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ABSTRACT
We study uniprocessor scheduling for hard real-time self-
suspending task systems where each task may contain a sin-
gle self-suspension interval. We focus on improving state-of-
the-art fixed-relative-deadline (FRD) scheduling approaches,
where an FRD scheduler assigns a separate relative deadline
to each computation segment of a task. Then, FRD sched-
ules different computation segments by using the earliest-
deadline first (EDF) scheduling policy, based on the assigned
deadlines for the computation segments. Our proposed al-
gorithm, Shortest Execution Interval First Deadline Assign-
ment (SEIFDA), greedily assigns the relative deadlines of
the computation segments, starting with the task with the
smallest execution interval length, i.e., the period minus the
self-suspension time. We show that any reasonable deadline
assignment under this strategy has a speedup factor of 3.
Moreover, we present how to approximate the schedulabil-
ity test and a generalized mixed integer linear programming
(MILP) that can be formulated based on the tolerable loss
in the schedulability test defined by the users. We show
by both analysis and experiments that through designing
smarter relative deadline assignment policies, the resulting
FRD scheduling algorithms yield significantly better perfor-
mance than existing schedulers for such task systems.

1. INTRODUCTION
Self-suspension has become increasingly important for many

real-time applications, due to 1) the interactions with exter-
nal devices, such as GPUs [19], I/O devices [16], and accel-
erators [4], 2) multicore systems with shared resources [15],
3) suspension-aware multiprocessor synchronization proto-
cols [5, 22], etc. Introducing suspension delays may neg-
atively impact real-time schedulability, particularly given
that such delays can be quite lengthy in many scenarios.

Two models are studied in the literature: dynamic and
segmented self-suspension (sporadic) task models. The seg-
mented self-suspension model characterizes the lengths of
the computation segments and suspension intervals as an ar-
ray (Ci,1, Si,1, Ci,2, Si,2, ..., Si,mi−1, Ci,mi), composed of mi

computation segments separated by mi − 1 suspension in-
tervals, in which Ci,j is the worst-case execution time of a
computation segment, and Si,j is the worst-case length of a
self-suspension interval. The dynamic self-suspension model
allows a job of task τi to suspend itself at any moment be-
fore it finishes as long as the worst-case self-suspension time
Si is not violated.

It was shown by Ridouard et al. [24] that the scheduler
design problem for the segmented self-suspension task model
is NP-hard in the strong sense. Chen [7] has recently shown
that deciding whether a segmented self-suspension task set
can be schedulable by a fixed-priority scheduling policy is
coNP-hard in the strong sense. Although the computational

complexity for the dynamic self-suspension task model is
still unknown in most classes, it was shown by Chen [7] that
a wide range of scheduling strategies are with unbounded
speedup factors. For the computational complexity and
the difficulty to handle self-suspension systems, please re-
fer to [7, 24].

In this paper, we focus on segmented self-suspension task
systems, in which a job of a task can suspend at most
once. To resolve the computational complexity issues in
many of these NP-hard scheduling problems in real-time
systems, approximation algorithms, and in particular, ap-
proximations based on resource augmentation (to quantify
the worst-case speedup factors, detailed in Section 3.1) have
attracted much attention. Designing scheduling algorithms
and schedulability tests with bounded speedup factors (re-
source augmentation factors, equivalently) ensures a bounded
gap between the derived solution and the optimal solution
for such NP-hard problems.
Overview of related work. The problem of scheduling
and analyzing schedulability of real-time suspending tasks
has received much attention. For more details, please refer
to the recent review paper [11] for scheduling self-suspending
tasks in real-time systems. Although the impact of self-
suspension behaviour in real-time systems has been inves-
tigated since 1990, the literature of this research topic has
been seriously flawed as reported in [11].

Here, we summarize the existing results that are directly
related to segmented self-suspending task systems. Under
fixed-priority scheduling, Rajkumar [23] proposed a period
enforcer algorithm to handle the impact of self-suspensions.
Although the period enforcer algorithm can be applied for
self-suspending tasks with multiple computation segments,
Chen and Brandenburg [8] have recently shown that pe-
riod enforcement can be a cause of deadline misses for self-
suspending tasks sets that are otherwise schedulable. More-
over, its schedulability test is also concluded as unknown
in [8]. For task systems with at most one self-suspension
interval per task, Lakshmanan and Rajkumar proposed two
slack enforcement mechanisms in [18], in which the objec-
tives are similar to the period enforcer by shaping the higher-
priority jobs so that the higher-priority interference can be-
have like ordinary periodic tasks. The correctness of the
slack enforcement mechanisms was classified as an open is-
sue, since the proofs in [18] were incomplete.

Lakshmanan and Rajkumar [18] also proposed an pseudo-
polynomial-time worst-case response time test (recently shown
unsafe by Nelissen et al. [20]) for a special case, in which
there are ordinary sporadic tasks without any self-suspension
and one segmented self-suspending task as the lowest-priority
task. The sufficient schedulability test by Nelissen et al. [20]
requires exponential-time complexity even when the task
system has only one self-suspending task. To handle multiple
sporadic segmented self-suspending tasks, Nelissen et al. [20]
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proposed to convert higher-priority tasks into sporadic tasks
with jitters, which is unsafe.1 The methods in [12, 17] as-
sign each computation segment a fixed-priority level and an
offset, which was shown incorrect in [11]. For details with
respect to these issues, please refer to [11].

Chen and Liu [10] and Huang and Chen [14] proposed to
use release time enforcement, called fixed-relative-deadline
(FRD), under dynamic-priority scheduling and fixed-priority
scheduling, respectively. An FRD scheduler assigns a sep-
arate relative deadline to each computation segment of a
task and assigns different computation segments different
relative deadlines. Thus, relative deadline assignment poli-
cies become critical to the performance of FRD scheduling.
It is shown in [10] that a rather simple assignment policy,
namely equal-deadline assignment (EDA), that assigns rela-
tive deadlines equally to the computation segments of a self-
suspending task and uses EDF in [10] and fixed-priority in
[14] for scheduling the computation segments, yields better
performance w.r.t. resource augmentation bounds compared
to traditional job-level or task-level fixed priority scheduling
algorithms. Note that the study in [10] assumed only one
self-suspension interval per task. EDA was later shown to
have bounded speedup factors in [14] (under both EDF and
fixed-priority scheduling) for multiple self-suspension inter-
vals.
Contributions. In this paper we study the problem of
scheduling a sporadic self-suspending hard real-time task
system on a uniprocessor, where each self-suspending task
may contain one suspension interval. We consider implicit-
deadline task systems. Although EDA is shown to be supe-
rior to traditional real-time schedulers for such cases [10,14],
its deadline assignment policy is rather straightforward and
the potential of FRD scheduling seems not to be fully ex-
ploited under EDA.

