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Abstract—Embedded systems have limited resources, such as
computation capabilities and battery life. The Dynamic Voltage
and Frequency Scaling (DVFS) technique is used to save energy
by running the processor of the embedded system at low voltage
and frequency levels. However, this prolongs the execution time,
which may cause potential deadline misses for real-time tasks. In
this paper, we propose a general-purpose middleware to reduce
the energy consumption in embedded systems without violating
the real-time constraints. The algorithms in the middleware adopt
the computation offloading concept to reduce the workload on the
processor of the embedded system by sending the computation-
intensive tasks to a powerful server. The algorithms are further
combined with the DVFS technique to find the running frequency
(or speed) such that the energy consumption is minimized and
the real-time constraints are satisfied. The evaluation shows that
our approach reduces the average energy consumption down to
nearly 60%, compared to executing all the tasks locally at the
maximum processor speed.

I. INTRODUCTION

Embedded systems have become very widespread and used
nearly everywhere. Nowadays, over 96% of the computer chips
are produced to be used in these systems, while the remain-
ing production of 4% is used in the normal computers [1].
Embedded systems have recently been used to run more and
more complex applications that include computation-intensive
data processing such as video and audio processing in smart
phones, wearable devices, mobile robots, etc. However, the gap
between the demand for running complex programs and the
amount of the available resources is on the rise [8]. Although
embedded systems continue to evolve and improve, their
computation and power resources will stay limited. Therefore,
an embedded system may become slow and not be able to
finish all the tasks in time (or not be able to execute some
of them at all), specially the computation-intensive tasks. For
instance, the battery of a portable or mobile embedded system
may not be powerful enough to finish some important tasks
at a certain time, and may be depleted before finding a power
source.

Upgrading or adding more hardware components to pro-
long the battery life will mostly increase the weight and the
cost of the embedded system. Additionally, an embedded sys-
tem may be designed in such a way that its components cannot
be replaced or extended at all. Hence, the need arises to reduce
the energy consumption in embedded systems and use their
resources efficiently. Dynamic Voltage and Frequency Scaling
(DVFS) is an efficient technique to reduce the power consump-
tion by running the processor at a low frequency [4]. However,
this prolongs the execution time, which may cause potential
deadline misses for real-time tasks. Timing requirements are
very important for real-time embedded systems, in which the
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Fig. 1: Computation offloading and DVFS example.

results may become useless or even harmful if the deadlines
are not met. To overcome such a problem, we propose a
middleware that performs computation offloading to reduce the
energy consumption in embedded systems without violating
the real-time constraints. The algorithms in the middleware are
further combined with the DVFS to minimize the total energy
consumption.

Computation offloading reduces the workload on the pro-
cessor of the embedded system (referred to as client) by
moving the computation-intensive tasks to a powerful remote
processing unit (referred to as server). The server executes
the offloaded tasks and returns the results back to the client.
Energy savings come from the idle or sleep state of the
processor during the remote execution. To our knowledge,
this is the first study that adopts computation offloading to
reduce the energy consumption for real-time systems. The
combination with the DVFS can even save more energy, by
executing the remaining workload on the processor at a low
frequency. Figure 1 illustrates computation offloading and
DVFS techniques, where the blue task with a dashed frame
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is executed on the client and the green one is offloaded
to the server. The symbolic power meter on the right side
roughly indicates the power consumption. Figure 1b shows that
offloading the task in Figure 1a reduces the power consumption
by reducing the processing time on the client side, where the
processor consumes idle power during the remote execution.
The power consumption is also reduced by running at a
lower frequency than in Figure 1a, using DVFS as shown in
Figure 1c. As a consequence, the local task in Figure 1c misses
its deadline. Figure 1d shows that the combination of both
techniques saves more energy without missing the deadline.

