρΓ = 30%.

In the scenario of normal distribution, some of the results
with the severe performance variations, i.e., ω ≥ 0.16, have
no feasible solutions in the simulation. Due to the lack of
high-frequency cores, most of the execution modes cannot
be satisfied, in which most of the cores are degraded as
the middle-frequency under normal distribution. When the
tolerable miss rate is strict with the lower fault rate, i.e.,
η = 10−7 and ρ = 15%, the results in our simulations
depend upon the timeliness of task mapping, in which the

improvement is less because of the negligible differences of
feasible mappings. Among all the feasible constraints, our
proposed approach outperforms the greedy mapping approach
under both fault rates.

Fig 10 presents the comparison results under different
fault rates for a more complicated application scenario. We
construct this application by using the functions selected
from MiBench as mentioned previously, and duplicate the
functions to increase the demand for cores. Based on 14
functions in the complicated application, we examine 16384
different execution modes, i.e., 214, and present the overall
reliability penalty ratio in average. As a result, we know that
our approach is still applicable and outperforms the greedy
approach in case the application is more complicated.

Simulation with Communication Overhead: By apply-
ing the communication model presented in Section V, we
reformulate the deadline miss rate of tasks in the preprocessing
and adopt Algorithm 4, to obtain the simulation results in
Fig.11. At first, we can observe that the trends of results
are similar as the previous case (without data dependency).
Since the overhead of communication increases the hardness
of meeting deadline, the feasible versions of tasks are reduced
greatly, in which most of the tasks have a few choices to utilize
the different frequencies of cores. However, the reliability
improvement among all the different mappings is generally
more than the case without dependency consideration.

Time Consumption: To compare the timing overhead,
here we report the average execution time for the experiments
reported in Fig. 1 of supplementary material page and Fig. 10.
As shown in Fig. 12, we can see that if the input number
is as small as 7 tasks, our method can still be efficient.
However, when the input number is increased to 21 tasks, the
overhead difference is more obvious. As the greedy mapping
sorts the tasks by the reliability penalties, the execution time is
mainly dominated by the sorting algorithm. However, the time
complexity of our approach is O(N3). When there are many
tasks, some approximations are required to trade the execution
time for the efficiency.

C. Simulation Results for Modes Adaptation

This subsection presents the results when the execution
modes of tasks are not determined beforehand. To evaluate the
effectiveness, we adopt Algorithm 3 to deliver the execution
modes with different maximal numbers of RMT tasks, in
which the maximal number of RMT tasks is determined by
the number of available cores. Here we present the evaluation
under different fault rates 10−6 and 10−7 with variation
ω = 0.14. As we are not aware of any other approaches of ex-
ecution modes adaptation, we show the normalized reliability
penalty ratios with our mapping approach.

As shown in Fig. 13, we can see that the trends in the charts
with the delivered execution modes still follow our observation
in Section VI-B. If the frequency variation among the cores
is not negligible as in the case of grouping frequency levels,
the proposed mapping approach perform well most of time.
If the frequencies of cores are degraded smoothly as the case
of uniform distribution, the improvement of overall reliability

11

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
T

C
.2

01
6.

25
32

86
2

Grouping)Frequency)Levels) Uniform)Distribu9on) Normal)Distribu9on)

Fa
ul
t)
Ra

te
)η
=1
0A

6)
Fa
ul
t)
Ra

te
)η
=1
0A

7)

N
or
m
al
iz
ed

)R
el
ia
bi
lit
y)
Pe

na
lt
y)
Ra

9
o)

Varia9ons)ω) ρ=5%) ρ=15%) ρ=30%)

0)

0.2)

0.4)

0.6)

0.8)

1)

0.
1)

0.
12
)

0.
14
)

0.
16
)

0.
18
)

0.
2)

0.
22
)

0.
24
)

0.
26
)

0.
28
)

0.
3)

0)

0.2)

0.4)

0.6)

0.8)

1)

0.
1)

0.
12
)

0.
14
)

0.
16
)

0.
18
)

0.
2)

0.
22
)

0.
24
)

0.
26
)

0.
28
)

0.
3)

0.
1)

0.
12
)

0.
14
)

0.
16
)

0.
18
)

0.
2)

0.
22
)

0.
24
)

0.
26
)

0.
28
)

0.
3)

0.
1)

0.
12
)

0.
14
)

0.
16
)

0.
18
)

0.
2)

0.
22
)

0.
24
)

0.
26
)

0.
28
)

0.
3)

0.
1)

0.
12
)

0.
14
)

0.
16
)

0.
18
)

0.
2)

0.
22
)

0.
24
)

0.
26
)

0.
28
)

0.
3)

0.
1)

0.
12
)

0.
14
)

0.
16
)

0.
18
)

0.
2)

0.
22
)

0.
24
)

0.
26
)

0.
28
)

0.
3)

Fig. 10: Overall reliability penalty ratio for the complicated application under two different fault rates 10−6 and 10−7.