Our proposed algorithm, Shortest Execution Interval First
Deadline Assignment (SEIFDA), considers the deadline as-
signment starting with the task with the smallest execution
interval length, i.e., the period minus the self-suspension
time. When considering task τk, SEIFDA greedily chooses
any feasible deadline only based on the interference from the
other k− 1 tasks with assigned deadlines, under an assump-
tion that the shorter computation segment of task τk has
a short relative deadline. This results in several strategies
for the deadline selection, as presented in Section 5. We
show that SEIFDA by adopting any deadline assignment
has a speedup factor of 3 in Section 6. Moreover, we also
present how to approximate the schedulability test in Sec-
tion 7. Section 8 presents a generalized mixed integer linear
programming (MILP) that can be formulated based on the
tolerable loss in the schedulability test defined by the users.
We show by both analysis and experiments that through de-
signing smarter relative deadline assignment policies, the re-
sulting FRD scheduling algorithms yield significantly better
performance than existing schedulers for such task systems.

2. TASK MODEL
We consider n sporadic one-segment self-suspending real-

time tasks T = {τ1, τ2, . . . , τn} in a uniprocessor system, in
which the n tasks are independent. Each task can release
an infinite number of jobs (or task instances) under a given
minimum inter-arrival time (temporal) constraints Ti, also
called the tasks period. This means if a job of task τi ar-

1
To our knowledge, the erratum is still prepared by the authors.

rives at time θa the next instance of the task must arrive not
earlier than θa + Ti. For one-segment self-suspending tasks
the execution of each job of τi is composed of two computa-
tion segments separated by one suspension interval. After
the first computation segment is finished the job suspends
itself, i.e., for the length of the suspension interval it is re-
moved from the ready queue and the job in the ready queue
with the highest priority is executed. The second computa-
tion segment is eligible to execute only after the completion
of the suspension interval. That is, after the suspension in-
terval of a jobs ends the job will be reentered into the ready
queue. A one-segment self-suspending task τi is character-
ized by 3 tuples:

τi = ((Ci,1, Si, Ci,2), Ti, Di)

where Ti denotes the minimum inter-arrival time of τi; Di
denotes the relative deadline of task τi; Ci,1 and Ci,2 denote
the worst case execution time (WCET) of the first and sec-
ond computation segment respectively; and Si denotes the
upper bound on the suspension time of τi. All these values
are positive. For the simplicity of presentations, for the rest
of this paper, we implicitly call such tasks as self-suspending
tasks as the context is clear. In this work, we restrict our
attention to implicit-deadline task systems, i.e., Di = Ti.

We do not assume, that each task in the task set must be a
self-suspending task. If a task has no self-suspension behav-
ior, there is only one computation segment of task τi, which
is equivalent to the conventional sporadic task model. In our
solution, such ordinary sporadic tasks should still be sched-
uled by using their original deadlines and demand bound
functions. However, for the simplicity of presentation, we
do not consider these tasks in the paper.

For a self-suspending task we denote Ci = Ci,1 + Ci,2
and assume that Ci + Si ≤ Di for any task τi ∈ T. Fur-
thermore, we denote Cmaxi = max {Ci,1, Ci,2} and Cmini =
min {Ci,1, Ci,2}. The utilization of task τi is defined as
Ui = Ci/Ti. Moreover, we also use Ui,1 = Ci,1/Ti and
Ui,2 = Ci,2/Ti for notational brevity. We further assume
that

∑n
i=1 Ui ≤ 1. We use the following definitions of feasi-

bility and schedulability in this paper:
• A schedule is feasible if there is no deadline miss and

all the scheduling constraints are respected.
• A self-suspension task system T is called schedulable if

there exists a feasible schedule for the task system for
any release patterns under the temporal constraints.
• A self-suspension task system T is schedulable under a

scheduling algorithm if the schedule produced by the
algorithm for the task system is always feasible.

3. FIXED-RELATIVE-DEADLINE (FRD)
STRATEGIES

In this paper, we adopt the Fixed-Relative-Deadline (FRD)
strategies that have been already used in [10]. For each
τi ∈ T an FRD policy assigns relative deadlines Di,1 and
Di,2 for the executions of the first subtask and the second
subtask of τi, respectively. Specifically, when a job of τi
arrives at time t,
• the first subjob (i.e., the first computation segment)

has the release time t and its absolute deadline is t +
Di,1,
• the suspension has to be finished before t+Di,1 + Si,
• the second subjob (i.e., the second computation seg-

ment) is enforced to be released at time t+Di,1 + Si
and its absolute deadline is t+Di,1 + Si +Di,2.
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Based on the assigned relative deadlines, each subjob has its
own absolute deadline, assigned when a job arrives. The un-
derlying scheduling policy uses the standard earliest-deadline-
first (EDF) scheduling to schedule the subjobs with dynamic-
priority scheduling.

An FRD assignment is feasible if the worst-case response
time of the first (second, respectively) computation segment
of task τi is no more thanDi,1 (Di,2, respectively). To ensure
the feasibility of the resulting schedule, such a scheduling
policy has to ensure that Di,1 + Di,2 + Si ≤ Ti. For the
remaining parts of this paper we will always assume that
Di,1 + Di,2 + Si = Ti. Otherwise, if Di,1 + Di,2 + Si < Ti,
we can always increase Di,2 by setting it to Ti − Si − Di,1
without jeopardizing (i.e., reducing) the schedulability of the
task set.2

3.1 Resource Augmentation Factor
A common approach to quantify the quality of scheduling

algorithms (or schedulability tests) is to bound the degree
that the considered algorithm may under-perform a (maybe
hypothetical) optimal one. To obtain such a bound, we
adopt the concept of the resource augmentation factor or
speedup factor. When the system is sped up by f , the

worst-case execution times Ci,1 and Ci,2 become
Ci,1

f
and

Ci,2

f
, respectively. However, in this paper, Si remains the

same. Note that there are also other practical scenarios
which quantify the speedup factors by reducing the self-
suspension time while speeding up. For detailed discussions
with regard to this matter, please refer to [7]. Typically,
the resource augmentation factor is defined, by referring to
any arbitrarily feasible schedule under an optimal scheduling
algorithm:

Definition 1. Scheduling algorithm with respect
to arbitrary schedules: We call such a factor the ar-
bitrary speedup factor. Provided that the task set T can be
feasibly scheduled, an algorithm A is called with an arbitrary
speedup factor α when algorithm A guarantees to derive a
feasible schedule by speeding up the system with a factor α.

3.2 Schedulability Test for FRD
Although FRD was introduced in [10], the schedulability

tests provided in [10] were mainly for EDA. More general
schedulability tests were not provided. Therefore, in this
section, we will first explain how to perform schedulability
tests under FRD. We use demand bound functions (DBF) to
calculate the maximum cumulative execution time require-
ment of a task over a given interval [t0, t0 + t) when the
arrival time of the computation segments have to be within
this interval. For the simplicity of presentation, we set t0 to
0 for the illustrative example used in this section. The con-
crete appearance of the DBF for an FRD scheduling policy
depends only on the value of Di,1 as Di,2 = Ti − Si −Di,1
as discussed before.