Our Contribution: In this paper, a middleware is pro-
posed to reduce the energy consumption in real-time embedded
systems based on the computation offloading. Our contribution
can be summarized as follows:

• In our model, the server can serve more than one client
and provides response time guarantees for the offloaded
tasks.

• We propose a set of offloading algorithms for sporadic
and frame-based real-time tasks. The algorithms schedule
the real-time tasks and decide which tasks should be
offloaded to reduce the energy consumption on the client
without violating the real-time constraints.

• We further combine the offloading algorithms with DVFS
to determine the frequency (or speed) of the client’s
processor, such that the total energy consumption is
minimized and all the tasks meet the deadline.

• The middleware is evaluated using a real world case
study of a surveillance system in addition to randomly
synthesized benchmarks.

II. LITERATURE REVIEW

This section summarizes the recent studies in the field
of computation offloading to save energy. We also discuss
the limitations of the existing approaches. Patra et al. [12]
present a framework that performs computation offloading to
save energy in handheld devices. The tasks or applications are
offloaded from the handheld device to a selected resourceful
host in a P2P network of smart devices. Applications are
chosen for offloading based on some of their parameters
such as CPU cycles, memory usage, energy consumption and
input/output data. Liu et al. [11] explore the computation
offloading technique by using timing unreliable components in
real-time systems. They utilize these components in hard real-
time systems by estimating the worst-case response time and
then provide local compensations if the unreliable components
do not deliver the results within the estimated response time.

The main idea in [9, 10] is to represent the computation
offloading problem as a graph partitioning problem, where
the first partition represents the client side and the second
one represents the server side. Each vertex in the graph is
combined with the energy cost of the execution, and represents
a task. The edges between the vertices are combined with the
energy cost of the communication between them. The proposed
algorithms divide the graph into two parts in order to minimize
the communication cost and the total cost on one side.

Khairy et al. [6] propose a “Smartphone Energizer” tech-
nique for context-aware computation offloading in order to
extend the battery life of the smart phones. The proposed
technique predicts the energy consumption and the execution

time costs of a computation on both client and server sides, and
combines them into one cost. The computation is considered
to be beneficial for offloading if the expected combined cost
of the execution on the server is less than the one on the
client. The offloading decision in [7] is represented as an opti-
mization problem based on different parameters such as CPU
load, available memory, remaining battery, and the bandwidth.
Integer linear Programming is used to solve the problem on
the mobile device. Then, the computation-intensive tasks are
offloaded to a remote cloud.

In most of the current studies, the offloading decision
is either based on: (1) the comparison between the energy
consumption of the local execution and the offloading for each
task alone, or (2) the partitioning of the graph that represents
the tasks combined with their energy consumption for the
local and remote execution [8]. The first approach may not be
optimal if we consider all of the system tasks together. None
of both approaches considers the server model, or how the
server handles and executes the offloaded tasks from more than
one client. According to the existing approaches, the server is
always ready to execute the offloaded tasks from the client
immediately, which means that the server is dedicated for one
client. Furthermore, most of the approaches with computation
offloading either do not consider the timing satisfaction re-
quirement for real-time properties or use pessimistic offloading
mechanism for deciding whether a task can be offloaded or not.

III. SYSTEM MODEL AND PROBLEM DEFINITION

In this section, we present our client-server system model,
and the problem definition.

A. Server Model

In our system model, we suppose that the server can serve
more than one client. Therefore, the server should provide
a certain resource reservation for each client in order to
guarantee the response time of the offloaded tasks. The Total
Bandwidth Server (TBS) [13] is used as a resource reservation
server to manage the sharing of the server processor, and then
preserve the real-time property of the system. The server re-
serves a specific utilization (or bandwidth) for each requesting
client, if it is possible. Based on the reserved utilization, the
client schedules the tasks on its side and determines their
offloading decisions. The offloading decisions on the client do
not control or influence how the server schedules the offloaded
tasks. After that, the server uses Earliest Deadline First (EDF)
algorithm to schedule the offloaded tasks (from one or more
than one client) according to their absolute deadlines assigned
by the TBS. The total given utilization for all the clients should
not exceed 100% in order to preserve the system feasibility.
Any other resource reservation server can be used to provide
the response time guarantee to the offloaded tasks.