Grouping)Frequency)Levels) Uniform)Distribu9on) Normal)Distribu9on)

Fa
ul
t)
Ra

te
)η
=1
0A

6)
Fa
ul
t)
Ra

te
)η
=1
0A

7)

N
or
m
al
iz
ed

)R
el
ia
bi
lit
y)
Pe

na
lt
y)
Ra

9
o)

Varia9ons)ω) ρ=5%) ρ=15%) ρ=30%)

0)

0.2)

0.4)

0.6)

0.8)

1)

0.
1)

0.
12
)

0.
14
)

0.
16
)

0.
18
)

0.
2)

0.
22
)

0.
24
)

0.
26
)

0.
28
)

0.
3)

0)

0.2)

0.4)

0.6)

0.8)

1)

0.
1)

0.
12
)

0.
14
)

0.
16
)

0.
18
)

0.
2)

0.
22
)

0.
24
)

0.
26
)

0.
28
)

0.
3)

0.
1)

0.
12
)

0.
14
)

0.
16
)

0.
18
)

0.
2)

0.
22
)

0.
24
)

0.
26
)

0.
28
)

0.
3)

0.
1)

0.
12
)

0.
14
)

0.
16
)

0.
18
)

0.
2)

0.
22
)

0.
24
)

0.
26
)

0.
28
)

0.
3)

0.
1)

0.
12
)

0.
14
)

0.
16
)

0.
18
)

0.
2)

0.
22
)

0.
24
)

0.
26
)

0.
28
)

0.
3)

0.
1)

0.
12
)

0.
14
)

0.
16
)

0.
18
)

0.
2)

0.
22
)

0.
24
)

0.
26
)

0.
28
)

0.
3)

Fig. 11: Evaluation of the reliability penalty ratio with the communication overhead under different fault rates.

Fig. 12: Overhead between our approach and greedy mapping.

penalty is not significant. In the case of normal distribution, the
improvement is still significant with the delivered execution
modes when the tolerable miss rate is tighter, i.e., ρ = 5%.

We also compare the resulting execution modes with the
optimal execution modes for 7 tasks, which is obtained by
a brute-force search with factorial timing complexity. We
observe that the task mapping and execution modes delivered

by our proposed approaches are equivalent tp the optimal task
mapping under the optimal execution modes.

VII. CONCLUSIONS

In this paper, we have introduced reliability-driven mapping
techniques to allocate the tasks onto a many-core processor
by taking application vulnerability and performance hetero-
geneity into consideration. We show that a special case of
the studied problem with homogeneous execution modes is
equivalent to the minimum weight perfect bipartite matching
problem, and an approach is developed to optimally handle
heterogeneous execution modes. To consider communication
and data dependencies, we provide a viable way to estimate
the transfer overhead with a deterministic routing algorithm
and show how it enhances our proposed mapping approaches.
From the evaluation we conclude that our proposed approaches
may improve greedy method drastically up to 80% when
the frequency variation among the cores is not negligible.

12

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
T

C
.2

01
6.

25
32

86
2

Grouping)Frequency)Levels) Uniform)Distribu9on) Normal)Distribu9on)

Fa
ul
t)R

at
e)
η=

10
A6
)

Fa
ul
t)R

at
e)
η=

10
A7
)

N
or
m
al
ize

d)
Re

lia
bi
lit
y)
Pe

na
lty

)R
a9

o)

0)

0.2)

0.4)

0.6)

0.8)

1)

0) 1) 2) 3) 4) 5) 6) 0) 1) 2) 3) 4) 5) 6) 0) 1) 2) 3) 4) 5) 6)

0)

0.2)

0.4)

0.6)

0.8)

1)

0) 1) 2) 3) 4) 5) 6) 0) 1) 2) 3) 4) 5) 6) 0) 1) 2) 3) 4) 5) 6)

Maximal)number)of)RMT)tasks)with)varia9on)ω=0.14) ρ=5%) ρ=15%) ρ=30%)

Fig. 13: Evaluation of the resulting execution modes with variation ω = 0.14 under different fault rates.