One intuitive way to formulate the DBFs of a task for
an FRD scheduling policy is to represent it as a generalized
multiframe (GMF) task [2] with two frames depending on
the values of Di,1, Di,2, and Si. In the GMF task model
(with two frames), task τi is represented by a 3-tuple of

vectors (
−→
Ci,
−→
Di,

−→
Ti) where

−→
Ci,
−→
Di, and

−→
Ti are vectors of

identical length, for one segmented self-suspension length

2
This can be easily seen by the sufficient test shown in Theorem 1.

2, representing the WCETs, relative deadlines, and inter-
arrival times of the frames, respectively. The j-th frame
of a task τi has the WCET, relative deadline, and interar-
rival time of the (j mod 2)-th frame. For a one-segment
self-suspending task, there are two frames in the GMF task
model: τi = {(Ci,1, D1

i , T
1
i ), (Ci,2, D

2
i , T

2
i )}.3 As the second

computation segment is released after the suspension inter-
val we know that D1

i = Di,1 and T 1
i = Di,1 + Si. Moreover,

T 2
i = Ti−T 1

i = Ti−Di,1−Si and D2
i = Di,2 = Ti−Di,1−Si.

Now we can formulate the DBFs for the case where the seg-
ment released at time 0 is represented by the first frame and
by the second frame in dbf1

i in Eq. (1) and dbf2
i in Eq. (2),

respectively.
If the first computation segment is released at 0 the seg-

ment has to be finished at t = Di,1 while the second segment
has to be finished at t = Ti. This pattern repeats periodi-
cally and is formalized in Eq. (1):

dbf1
i (t,Di,1) =

⌊
t+ (Ti −Di,1)

Ti

⌋
Ci,1 +

⌊
t

Ti

⌋
Ci,2 (1)

If the second computation segment is released at 0 it has
to be finished at t = Di,2, the behavior is identical with
releasing the first segment at −(Di,1 + Si). This means the
first segment has to be finished at Ti − Si. This pattern
repeats periodically and is formalized in Eq. (2):

dbf2
i (t,Di,1) =

⌊
t+ (Di,1 + Si)

Ti

⌋
Ci,2 +

⌊
t+ Si
Ti

⌋
Ci,1 (2)

The exact DBF for τi under an FRD assignment is the
maximum of the two possible arrival patterns:

dbffrd
i (t,Di,1) = max(dbf1

i (t,Di,1), dbf2
i (t,Di,1)) (3)

Using the DBF in Eq. (3) we can now formulate the exact
schedulability test:

Theorem 1 (Exact Schedulability Test for FRD).
An FRD schedule is feasible if and only if∑

τi∈T

dbf
frd
i (t,Di,1) ≤ t, ∀t ≥ 0.

Proof. This follows directly from Theorem 1 in [2], i.e.,
the schedulability condition for generalized multiframe task
systems under EDF using demand bound functions.

In Figure 1 we see examples of DBFs for a task with
Ci,1 = 2, Ci,2 = 3, Si = 4, and Ti = 20 for three different
settings of Di,1, i.e., Di,1 = 2 (grey, dashed), 4 (red, solid),
and 8 (blue, dotted). For example, with Di,1 = 4 we get
Di,2 = 12. We have to take care of two cases, depending on
weather the computation segment released at time 0 is Ci,1
or Ci,2 and take the maximum of both cases as we are look-
ing for the maximum possible workload. If Ci,1 is released
at 0 the DBF equals 0 in the interval [0, 4), as no workload
has to be finished up until this point. The maximum work-
load after t = 4 is at least 2, as Ci,1 has to be finished, and
at t = 20 it is 5 as both Ci,1 and Ci,2 have to be finished.
When Ci,2 starts at t = 0 it has to be finished at 12 thus
the total workload in [0, 12) is 3. Then, Ci,1 is released at
t = 12 with absolute deadline 16, followed by the suspension
interval, thus the workload is 3 in [12, 16) and 5 in [16, 20)
if Ci,2 is released first. In total, by taking the maximum

3
Superscripts are used for terms when referring to the GMF task.
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t
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

dbffrd
i (t, 2) (dashed)

dbffrd
i (t, 4) (solid)

dbffrd
i (t, 8) (dotted)

Figure 1: An example of dbffrd
i (t,Di,1) for different values

of Di,1, where Ci,1 = 2, Ci,2 = 3, Si = 4, and Ti = 20.

of both cases, we get the red line in Figure 1 in [0, 20). As
the task is released periodically with period 20, the DBF
is also periodic with period 20. This also shows, that we
only have 3 jump points in each period as the jump at Ti by
dbf1

i (t,Di,1) is already covered by the jump of dbf2
i (t,Di,1)

at Ti − Si.
In addition to the exact schedulability test we present

two necessary conditions for the schedulability of the task
set. One for the schedulability under an FRD assignment
and one for any arbitrary scheduling algorithm. This al-
lows to compare our approach to the best possible result
any scheduling algorithm could provide.

Lemma 1 (Necessary Condition for FRD). If there
exists an FRD schedule to feasibly schedule T, then∑

τi∈T

dbf
frd-nece
i (t) ≤ t, ∀t ≥ 0,

where

dbf
frd-nece
i (t) =

(⌊
t− (Ti − Si)

Ti

⌋
+ 1

)
(Ci,1 + Ci,2) (4)

Proof. This was proved in Lemma 1 in [10] with a slightly
different formulation of the equation.

We now provide a necessary condition for any arbitrary
scheduling algorithm for implicit-deadline one-segment self-
suspension task sets, assuming that Ci,1, Ci,2, and Si are
given. We use Eq. (5) for a lower bound of the workload in
the current period which together with the workload created
in already finished periods leads to Eq. (6) to calculate a
lower bound over a given time interval of length t:

Gi(t) =

{
0 if 0 ≤ t < Ti − Si
Cmaxi if Ti − Si ≤ t < Ti

(5)

dbfnece
i (t) =

⌊
t

Ti

⌋
(Ci,1 + Ci,2) + Gi

(
t−

⌊
t

Ti

⌋)
(6)

Lemma 2. If task set T can be feasibly scheduled, then∑
τi∈T

dbfnece
i (t) ≤ t, ∀t ≥ 0.

Proof. It is easy to observe that independent from the
concrete scheduling policy Ci,1 + Ci,2 have to be scheduled
after a complete interval of length Ti. What remains is to

show, that Eq. (5) is a lower bound on the possible workload
distributions over one period. 4 We have to look at the
two cases Ci,1 ≥ Ci,2 and Ci,1 < Ci,2. If for both cases a
release pattern exists where the jump of the DBF for any
arbitrary scheduling policy has to happen before Ti−Si the
proof is done. If Ci,1 ≥ Ci,2 and we release Ci,1 at time
t0 = 0 the first subjob has to be finished before Ti − Si
as Si and the execution of Ci,2 still have to happen before
Ti. If Ci,1 < Ci,2 we release Ci,1 at −Si − Ci,1 and thus
Ci,2 has to be finished before Ti − Si independent from the
scheduling policy. As both the release patterns and the DBF
are periodic with period Ti this concludes the proof.