B. Client and Task Models

On the client side, a set of real-time tasks arrive peri-
odically and require execution in time. A task τi represents
an execution unit, and consists of an infinite sequence of
identical instances, called jobs. We have two types of task
models: Sporadic and frame-based task models. Based on the
utilization given from the server, the client determines the
speed of its processor, schedules the tasks and decides which
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Fig. 2: Timing parameters for two sporadic real-time tasks.

of them should be offloaded in order to minimize the energy
consumption and meet the real-time constraints. The tasks are
independent in execution without precedence constraints.

1) Sporadic Real-time Task Model: Given a set T of n
independent sporadic real-time tasks. Suppose that f is the
frequency (or the speed) of the client’s processor. Each task
τi ∈ T (for i = 1, 2, . . . , n) is characterized by the following
worst-case timing parameters:

• Ci: Local execution time on the client side. It can be
represented as Ci =

Cc
i

f + ∆l
i, where:

◦ Cci is the execution cycles on the client side, i.e. local
execution cycles.
◦ ∆l

i is the amount of frequency-independent execution
time required on the client side in the case of local
execution.

• Si: Setup time. It can be represented as Si =
Sc
i

f + ∆o
i ,

where:
◦ Sci is the amount of execution cycles required on

the client side to be ready for offloading, i.e. setup
cycles. It includes any preprocessing operations such
as encoding and compression.
◦ ∆o

i is the amount of frequency-independent execu-
tion time required on the client side during setting up
in the case of offloading, e.g. transfer time of the task
from the client to the server.

• Ri: Remote execution time. The execution time on the
server side.

• ∇i: Reception time. The amount of time required to
receive the result of an offloaded task τi from the server.

• Di: Relative deadline, which is equal to either:
◦ local relative deadline Dl

i: The deadline for executing
the task on the client in the case of local execution.
◦ offloading relative deadline Do

i : The deadline for
setting up the task in the case of offloading. Another
deadline, called reception relative deadline Dr

i , is
assigned for receiving the result from the server.

• Ti: Minimum inter-arrival time. The minimum period
of time between the arrival of two consecutive jobs of the
same task.

• Ii: Remote response time. The interval length starting
from the time when the task arrives to the server until the
time when the client starts receiving the result from the
server.

We say that a task τi is executed locally if it is executed
with Ci amount of time on the client. We say it is offloaded if it
is executed Si amount of time on the client for setting up, and
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Fig. 3: Timing and power parameters for two frame-based real-
time tasks.

then its result returns back from the server after Ii amount of
time. Also, it requires ∇i amount of time to receive the result.
Figure 2 shows the timing parameters for an example of two
sporadic real-time tasks, where the first task (the blue one with
a dashed frame) is executed locally and the second one (the
other green one) is offloaded to the server.

Each task can be executed locally or offloaded. Suppose
that xi is equal to 1 if the task τi is chosen for offloading; other-
wise, xi is equal to 0. We use the vector ~xn = (x1, x2, . . . , xn)
to denote an offloading decision vector of the tasks. Each
task τi should be executed within its local relative deadline
Dl
i. In the case of offloading, where the task is executed on

the server side, the result should be available on the client
within this deadline. We consider the sporadic real-time task
model with implicit local relative deadlines, where the local
relative deadline is equal to the minimum inter-arrival time,
i.e., Dl

i = Ti. This model also includes the periodic tasks, in
which the jobs of the same task are activated at a constant rate.

In many systems, the size of the result is much smaller than
the size of the data sent to the server. Thus, the offloaded task
requires a very short reception time and considered negligible
compared to the transmission time of the data. For instance,
in the systems that include image processing tasks, the size of
the result (e.g. coordinates or distance) is very small compared
to the size of the image sent to the server.