For different scenarios of chip frequency variation maps, the
improvement on average may achieve 20%.

As the time complexity of proposed approaches are polyno-
mial time based, all can be triggered either in on-line recon-
figuration for aging-induced effects or process variations, or
off-line configuration for heterogeneous architectures to pursue
the dependable application design. For the implementation, the
interactions between the compiler and the operating system are
required. The reliable compilation help us exploit the resilience
of tasks with varying execution time and vulnerabilities The
proposed approaches needs to be implemented in the scheduler
to determine the task mapping and the executing modes.

ACKNOWLEDGMENTS

This work is supported in parts by the German Research
Foundation (DFG) as part of the priority program ”Dependable
Embedded Systems” (SPP 1500 - spp1500.itec.kit.edu).

REFERENCES
[1] R.C. Baumann. Radiation-induced soft errors in advanced semiconductor technolo-

gies. Device and Materials Reliability, IEEE Transactions on, 2005.
[2] Jörg Henkel, Lars Bauer, Nikil Dutt, Puneet Gupta, Sani Nassif, Muhammad

Shafique, Mehdi Tahoori, and Norbert Wehn. Reliable on-chip systems in the
nano-era: Lessons learnt and future trends. In DAC, 2013.

[3] Shubhendu S. Mukherjee, Christopher Weaver, Joel Emer, Steven K. Reinhardt, and
Todd Austin. A systematic methodology to compute the architectural vulnerability
factors for a high-performance microprocessor. In IEEE/ACM MICRO, 2003.

[4] P. Shivakumar, M. Kistler, S.W. Keckler, D. Burger, and L. Alvisi. Modeling the
effect of technology trends on the soft error rate of combinational logic. In DSN,
2002.

[5] Ramakrishna Vadlamani, Jia Zhao, Wayne Burleson, and Russell Tessier. Multicore
soft error rate stabilization using adaptive dual modular redundancy. In DATE, 2010.

[6] Semeen Rehman, Anas Toma, Florian Kriebel, Muhammad Shafique, Jian-Jia Chen,
and Jörg Henkel. Reliable code generation and execution on unreliable hardware
under joint functional and timing reliability considerations. In IEEE RTAS, 2013.

[7] Semeen Rehman, Muhammad Shafique, Florian Kriebel, and Jörg Henkel. Reliable
software for unreliable hardware: embedded code generation aiming at reliability.
In CODES+ISSS, 2011.

[8] Muhammad Shafique, Semeen Rehman, Pau Vilimelis Aceituno, and Jörg Henkel.
Exploiting program-level masking and error propagation for constrained reliability
optimization. In DAC, pages 17:1–17:9, 2013.

[9] George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, David I. August,
and Shubhendu S. Mukherjee. Software-controlled fault tolerance. ACM Trans.
Archit. Code Optim., 2005.

[10] Viacheslav Izosimov, Paul Pop, Petru Eles, and Zebo Peng. Synthesis of fault-
tolerant embedded systems with checkpointing and replication. In DELTA, pages
440–447, 2006.

[11] J. Henkel, A. Herkersdorf, L. Bauer, T. Wild, M. Hubner, R.K. Pujari, A. Grud-
nitsky, J. Heisswolf, A. Zaib, B. Vogel, V. Lari, and S. Kobbe. Invasive manycore
architectures. In ASP-DAC, 2012.

[12] J. Jahn, M.A.A. Faruque, and J. Henkel. Carat: Context-aware runtime adaptive
task migration for multi core architectures. In DATE, 2011.

[13] T. Ebi, M. Faruque, and J. Henkel. Tape: Thermal-aware agent-based power econom
multi/many-core architectures. In ICCAD, 2009.

[14] M.A. Al Faruque, R. Krist, and J. Henkel. Adam: Run-time agent-based distributed
application mapping for on-chip communication. In DAC, 2008.

[15] Tilera Corporation. Tile-gx processor family, 2013. http://www.tilera.com.
[16] Intel xeon phi™product family.
[17] Intel single-chip cloud computer. http://techresearch.intel.com/ProjectDetails.aspx?Id=1.
[18] Nvidia Tesla. Tesla processor family, 2013. http://www.nvidia.com.
[19] ITRS. System drivers, 2011. http://www.itrs.net.
[20] E. Rotenberg. Ar-smt: a microarchitectural approach to fault tolerance in micro-

processors. In Fault-Tolerant Computing, 1999.
[21] Steven K. Reinhardt and Shubhendu S. Mukherjee. Transient fault detection via

simultaneous multithreading. In ISCA, pages 25–36, 2000.
[22] J.C. Smolens, B.T. Gold, B. Falsafi, and J.C. Hoe. Reunion: Complexity-effective

multicore redundancy. In MICRO-39. IEEE/ACM, 2006.
[23] Shubhendu S. Mukherjee, Michael Kontz, and Steven K. Reinhardt. Detailed design

and evaluation of redundant multithreading alternatives. In ISCA, pages 99–110,
2002.