3.3 Existing FRD Approaches
The general concept of FRD approaches was introduced

in [10], in which two existing approaches were discussed:
• Proportional (Proportional relative deadline assignment):

Di,1 =
Ci,1

Ci,1+Ci,2
· (Ti−Si); Di,2 =

Ci,2

Ci,1+Ci,2
· (Ti−Si).

• EDA (Equal relative Deadline Assignment):
Di,1 = Di,2 = (Ti − Si)/2.

At the first glance, Algorithm Proportional may seem
very reasonable and Algorithm EDA may seem very pes-
simistic. Unfortunately, there exists a concrete input task
set, as shown in [10], for which the arbitrary speedup factor
of Algorithm Proportional is not even a constant. The rea-
son why Algorithm Proportional does not have a constant
speedup factor is due to the aggressive relative deadline as-

signment which greedily sets the Di,1 as
Ci,1

Ci,1+Ci,2
· (Ti−Si)

without considering the interference from the other tasks.
Although Algorithm EDA only greedily assigns the rela-

tive deadline, it was already shown in [10] that the following

condition dbffrd
i (t, (Ti − Si)/2) ≤ dbffrd-nece

i (t) holds for
any t ≥ 0. Therefore, the spirit behind Algorithm EDA
was to keep this constant factor by setting Di,1 to (Ti −
Si)/2. Chen and Liu [10] showed that EDA has an arbi-
trary speedup factor of 3. However, there are still a few
drawbacks in Algorithm EDA, even though it has constant
speedup factors:
• First, it cannot handle any task set, in which there

exists a task τi with Cmaxi > (Ti − Si)/2.
• Second, as shown in Figure 1, the demand bound func-

tion by setting Di,1 to (Ti − Si)/2 is not always the
best option. Assigning Di,1 to (Ti − Si)/2 is pretty
aggressive.

4. TRANSFORMATION
Before presenting our solution, we first examine some char-

acteristics of the demand bound function dbffrd
i (t,Di,1).

This section will provide an important transformation of
task τi to simplify the presentation of the following sections.
Since all the step functions in Eqs. (1) and (2) have a period

Ti, it is clear that dbffrd
i (t,Di,1) is in general periodic with

at most four individual increasing points in a period of Ti.
Suppose that we are interested in `Ti ≤ t < (` + 1)Ti

where ` is a non-negative integer. For dbf1
i (t), we have

• dbf1
i (t) = `(Ci,1 + Ci,2) when `Ti ≤ t < `Ti +Di,1;

• dbf1
i (t) = `(Ci,1 + Ci,2) + Ci,1 when

`Ti +Di,1 ≤ t < (`+ 1)Ti.
For dbf2

i (t), we have

4
The remaining proof is identical to the proof of Lemma 2 in [10].

Since our condition is stronger, we include the proof for completeness.
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• dbf2
i (t) = `(Ci,1 + Ci,2) when

`Ti ≤ t < `Ti + (Ti − Si −Di,1) = `Ti +Di,2;
• dbf2

i (t) = `(Ci,1 + Ci,2) + Ci,2 when
`Ti +Di,2 ≤ t < `Ti + Ti − Si;
• dbf2

i (t) = (`+ 1)(Ci,1 + Ci,2) when
`Ti + Ti − Si ≤ `Ti < (`+ 1)Ti.

Therefore, dbf2
i (t) ≥ dbf1

i (t) if (t mod Ti) > Ti − Si. More-
over, we also have the following properties:

Lemma 3. If Ci,1 ≤ Ci,2 and Di,1 ≥ (Ti − Si)/2, then

∀t ≥ 0, dbf
frd
i (t,Di,1) ≥ dbf

frd
i (t, Ti − Si −Di,1).

Lemma 4. If Ci,1 ≥ Ci,2 and Di,1 ≤ (Ti − Si)/2, then

∀t ≥ 0, dbf
frd
i (t,Di,1) ≥ dbf

frd
i (t, Ti − Si −Di,1).

Proof. The proof of these two lemmas follow directly from
the definitions.

Therefore, the above lemmas suggest to assign a shorter
relative deadline to the shorter computation segment with
Cmini for each task τi. However, it is notationally inconve-
nient to distinguish these two difference cases, depending on
whether Ci,1 is smaller or not. Fortunately, the notational
complication can be easily handled by swapping Ci,1 and
Ci,2 if Ci,1 > Ci,2, due to the following lemma.

Lemma 5. Suppose that Ci,1 > Ci,2 for a task τi. We
can create a corresponding task τ∗i with the same parameters
as τi but Ci,1 and Ci,2 are swapped in task τ∗i . If Di,1 ≥
(Ti − Si)/2, then

∀t ≥ 0, dbf
frd
i (t,Di,1) = dbf

frd
i∗ (t, Ti − Si −Di,1),

where dbf
frd
i∗ (t, Ti − Si − Di,1) is the demand bound func-

tion of task τ∗i by setting the relative deadline of the first
computation segment in task τ∗i (i.e., execution time Ci,2)
to Ti − Si −Di,1.

Proof. This can be proved by inspecting the corresponding
demand bound functions, as they are identical.

By Lemma 5, for the rest of this paper, we will implicitly
consider that Ci,1 ≤ Ci,2. If Ci,2 < Ci,1, we should sim-
ply reorder them before proceeding to the relative deadline
assignment of task τi and swap them, together with the as-
signed deadlines, back after the assignment. By Lemma 5
and the discussions earlier, this does not give any additional
restriction, but make our presentation flow much easier.

5. OUR GREEDY APPROACH
Our proposed algorithm, Shortest Execution Interval First

Deadline Assignment (SEIFDA), works as follows: First, we
re-index (sort) the given n tasks such that Ti−Si ≤ Tj −Sj
for i < j. Then, we iteratively assign their relative deadlines
under FRD scheduling, starting from task τ1 to task τn.
Suppose that the relative deadlines Di,1 and Di,2 of all tasks
τi ∈ {τ1, τ2, . . . , τk−1} have been already assigned.

Note that, by the transformation in Section 4, we only
have to consider Ck,1 ≤ Ck,2 for the deadline assignment.
If Ck,1 > Ck,2 we swap Ck,1 and Ck,2 before the deadline
assignment, swap them back after the assignment, and swap
the respective deadlines as well. As shown in Lemma 3,
if a feasible FRD assignment exists we can always assign
the deadline of Ck,1 to a Dk,1 with Dk,1 ≤ (Tk − Sk)/2. To

Algorithm 1 Shortest Execution Interval First Deadline
Assignment (SEIFDA)

Input: set T of n one-segment self-suspension sporadic
real-time tasks with implicit deadlines;

1: re-index (sort) tasks such that Ti − Si ≤ Tj − Sj for
i < j;

2: for k = 1 to n do

3: if ∃x ∈
(
Ck,1,

Tk−Sk
2

]
such that the condition in

Eq. (7) holds then
4: let x∗ be one of such values

dbffrd
k (t, x∗) +

k−1∑
i=1

dbffrd
i (t,Di,1) ≤ t, ∀t ≥ 0;

5: set Dk,1 ← x∗, and Dk,2 ← Tk − Sk − x∗;
6: else
7: return “no feasible FRD schedule is found”;
8: end if
9: end for

10: return the relative deadline assignment for each task τi
in T;

be more precise, if there exists a certain x in the range of
(Ck,1, (Tk − Sk)/2] such that

dbffrd
k (t, x) +

k−1∑
i=1

dbffrd
i (t,Di,1) ≤ t, ∀t ≥ 0, (7)

then, we will greedily assign Dk,1 to one of such an x value.
The pseudocode of Algorithm SEIFDA is presented in Al-
gorithm 1.