2) Frame-based Real-time Task Model: Frame-based real-
time task model is a special case of the sporadic task model in
III-B1. A set T of n independent frame-based real-time tasks
arrive periodically at the same time t = 0, have the same period
T , and require execution within the same relative deadline D,
where T = D. The results of all offloaded tasks should be
available on the client within the deadline D. Figure 3 shows
the timing parameters for an example of two frame-based real-
time tasks, where the first task (the blue one with a dashed
frame) is executed locally and the second one (the other green)
is offloaded to the server.

Such a model is widely adopted in surveillance, explo-
ration, environmental inspection, and medical diagnosis sys-
tems. It also exists in wearable devices and multimedia appli-
cations. For instance, several image processing tasks should
be carried out once an image is captured, and all the tasks
should be completed before the next capture (i.e., the relative
deadline). The execution sequence of the tasks continues along
the video stream in a periodic manner. Another example can be
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found in the exploration and inspection systems. These systems
process and analyze the collected data from different sensors
periodically. Although this task model is a special case of the
general task model , i.e., the sporadic task model, we show
that minimizing the energy consumption using this model is
NP-hard.

3) Response Time Guarantee Ii: Suppose that the given
utilization from the server is equal to Us. We assume that
the client distributes the utilization Us equally among all
of its tasks. Then, a TBS is assigned for each task with a
utilization equals to ψi, where ψi = Us

n . For the task τi,
the speed of the given TBS seems 1

ψi
times slower than the

original speed of the server. According to this model, the value
of Ii can be calculated as Ii = Ri

ψi
. This model provides

response time guarantee for all of the offloaded tasks. It can
be further improved by choosing a subset of tasks To ∈ T to
be nominated for offloading according to a specific heuristic,
e.g., the amount of energy reduction for each task if it is
offloaded. Then the utilization from the server Us is distributed
just among the tasks of the set To, and the algorithm chooses
tasks to be offloaded just from this nominated set.

C. Power Model

We assume that the system on the client can change the
voltage and the frequency of its processor by adopting the
DVFS, where the available frequencies are in the range of
[fmin, fmax]. We denote the power consumption function of
the client’s processor executing a task at frequency f as P (f).
It can be represented by P (f) = αfγ + β, where α is a
constant depends on the effective switching capacitance, γ is
a constant related to the hardware, and β represents the static
power consumption [16]. We assume that the idle power of
the processor is fixed and represented by P idlecpu . The Network
Interface Card (NIC) consumes P sleep, P idle, P trans. and
P recv. power during its sleep, idle, transmit and receive states
respectively. The energy consumption of executing a task τi at
frequency f can be represented as follows:

• In the case of local execution, i.e., xi = 0:

El(f, τi) = P (f) · (C
c
i

f
+ ∆l

i)

• In the case of offloading, i.e., xi = 1:

Eo(f, τi) = P (f) · (S
c
i

f
+ ∆o

i +∇i) + Eoi

◦ Eoi : Energy consumed by the network card in the case
of offloading. It includes the energy consumed by the
idle state during the setting up, transmitting the data to
the server, and receiving the result from the server i.e.,
Eoi = P idle · S

c
i

f + P trans. ·∆o
i + P recv. · ∇i. It may

also include any other amount of energy consumed by
the network card in the case of offloading, such as the
wake-up energy.

Figure 3 shows the power consumption of the client’s
CPU and the NIC during the execution of two frame-based
tasks. We assume that the timing and the power parameters
are given based on the system setup. If all these parameters
are specified for (the upper bounds of) the worst cases, and
the communication fabric between the client and the server

is timing predictable, the proposed algorithms provide hard
real-time guarantees. Otherwise, if the information is based on
estimation, they are more suitable for soft real-time systems
and we would like to meet the timing constraint by exploiting
the services provided from the server.