[24] K.A Bowman, S.G. Duvall, and J.D. Meindl. Impact of die-to-die and within-die
parameter fluctuations on the maximum clock frequency distribution for gigascale
integration. Solid-State Circuits, IEEE Journal of, 37(2):183–190, 2002.

[25] Muhammad Shafique, Siddharth Garg, Jörg Henkel, and Diana Marculescu. The
eda challenges in the dark silicon era: Temperature, reliability, and variability
perspectives. In DAC, 2014.

[26] ARM. big.little technology: The future of mobile, 2013.
[27] Kelin Kuhn, Chris Kenyon, Avner Kornfeld, Mark Liu, Atul Maheshwari, Shih

Wei-kai, Sam Sivakumar, Greg Taylor, Peter VanDerVoorn, and Keith Zawadzki.
Managing process variation in intel’s 45nm cmos technology. Intel Technology
Journal, 2008.

[28] P. Gupta, Y. Agarwal, L. Dolecek, N. Dutt, R.K. Gupta, R. Kumar, S. Mitra,
A. Nicolau, T.S. Rosing, M.B. Srivastava, S. Swanson, and D. Sylvester. Underde-
signed and opportunistic computing in presence of hardware variability. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 2013.

[29] Jinjun Xiong, V. Zolotov, and Lei He. Robust extraction of spatial correlation.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 2007.

[30] S. Dighe et al. Within-die variation-aware dynamic-voltage-frequency-scaling with
optimal core allocation and thread hopping for the 80-core teraflops processor.
IEEE JSSC, 2011.

[31] I Kadayif, M. Kandemir, and I Kolcu. Exploiting processor workload heterogeneity
for reducing energy consumption in chip multiprocessors. In DATE, 2004.

[32] K. Kang et al. Nbti induced performance degradation in logic and memory circuits:
how effectively can we approach a reliability solution. In ASP-DAC, 2008.

[33] A. Tiwari and J. Torrellas. Facelift: Hiding and slowing down aging in multicores.

13

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
T

C
.2

01
6.

25
32

86
2

In IEEE MICRO, pages 129–140, 2008.
[34] C. R. Lefurgy et al. Active guardband management in power7+ to save energy and

maintain reliability. IEEE Micro, 33(4):35–45, 2013.
[35] A. Gonzalez J. Abella, X. Vera. Penelope: The nbti-aware processor. In IEEE

MICRO, pages 85–96, 2007.
[36] Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy Ranganathan, and

Dean M. Tullsen. Single-isa heterogeneous multi-core architectures: The potential
for processor power reduction. In MICRO, 2003.

[37] A. Benso, S. Chiusano, P. Prinetto, and L. Tagliaferri. A c/c++ source-to-source
compiler for dependable applications. In DSN, 2000.

[38] Jianjun Xu, Qingping Tan, and Rui Shen. The instruction scheduling for soft
errors based on data flow analysis. In IEEE Pacific Rim International Symposium
on Dependable Computing, pages 372 –378, nov. 2009.

[39] Semeen Rehman, Florian Kriebel, Duo Sun, Muhammad Shafique, and Jörg Henkel.
dtune: Leveraging reliable code generation for adaptive dependability tuning under
process variation and aging-induced effects. In DAC, pages 1–6, 2014.

[40] Changyun Zhu, Zhenyu Gu, R.P. Dick, and Li Shang. Reliable multiprocessor
system-on-chip synthesis. In CODES+ISSS, 2007 5th IEEE/ACM/IFIP Interna-
tional Conference on.

[41] A.S. Hartman, D.E. Thomas, and B.H. Meyer. A case for lifetime-aware task
mapping in embedded chip multiprocessors. In CODES+ISSS, 2010.

[42] Bharathwaj Raghunathan, Yatish Turakhia, Siddharth Garg, and Diana Marculescu.
Cherry-picking: Exploiting process variations in dark-silicon homogeneous chip
multi-processors. In DATE, pages 39–44, 2013.