5.1 Selection of Relative Deadlines for Task τk

Algorithm 1 provides a framework to assign the relative
deadlines for FRD scheduling. However, it also leaves an
open design option. If there are multiple values of x such
that the condition in Eq. (7) holds, which one should be cho-
sen? Due to the greedy strategy, after the relative deadlines
are assigned, they will not be changed later. Suppose that
x∗ is the chosen value of x when considering task τk. We
are not able to provide the best strategy to choose x∗, but
there are several strategies that can be applied:
• Minimum x (denoted by minD): The selection of x∗ is

to use the minimum x such that Eq. (7) holds.
• Maximum x (denoted by maxD): The selection of x∗

is to use the maximum x such that Eq. (7) holds.
• Proportionally-Bounded-Min x (denoted by PBminD):

The selection of x∗ is to use the minimum x such that
both x ≥ Ci,1

Ci,1+Ci,2
(Tk − Sk) and Eq. (7) hold.

By the above discussions, depending on how we assign
Dk,1 and Dk,2 in Algorithm SEIFDA, the resulting solutions
are different. By the following theorem, EDA is a special
case of SEIFDA-maxD and dominated by SEIFDA-maxD.

Theorem 2. If a task set T is schedulable by Algorithm
EDA, the task set T is also schedulable by Algorithm SEIFDA-
maxD.

Proof. EDA assigns Di,1 = Di,2 = (Ti − Si)/2 ∀τi ∈ T. If
T is schedulable by Algorithm EDA, then

∀t ≥ 0,
∑
τi∈T

dbffrd
i (t, (Ti − Si)/2) ≤ t.

when assigning the relative deadlines for task τk, Algorithm

SEIFDA-maxD assigns the maximum x ∈
(
Ck,1,

Tk−Sk
2

]
that
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y = dbffrd1 (t, 5) + dbffrd2 (t, 30)
(SEIFDA-minD)

y = dbffrd1 (t, 10) + dbffrd2 (t, 30)
(SEIFDA-maxD)

Figure 2: Schedulability test for Algorithms SEIFDA-maxD
(red) and SEIFDA-minD (blue) for the task set in Table 1,
ε = 1.

SEIFDA-minD SEIFDA-maxD

Task Ci,1 Ci,2 Si Ti Di,1 Di,2 Di,1 Di,2
τ1 5 5 5 25 5 15 10 10
τ2 15+ε 15+ε 940 1000 E E 30 30

Table 1: An example for comparing SEIFDA-maxD and
SEIFDA-minD, where 0 < ε ≤ 1. E denotes that SEIFDA-
minD does not find a feasible value for D2,1 and thus D2,2

is not assigned either.

satisfies Eq. (7). Therefore, the algorithm always assigns
Dk,1 = (Tk − Sk)/2 ∀τk. Hence, the deadline assignment by
Algorithm SEIFDA-maxD is the same as by EDA.

5.2 SEIFDA-maxD and SEIFDA-minD
In the previous subsection we showed that our Algorithm

SEIFDA-maxD dominates EDA. It would be also interesting
to have such a relation between SEIFDA-minD and EDA or
between SEIFDA-maxD and SEIFDA-minD. Here we show
that such a relation does not exists by creating one task set
that is schedulable by SEIFDA-maxD but not by SEIFDA-
minD (Table 1, Figure 2) and another one that is schedula-
ble by SEIFDA-minD but not by SEIFDA-maxD (Table 2,
Figure 3).

For the task set listed in Table 1, SEIFDA-minD assigns
D1,1 = 5⇒ D1,2 = 15, resulting in steps at 5 and 20 for

dbffrd
1 (t, 5), periodically repeated with period 25. This

leads to D2,1 ∈ [25 + ε; 30] as possible values. No matter
which value is assigned (in Figure 2 we assume 26) this re-
sults in a deadline miss for the second job of C1,1 at t = 30
as the total workload is 2 ·C1,1 +C1,2 +C2,1 = 30 + ε > 30.
However, the EDA is feasible as D1,1 = 10⇒ D1,2 = 10 and
the second release of Ci,1 is feasible with absolute deadline
35.

For the task set listed in Table 2 SEIFDA-minD assigns

D1,1 = ε⇒ D1,2 = 20 + ε. For dbffrd
1 (t, ε) the steps are at

ε, 20+ε, and 20+2ε. With D2,1 = 10 + 2ε this leads to a
schedulable task set as shown by the DBF in Figure 3. If
SEIFDA-maxD is used D1,1 = D1,2 = 10 + ε. This leads to
a deadline miss for C2,1 no matter which deadline is assigned
(in Figure 2 we assume C2,1 = 20) as the total workload in
the interval [0, 20] is 20 + 2ε if C1,2 and at C2,1 are both
released at 0. This directly leads to the following theorem:

Theorem 3. SEIFDA-minD does not dominate SEIFDA-
maxD and SEIFDA-maxD does not dominate SEIFDA-minD.
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y = t

y = dbffrd1 (t, 1) + dbffrd2 (t, 12)
(SEIFDA-minD)

y = dbffrd1 (t, 11) + dbffrd2 (t, 20)
(SEIFDA-maxD)

Figure 3: Schedulability test for Algorithms SEIFDA-maxD
(red) and SEIFDA-minD (blue) for the task set in Table 2,
ε = 1.

SEIFDA-minD SEIFDA-maxD

Task Ci,1 Ci,2 Si Ti Di,1 Di,2 Di,1 Di,2
τ1 ε 10 5-2ε 25 ε 20+ε 10+ε 10+ε
τ2 10+ε 10+ε 960 1000 10+2ε 30-2ε E E

Table 2: An example for comparing SEIFDA-maxD and
SEIFDA-minD, where 0 < ε ≤ 1. E denotes that SEIFDA-
maxD does not find a feasible value for D2,1 and thus D2,2

is not assigned either.

6. SPEEDUP FACTOR OF SEIFDA
Based on the assumption that Ci,1 ≤ Ci,2, the following

lemma gives the inequalities between dbffrd
i (t,Di,1) and the

necessary conditions when t ≥ (Ti − Si)/2.