D. Problem Definition

In our model, the client schedules the tasks and decides
which of them should be offloaded. The tasks will be parti-
tioned into two sets: (1) local tasks and (2) offloaded tasks. A
schedule is considered to be feasible if the timing constraints
of all locally-executed and offloaded tasks are satisfied. In this
paper, we address the problem of Minimizing the Energy
consumption (MinEng) of the embedded real-time systems
with the help of the computation offloading technique. Given a
set T of n real-time tasks and a bandwidth Us provided from
the server, the MinEng problem is to find a feasible schedule
(including the offloading decisions of the tasks) and determine
the frequency of the processor so that the energy consumption
of the client is minimized. The problem can be divided into
two subproblems according to the task model as follows:

• Minimize the energy consumption for frame-based tasks.
• Minimize the Energy consumption for sporadic tasks.

As making offloading decisions to satisfy timing constraints
for a set of tasks is NP-complete [14], further optimization in
energy consumption will not be easier. As a result, the problem
addressed in this paper is NP-hard.

IV. OUR APPROACH

In this section, we propose various algorithms to schedule
real-time tasks on the client side and decide which of them
should be offloaded to the server, because it is difficult to
propose just one algorithm to fulfill all system requirements
and to handle all task models. According to our system model,
the client requests an offloading service from the server to
reduce the energy consumption. The server provides the client
with a specific utilization called Us, if it is available. The client
uses the given utilization to calculate the remote response
time Ii of the tasks as shown in Subsection III-B3. Then,
the proposed algorithms in this section can be used on the
client to find a feasible schedule for the tasks (including their
offloading decision) and determine the processor speed such
that the energy consumption is minimized, if it is possible.
If any input parameter changes (e.g. number of the tasks, the
deadline, the given utilization, etc), the algorithms are executed
again to find a new feasible schedule with the minimum energy
consumption.

A. Dynamic Programming Algorithm for Frame-based Tasks

The proposed Dynamic Programming algorithm in this
subsection, called DPF algorithm, finds a feasible schedule
that minimizes the energy consumption for Frame-based real-
time tasks. For a given frequency f , the objective of the
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Fig. 4: An example illustrates the sequence, the timing and the
dynamic programming parameters of four frame-based tasks.

algorithm can be represented as follows:

minimize
n∑
j=1

xjEo(f, τj) +

n∑
j=1

(1− xj)El(f, τj)

=
n∑
j=1

xjE
o
j+

P (f) ·
[ n∑
j=1

xj(
Scj
f

+ Πj) +

n∑
j=1

(1− xj)(
Ccj
f

+ ∆l
j)
]
,

(1a)
such that[ n∑
j=1

xj(
Scj
f

+ Πj) +

n∑
j=1

(1− xj)(
Ccj
f

+ ∆l
j)
]
≤ D (1b)

xkIk +

k∑
j=1

xj(
Scj
f

+ Πj) ≤ D, ∀k = 1, 2, . . . , n.

(1c)

Where Πj = ∆o
j + ∇j for notational brevity. For the

tasks with a negligible reception time, Πj = ∆o
j . The two

conditions in (1b) and (1c) test the feasibility of the schedule.
The condition in (1b) guarantees that the processing time on
the client side for both local and offloaded tasks finishes within
the deadline D, where the condition in (1c) guarantees that
the results for all of the offloaded tasks return from the server
before the deadline D. Figure 4 presents a feasible schedule
of four tasks {τ1, τ2, τ3, τ4} with their timing parameters,
where tasks {τ1, τ4} are offloaded and {τ2, τ3} are executed
locally. To build the dynamic programming table, the tasks
are ordered according to Ii non-increasingly. If there is a
feasible schedule based on the offloading decision obtained
by the dynamic programming algorithm, all offloaded tasks are
executed (or setting up) at the beginning of the schedule, where
the offloaded task with the longest Ii time is executed first.
Then, local tasks are executed during the remote execution
of the offloaded tasks. The results of the offloaded tasks are
buffered on the server and received at the end of the schedule.
This ordering grants the offloaded tasks with long Ii more
time to be executed and return back before the deadline.
Furthermore, it reduces the number of transitions between the
idle and the transmit/receive states of the network card. The
order for an example of four tasks is shown in Figure 4.