[43] Sebastian Herbert, Siddharth Garg, and Diana Marculescu. Exploiting process
variability in voltage/frequency control. IEEE Trans. Very Large Scale Integr. Syst.,
2012.

[44] Sebastian Herbert and Diana Marculescu. Characterizing chip-multiprocessor
variability-tolerance. In DAC, pages 313–318, 2008.

[45] S. Rehman, M. Shafique, and J. Henkel. Instruction scheduling for reliability-aware
compilation. In DAC, 2012.

[46] Harold W. Kuhn. The hungarian method for the assignment problem. Naval
Research Logistics Quarterly, 2:83–97, 1955.

[47] Giovanni De Micheli and Luca Benini. Networks on chips: Technology and tools.
Elsevier Science, 2006.

[48] Semeen Rehman. Reliable software for unreliable hardware - a cross-layer
approach. Ph.D. Thesis, 2015.

[49] S. Rehman, K. Chen, F. Kriebel, A. Toma, M. Shafique, J. Chen, and J. Henkel.
Cross-layer software dependability on unreliable hardware. Computers, IEEE
Transactions on, 2016.

[50] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown. Mibench: A free, commercially representative embedded benchmark suite.
In WWC-4. IEEE International Workshop, 2001.

[51] S. Rehman, F. Kriebel, M. Shafique, and J. Henkel. Reliability-driven software
transformations for unreliable hardware. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 2014.

[52] J. Hu, S. Wang, and S.G. Ziavras. In-register duplication: Exploiting narrow-width
value for improving register file reliability. In DSN, 2006.

[53] Lin Li, V. Degalahal, N. Vijaykrishnan, M. Kandemir, and M.J. Irwin. Soft error
and energy consumption interactions: A data cache perspective. In ISLPED, 2004.

[54] Rodolfo Azevedo, Sandro Rigo, Marcus Bartholomeu, Guido Araujo, Cristiano C.
de Araujo, and Edna Barros. The archc architecture description language and tools.
International Journal of Parallel Programming, 2005.

[55] Flux calculator. http://www.seutest.com/cgi-bin/FluxCalculator.cgi.
[56] Giacinto Paolo Saggese, Nicholas J. Wang, Zbigniew Kalbarczyk, Sanjay J. Patel,

and Ravishankar K. Iyer. An experimental study of soft errors in microprocessors.
IEEE Micro, 25(6):30–39, 2005.

[57] Siddharth Garg and Diana Marculescu. System-level throughput analysis for
process variation aware multiple voltage-frequency island designs. ACM Trans.
Des. Autom. Electron. Syst., 13(4):59:1–59:25, 2008.

Kuan-Hsun Chen received the M.Sc. degree in
computer science from the National Tsing Hua Uni-
versity, Hsinchu, Taiwan, in 2013, and is pursuing
the Ph.D. degree from the Chair for Design Automa-
tion of Embedded Systems, TU-Dortmund, Ger-
many. His current research interests include depend-
able computing, embedded systems, and reliability-
aware resource management.

Jian-Jia Chen is Professor at Department of Infor-
matics in TU Dortmund University, Germany. He
was Juniorprofessor at Department of Informatics
in Karlsruhe Institute of Technology, Germany from
May 2010 to March 2014. He received his Ph.D.
degree from Department of Computer Science and
Information Engineering, National Taiwan Univer-
sity, Taiwan in 2006. Between Jan. 2008 and April
2010, he was a postdoc researcher at ETH Zurich,
Switzerland. His research interests include real-
time systems, embedded systems, energy-efficient

scheduling, power-aware designs, temperature-aware scheduling, and dis-
tributed computing. He received Best Paper Awards at CODES+ISSS 2014,
RTCSA 2005 and 2013, and SAC 2009. He has involved in Technical
Committees in many international conferences.

Florian Kriebel received the M.Sc. degree in com-
puter science from the Karlsruhe Institute of Tech-
nology (KIT), Germany, in 2013. He is currently
pursuing the Ph.D. degree from the Chair for Em-
bedded Systems, KIT, Germany. His current research
interests include dependable computing, cross-layer
reliability modeling, and optimization. Mr. Kriebel
was the recipient of the CODES+ISSS 2011 and
2015 Best Paper Award and two HiPEAC Paper
Awards.