Lemma 6. Suppose that 0 < Di,1 ≤ (Ti − Si)/2. For any
t ≥ (Ti − Si)/2, we have

dbf
frd
i (t,Di,1) ≤ 2dbfnecei (t) if Ti − Si ≤ t < Ti +Di,1 (8)

dbf
frd
i (t,Di,1) ≤ dbfnecei (2t) otherwise (9)

Proof. We consider all the cases when t ≥ (Ti − Si)/2:

• If (Ti−Si)/2 ≤ t < Ti−Si, we have dbffrd
i (t,Di,1) ≤

Ci,2 = dbfnece
i (Ti − Si) ≤ dbfnece

i (2t).

• If Ti − Si ≤ t < Ti + Di,1, we have dbffrd
i (t,Di,1) =

Ci,1 + Ci,2 ≤ 2dbfnece
i (t).

• If Ti+Di,1 ≤ t ≤ (3Ti−Si)/2, we have dbffrd
i (t,Di,1) ≤

Ci,1 + 2Ci,2 = dbfnece
i (2Ti − Si) ≤ dbfnece

i (2t).

• If (3Ti−Si)/2 < t < 2Ti+Di,1, we have dbffrd
i (t,Di,1) ≤

2 (Ci,1 + Ci,2) ≤ 2Ci,1 + 3Ci,2 = dbfnece
i (3Ti − Si) ≤

dbfnece
i (2t).

• If 2Ti + Di,1 ≤ t, we have dbffrd
i (t,Di,1) ≤ (

⌊
t
Ti

⌋
+

1) (Ci,1 + Ci,2) ≤ dbfnece
i (t+ 2Ti) ≤ dbfnece

i (2t).

Theorem 4. The arbitrary speedup factor of SEIFDA by
adopting the schedulability test in Theorem 1 is 3.

Proof. Suppose that the task set T cannot be feasibly
scheduled by SEIFDA. We will show that this task set is
not schedulable by any algorithm at speed 1

3
. Recall that

the tasks are indexed such that Ti−Si ≤ Tj−Sj if i ≤ j. Let
T′ = {τ1, τ2, . . . , τk} be the subset of T such that task set T′

cannot be feasibly scheduled by SEIFDA, and T′ \ {τk} can
be feasibly schedule by SEIFDA, using the schedulability
test in Theorem 1.
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If k is 1, it is due to Ci,1 + Ci,2 > Ti − Si. For such a
case, the arbitrary speedup factor is 1 since the task set is by
definition not schedulable by any algorithm at the original
system speed. We only focus on the other cases when k ≥ 2.
By the assumption that T′ \ {τk} can be feasibly scheduled
by SEIFDA under the schedulability test in Theorem 1, we
have

∀t ≥ 0,

k−1∑
i=1

dbffrd
i (t,Di,1) ≤ t, (10)

where Di,1 is the relative deadline for Ci,1 under SEIFDA.
The infeasibility of SEIFDA for T′ under the schedulabil-

ity test in Theorem 1 when we intend to assign the relative
deadlines for task τk implies that

∃t ≥ 0, dbffrd
k

(
t,
Tk − Sk

2

)
+

k−1∑
i=1

dbffrd
i (t,Di,1) > t.

(11)
That is, at least setting Dk,1 to (Tk−Sk)/2 cannot success-
fully pass the schedulability test in Theorem 1. For nota-
tional brevity, we set Dk,1 to (Tk − Sk)/2 for the rest of the
proof. This indicates that SEIFDA fails to derive a feasible
FRD schedule when assigning Dk,1 to (Tk − Sk)/2.

Suppose that t∗ is a certain t such that the above condition

in Eq. (11) holds. By the definition that dbffrd
k (t,Dk,1) = 0

when t < Dk,1 and the assumption that the FRD schedule
of T′ \ {τk} is feasible defined in Eq. (10), we know that t∗

must be no less than Dk,1, defined as (Tk − Sk)/2. Since
Ti − Si ≤ Tk − Sk for i = 1, 2, . . . , k, we also know that
t∗ ≥ (Ti − Si)/2, i.e., the conditions in Lemma 6 are appli-
cable. We further classify the task set T′ into two subsets:

• T′1 =def {τi ∈ T′ | Ti − Si ≤ t∗ < Ti +Di,1}, and

• T′2 =def T′ \T′1.
That is, for task τi in T′1, we can use the condition in Eq. (8)
by Lemma 6; for task τi in T′2, we can use the condition in
Eq. (9) by Lemma 6. By the above discussions, we have

t∗ <
∑
τi∈T′1

dbffrd
i (t∗, Di,1) +

∑
τi∈T′2

dbffrd
i (t∗, Di,1)

≤
∑
τi∈T′1

2dbfnece
i (t∗) +

∑
τi∈T′2

dbfnece
i (2t∗) (12)

By dividing both sides by t∗, we get

1 < 2
∑
τi∈T′1

dbfnece
i (t∗)

t∗
+ 2

∑
τi∈T′2

dbfnece
i (2t∗)

2t∗
. (13)

Since T′1 ∪T′2 is T′ and T′1 ∩T′2 is ∅, we have

y =def ∑
τi∈T′1

dbfnece
i (t∗)

t∗
≤
∑
τi∈T′

dbfnece
i (t∗)

t∗
. (14)

z =def ∑
τi∈T′2

dbfnece
i (2t∗)

2t∗

=
∑
τi∈T′

dbfnece
i (2t∗)

2t∗
−
∑
τi∈T′1

dbfnece
i (2t∗)

2t∗

≤
∑
τi∈T′

dbfnece
i (2t∗)

2t∗
−
∑
τi∈T′1

dbfnece
i (t∗)

2t∗

=
∑
τi∈T′

dbfnece
i (2t∗)

2t∗
− y/2 (15)

Therefore, we have that
∑
τi∈T′

dbfnece
i (2t∗)
2t∗ ≥ z + y/2

and
∑
τi∈T′

dbfnece
i (t∗)
t∗ ≥ y. By the fact 1 < 2y + 2z in

Eq. (13), we can reach the conclusion of the proof, i.e., either∑
τi∈T′

dbfnece
i (t∗)
t∗ > 1/3 or

∑
τi∈T′

dbfnece
i (2t∗)
2t∗ > 1/3.5

Therefore, the arbitrary speedup factor is 3.

7. APPROXIMATED TEST AND
TIME COMPLEXITY

The schedulability test in Theorem 1 is a necessary and
sufficient test that requires exponential time complexity. To
make the test faster, we do not have to test for all t ≥
0. Instead, we only have to test at the t values where the

demand bound function dbffrd
i (t) changes. This means, the

test in Theorem 1 is equivalent to

∀τi ∈ T, ∀t ∈ Ψi,
∑
τi∈T

dbffrd
i (t) ≤ t (16)

Ψi = {Di,1 + `Ti, Ti − Si −Di,1 + `Ti, Ti − Si + `Ti|` ∈ N0}
(17)

where N0 is the set of non-negative integers. One may fur-
ther constrain ` to be at most LCM(T)/Ti, where LCM(T)
is the least common multiple of the periods of the tasks in
T. However, the time complexity remains exponential.

To reduce the time-complexity, we can use the approxi-
mated demand bound functions, as used in [6, 9]. Our gen-
eral approach is to use the exact demand bound function
for g periods of a task, where g is a user-defined (positive)
integer, and use a linear approximation to upper bound the
DBF after the given number of periods. Similar to the con-
struction of the exact DBFs we will use one approximated
DBF for the case where Ci,1 is released at t = 0 in Eq. (18a),
one for the case where Ci,2 is released at t = 0 in Eq. (18b),
and take the maximum of both values in Eq. (19).

d̂bf
1

i (t,Di,1) =

{
dbf1

i (t,Di,1) if t < gTi
Uit−Di,1Ui,1 + Ci,1 otherwise.

(18a)

d̂bf
2

i (t,Di,1) =

{
dbf2

i (t,Di,1) if t < gTi − Si
Ui(t+ Si) + Ci,2

Di,1

Ti
otherwise.

(18b)

d̂bffrd
i (t,Di,1) = max(d̂bf

1

i (t,Di,1), d̂bf
2

i (t,Di,1)) (19)

As the proofs in this section are rather technical and
straight forward we just provide the ideas of the proofs
here. The complete proofs can be found in the extended
report [25].

Theorem 5. The function d̂bffrd
i(t,Di,1) in Eq. (19) is

a safe upper bound of dbffrd(t,Di,1) for any t ≥ 0 and a
specified Di,1 ≤ (Ti − Si)/2. Therefore, if

∑
τi∈T Ui ≤ 1

and

∀t ≥ 0,
∑
τi∈T

̂
dbf

frd
i (t,Di,1) ≤ t,

then the resulting FRD schedule is feasible. Moreover, this
schedulability test can be done in O(g|T|2) time complexity.

5
Either y > 1/3 or z + y/2 > 1/3 holds. They can be calculated by

using the intersection z+y/2 = y, i.e., z = y/2, and 1 < 2y+2z = 3y.
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Proof. The first part of the proof, to show that Eq. (18a)
is an over approximation of Eq. (1) and that Eq. (18b) is an
over approximation of Eq. (2), can be done by inspecting the
corresponding values at the non-linear points of Eq. (1) and
Eq. (2), respectively, for t > gTi − Si. This directly leads
to the conclusion that Eq. (19) is an over approximation of
Eq. (3). The details are in the appendix of the technical
report [25].

For analyzing the time complexity we only have to per-
form the schedulability tests at the points in time where∑
τi∈T d̂bffrd

i (t,Di,1) changes discontinuously. Each task
τi has exactly 3 jump points in each of the g periods when

d̂bffrd
i (t,Di,1) (Eq. (19)) is used which leads to 3g dis-

crete jump points at `Ti + Di,1, `Ti + Ti − Si − Di,1, and
t = `Ti + Ti −Si with ` = 0, 1, 2, . . . , g − 1 for each τi ∈ T.6

Let P be the set of all these 3g|T| jump points of all τi ∈ T
and let t∗ be the maximum of the points in P. It is easy to

see that
∑
τi∈T d̂bffrd

i (t,Di,1) is a linear function for t > t∗.

Due to the condition
∑n
i=1 Ui ≤ 1, this means that we have∑

τi∈T d̂bffrd
i (t,Di,1) ≤ t for all t > t∗. In addition to

testing
∑n
i=1 Ui ≤ 1 we have to check all the time points

where
∑
τi∈T d̂bffrd

i (t,Di,1) is not linear, i.e., all points in

P which are 3g|T| points in total. As each test has to cal-
culate the workload up to the tested point for each of the
|T| tasks this leads to O(g|T|2) time complexity.

In Theorem 5 we proved that a linear approximation of
the demand bound functions in Eq. (3) can be calculated
in O(g|T|2) where g ∈ N0 is given and |T| is the number
of tasks in the set. For a good approximation algorithm
we need to give some information about the quality of the
approximation with relation to the given g, i.e., an upper
bound on ratio between over approximation and exact value.

Theorem 6. For a given integer g ≥ 1

∀t ≥ 0,
̂
dbf

frd
i (t,Di,1) ≤

(
1 +

1

g

)
dbf

frd
i (t,Di,1)

Proof. We know that both the exact DBFs in Eq. (1)
and Eq. (2) are step functions with two steps per period,
resulting in two intervals with the same value. We have to
compare the value they have over this interval to the maxi-
mum value the approximated DBF takes over this value. For
example, we have to compare the values of dbf1

i (gTi, Di,1)

with d̂bf
1

i (gTi + Di,1, Di,1) and dbf1
i (gTi + Di,1, Di,1) with

d̂bf
1

i ((g + 1)Ti, Di,1) to conclude for Eq. (1) compared to
Eq. (18a). The details can be found in [25].

This shows that we can use Eq. (19) to formulate Algo-
rithm 1 as an approximation scheme for finding FRD solu-
tions. The needed quality guarantee of 1+ 1

g
(in the schedu-

lability test) follows directly from Theorem 6.

8. MIXED INTEGER LINEAR PROGRAM-
MING

In this section, we present a programming under logical
conditions to assign the relative deadlines of the computa-
tion segments. This can be rephrased as a mixed integer
linear programming (MILP). In this section, we will use the
schedulability test in Theorem 5 by assuming that g ≥ 1 is

6
The jump of Eq. (18a) at (l + 1)Ti is to the same value as the jump

of Eq. (18b) at t = `Ti + Ti − Si.

given as an integer. Moreover, let L be {0, 1, 2, . . . , g − 1}
for notational brevity. We can formulate the studied prob-
lem as the following programming under logical constraints:

find a feasible solution (20a)

s.t.

0 ≤ Di,1 ≤
Ti − Si

2
, ∀τi ∈ T (20b)

b3`+1
i,j = d̂bffrd

i (`Ti +Di,1, Dj,1), (20c)

b3`+2
i,j = d̂bffrd

i ((`+ 1)Ti − Si −Di,1, Dj,1), (20d)

b3`+3
i,j = d̂bffrd

i ((`+ 1)Ti − Si, Dj,1), (20e)

(Eqs. (20c), (20d), (20e) ∀τi ∈ T, , τj ∈ T, ` ∈ {L})∑
τj∈T

b3`+1
i,j ≤ `Ti +Di,1, (20f)

∑
τj∈T

b3`+2
i,j ≤ (`+ 1)Ti − Si −Di,1 (20g)

∑
τj∈T

b3`+3
i,j ≤ (`+ 1)Ti − Si (20h)

(Eqs. (20f) (20g) (20h) ∀τi ∈ T, ` ∈ {L})

Di,1, bhi,j are variables that can be assigned to real num-

bers. The variable b3`+1
i,j is the approximate demand bound

function d̂bffrd
i (t,Dj,1) of task τj when t = `Ti+Di,1. Sim-

ilarly, the variable b3`+2
i,j is the approximate demand bound

function d̂bffrd
i (t,Dj,1) of task τj when t = `Ti + Di,2 =

(` + 1)Ti − Si − Di,1. The variable b3`+3
i,j is the approxi-

mate demand bound function d̂bffrd
i (t,Dj,1) of task τj when

t = `Ti + Ti − Si = (` + 1)Ti − Si. Therefore, the condi-
tion in Eqs. (20f), (20g), and (20h) is identical to the in-

equality
∑
τj∈T d̂bffrd

i (t,Dj,1) ≤ t when t is `Ti + Di,1,

(`+ 1)Ti − Si −Di,1, and (`+ 1)Ti − Si for every task τi in
T and ` = 0, 1, 2, . . . , g − 1.