Semeen Rehman (S’11) is a postdoc researcher
at Technical University Dresden, Germany. She re-
ceived her Ph.D. in computer science from the Karl-
sruhe Institute of Technology, Germany, in 2015.
From 2005 to 2007, she was an Information Systems
Manager at Mardan Surgical Centre Pvt. (Ltd.), Pak-
istan. Her current research interests include cross-
layer reliability modeling and optimization cover-
ing various system layers like compiler and run-
time system, approximate computing and embedded
systems. Ms. Rehman received the CODES + ISSS

2011 and 2015 Best Paper Awards and several HiPEAC Paper Awards.

Muhammad Shafique (M’11) received the Ph.D.
degree in computer science from the Karlsruhe In-
stitute of Technology (KIT), Germany, in 2011. He
is currently a Research Group Leader at the Chair
for Embedded Systems, KIT. He has over ten years
of research and development experience in power-
/performance-efficient embedded systems in leading
industrial and research organizations. He holds one
U.S. patent. His current research interests include
design and architectures for embedded systems with
focus on low power and reliability. Dr. Shafique was

the recipient of 2015 ACM/SIGDA Outstanding New Faculty Award, six gold
medals, the CODES+ISSS 2011, 2014, and 2015 Best Paper Awards, AHS
2011 Best Paper Award, DATE 2008 Best Paper Award, DAC 2014 Designer
Track Poster Award, ICCAD 2010 Best Paper Nomination, several HiPEAC
Paper Awards, and the Best Master’s Thesis Award. He is the TPC co-Chair of
ESTIMedia 2015 and 2016 and has served on the TPC of several IEEE/ACM
conferences like ICCAD and DATE.

14

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
T

C
.2

01
6.

25
32

86
2

Jörg Henkel Prof. Jörg Henkel is currently with
Karlsruhe Institute of Technology (KIT), Germany,
where he is directing the Chair for Embedded Sys-
tems CES. Before, he was a Senior Research Staff
Member at NEC Laboratories in Princeton, NJ. He
received his PhD from Braunschweig University
with ”Summa cum Laude”. Prof. Henkel has/is or-
ganizing various embedded systems and low power
ACM/IEEE conferences/symposia as General Chair
and Program Chair and was a Guest Editor on these
topics in various Journals like the IEEE Computer

Magazine. He was Program Chair of CODES’01, RSP’02, ISLPED’06,
SIPS’08, CASES’09, Estimedia’11, VLSI Design’12, ICCAD’12, PAT-
MOS’13, NOCS’14 and served as General Chair for CODES’02, ISLPED’09,
Estimedia’12, ICCAD’13 and ESWeek’16. He is/has been a steering com-
mittee member of major conferences in the embedded systems field like at
ICCAD, ESWeek, ISLPED, Codes+ISSS, CASES and is/has been an editorial
board member of various journals like the IEEE TVLSI, IEEE TCAD, IEEE
TMSCS, ACM TCPS, JOLPE etc. In recent years, Prof. Henkel has given
around ten keynotes at various international conferences primarily with focus
on embedded systems dependability. He has given full/half-day tutorials at
leading conferences like DAC, ICCAD, DATE etc. Prof. Henkel received the
2008 DATE Best Paper Award, the 2009 IEEE/ACM William J. Mc Calla
ICCAD Best Paper Award, the Codes+ISSS 2015, 2014, and 2011 Best Paper
Awards, and the MaXentric Technologies AHS 2011 Best Paper Award as well
as the DATE 2013 Best IP Award and the DAC 2014 Designer Track Best
Poster Award. He is the Chairman of the IEEE Computer Society, Germany
Section, and was the Editor-in-Chief of the ACM Transactions on Embedded
Computing Systems (ACM TECS) for two consecutive terms. He is an initiator
and the coordinator of the German Research Foundation’s (DFG) program
on ’Dependable Embedded Systems’ (SPP 1500). He is the site coordinator
(Karlsruhe site) of the Three- University Collaborative Research Center on
”Invasive Computing” (DFG TR89). He is the Editor-in-Chief of the IEEE
Design&Test Magazine since January 2016. He holds ten US patent and is a
Fellow of the IEEE.

15

	Introduction
	Problem Definition
	System Model
	Motivational Example
	Problem Definition
	Preprocessing for Version Selection

	Task Mapping Problem
	Homogeneous Execution Modes
	Heterogeneous Execution Modes

	Execution Modes Adaptation
	Communication and Dependency
	Results and Discussion
	Experimental Setup
	Simulation Results for Task Mapping
	Simulation Results for Modes Adaptation

	Conclusions
	Biographies
	Kuan-Hsun Chen
	Jian-Jia Chen
	Florian Kriebel
	Semeen Rehman
	Muhammad Shafique
	Jörg Henkel