Therefore, by Theorem 5, the above programming can be
used to search a feasible relative deadline assignment Di,1
for τi ∈ T. The constraints except Eqs. (20c), (20d), and
(20e) (due to the logical conditions inherited from Eq. (18a)
and Eq. (18b)), are linear functions with respect to the vari-
ables. By adopting the well-known Big-M Method, each
of the logical conditions in Eqs. (20c), (20d), and (20e) can
be expressed by several linear constraints and several binary
variables. Thus the above programming can be implemented
as an MILP.

Please note, that the presented MILP is a spacial case of
the MILP developed in parallel by Peng and Fisher in [21]7,
published in RTCSA 2016.

9. EXPERIMENTAL RESULTS
We conducted experiments using synthesized task sets to

evaluate the proposed approaches compared with other ap-
proaches. The metric to compare the results is measuring
the acceptance ratio of these approaches with respect to the
task set utilization. We generated 100 task sets with a cardi-
nality of 10 tasks for each of the analyzed utilization levels
that ranged from 0% to 100% with steps of 5%. The ac-
ceptance ratio of a level is the percentage of accepted task
sets.
7
The work in [21] was published after this paper was submitted.
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Figure 4: Impact of the g value for SEIFDA-minD under different suspension lengths (sslen) compared to MILP in Eq. (20) with g = 1.
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Figure 5: Comparison of the three presented approaches for SEIFDA: minD, maxD, and PBminD for g-values 2 and 5 under different
suspension lengths (sslen).

For each task set we first generated a set of sporadic
tasks with cardinality 10 where the UUniFast method [3]
was adopted to generate a set of utilization values with the
given goal. We used the approach suggested by Ember-
son et al. [13] to generate the task periods according to a
log-uniform distribution with two orders of magnitude, i.e.,
[1ms−100ms]. Specifically, log10 Ti is a uniform distribution
in the defined range. The execution time was set accordingly
to Ci = TiUi and the relative deadline was set to the task
periods, i.e., Di = Ti. We converted them to self-suspending
tasks where the suspension lengths of the tasks were gener-
ated according to a uniform distribution, in either of three
ranges depending on the self-suspension length (sslen):
• short suspension (sslen=Short): [0.01(Ti−Ci), 0.1(Ti−Ci)]
• moderate susp. (sslen=Moderate): [0.1(Ti − Ci), 0.3(Ti −
Ci)]

• long suspension (sslen=Long): [0.3(Ti − Ci), 0.6(Ti − Ci)]
We then generated Ci,1 as a percentage of Ci, according to
a uniform distribution, and set Ci,2 accordingly.

First, we analyzed the acceptance rate of SEIFDA with
the approaches minD, maxD, and PBminD for g ∈ {1, 2, 3, 5}
and compared it to the MILP approach in Eq. (20) with
g = 1 under all three types of suspension lengths. In Fig-
ure 4 these results are displayed for SEIFDA-minD. In all
three subfigures we can see that SEIFDA-minD-1 already
does not loose much compared to the MILP with g = 1 while
SEIFDA-minD-2, SEIFDA-minD-3, and SEIFDA-minD-5 de-
liver far better results. Also the gap between SEIFDA-
minD-2 and SEIFDA-minD-5 is pretty small due to our ap-

proximation scheme.8

Next, we compared SEIFDA-minD, SEIFDA-maxD, and
SEIFDA-PBminD with each other, using g = 2 and g = 5,
to evaluate the performance of the different approaches as
shown in Figure 5. It can be seen that SEIFDA-minD
and SEIFDA-PBminD are close to each other. SEIFDA-
PBminD has better performance than SEIFDA-minD in most
cases. Only for some values with long suspension length
SEIFDA-minD performs slightly better. SEIFDA-minD and
SEIFDA-PBminD both perform clearly better than SEIFDA-
maxD. Even SEIFDA-minD-2 and SEIFDA-PBminD-2 are
better than SEIFDA-maxD-5 most of the time.

After that SEIFDA-maxD-5 and SEIFDA-PBminD-5 were
compared with the following scheduling approaches:
• SCEDF : the suspension-oblivious approach by con-

verting suspension time into computation time.
• EDA: The state-of-the-art approach, Equal-Deadline

Assignment (EDA), under linear demand bound ap-
proximations in Theorem 8 in [10].
• MILP: The proposed approach in Section 8 in this pa-

per. Gurobi [1], a state-of-the-art MILP solver, is used
to solve Eq. (20) with our manual Big-M Method.
• NC: The necessary condition in Lemma 2. We com-

pared to the necessary condition to know how much

8
While MILP with g = 1 is better than SEIFDA-minD-1, the number

of variables and constraints grows quadratically with respect to g in
our MILP implementation in Gurobi by using the Big-M Method while
SEIFDA is linear with respect to g.

9



0.0 0.2 0.4 0.6 0.8 1.0
Utilization (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ep
ta

n
ce

R
at

io
(%

)

0 20 40 60 80 100
0

20

40

60

80

100

(a) sslen: Short

SCEDF EDA MILP SEIFDA-maxD-5 SEIFDA-PBminD-5 NC

0 20 40 60 80 100
0

20

40

60

80

100

(b) sslen: Moderate

0 20 40 60 80 100
0

20

40

60

80

100

(c) sslen: Long

Figure 6: Comparison of SEIFDA-maxD-5 and SEIFDA-PBminD-5 with suspension-oblivious EDF (SCEDF), EDA, the MILP in
Eq. (20) with g = 1, and the necessary condition (NC) for arbitrary algorithms (Lemma 2) under different suspension lengths (sslen).

we may lose to a theoretical optimal algorithm in the
worst case.

We chose SEIFDA-PBminD-5 and SEIFDA-maxD-5 to
have an idea about the performance range of SEIFDA-Algorithm.
The results are shown in Figure 6. EDA is clearly out-
performed by the MILP (g=1), SEIFDA-PBminD-5, and
SEIFDA-maxD-5. While NC does not decrease much when
the suspension length is increasing the gap of SEIFDA-PBminD-
5 to NC gets larger with increasing suspension length.

10. CONCLUSION AND FUTURE WORK
In this paper, we investigate uniprocessor scheduling for

hard real-time self-suspending task systems where each task
may contain a single self-suspension interval. We improve
the state-of-the-art by designing new FRD scheduling al-
gorithms that yield significantly better performance than
existing approaches, as shown by both analysis and experi-
ments. As we only consider preemptive scheduling for tasks
with one suspension interval on a uniprocessor system we
plan to explore multiprocessor scheduling, non-preemptive
scheduling and tasks with multiple suspension intervals.
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