Consider the sub-problem of the first i tasks
{τ1, τ2, . . . , τi}. For the offloaded tasks in {τ1, τ2, . . . , τi}, let

∑i
j=1 xjE

o
j be their total NIC energy and

∑i
j=1 xj(

Sc
j

f + Πj)
be their total setup and communication time. Suppose that
L(i, tc, e) is the minimum total local execution time for the
locally-executed tasks in {τ1, τ2, . . . , τi}, such that the total
setup and communication time for the offloaded tasks in
{τ1, τ2, . . . , τi} is less than or equal to tc and their total NIC
energy is less than or equal to e. Figure 4 shows the dynamic
programming parameters for the example of the tasks. A
three-dimensional dynamic programming table L(i, tc, e) is
constructed for all the possible values of i, tc, and e such that
0 ≤ i ≤ n, 0 ≤ tc ≤ D and 0 ≤ e ≤

∑n
j=1E

o
j . All possible

values of tc and e are considered as the integer multiples of ρ
and σ respectively (i.e. ρ and σ are user-specified granularity),
and the values of 1

ρ and 1
σ are considered as integer numbers.

We start by initializing all the elements of L(0, tc, e) to zeros.
Then, the following recursion is used to fill the table:

L(i, tc, e) = min


L(i− 1, tc − (

Sc
i

f + Πi), e− Eoi )

if tc ≥ (
Sc
i

f + Πi) ∧ tc + Ii ≤ D ∧ e ≥ Eoi
∞ otherwise

L(i− 1, tc, e) + (
Cc

i

f + ∆l
i)

The algorithm chooses the offloading decision for the task τi
that minimizes the total local execution time L(i, tc, e) for each
sub-problem {τ1, τ2, . . . , τi} and for all the possible values
of tc and e. The inequation tc + Ii ≤ D in the recursion
checks for each task if it can return before the deadline, in
order to satisfy the feasibility condition in (1c). If a task τi is
chosen for the local execution, its execution time (

Cc
i

f + ∆l
i)

is added to the total local execution time of the previous
sub-problem L(i − 1, tc, e). If it is chosen for offloading, its
setup and communication time (

Sc
i

f + Πi) and its NIC energy
Eoi are considered in the available tc and e of the previous
sub-problem respectively. The algorithm also maintains the
offloading decision of each task for backtracking later on.

After filling the table, we can verify whether a feasi-
ble schedule exists or not. We search for the minimum of
{e+P (f)(tc+L(n, tc, e))} (the objective function in (1a)) for
all the possible values of tc and e such that tc+L(n, tc, e) ≤ D
(the feasibility condition in (1b)). Then, we backtrack the
table starting from the location that achieves the minimum
value above to find the offloading decision xi for each task.
If the task τi is assigned for offloading, we backtrack to
L(i − 1, tc − (

Sc
i

f + Πi), e − Eoi ). If it is assigned for local
execution, we backtrack to L(i−1, tc, e). The time complexity
of the dynamic programming algorithm is O(nDρ

∑n
j=1 E

o
j

σ ),
in addition to the time complexity of O(n log n) for tasks’
ordering at the beginning. Because the frequency levels of
the processor are limited, we can search them (by running
the algorithm for each frequency) to find the frequency that
minimizes the energy consumption without violating real-time
constraints.

B. Greedy Algorithm for Frame-based Tasks

In this subsection, we propose a greedy algorithm, called
GreedyF algorithm, with time complexity less than the dy-
namic programming algorithm in IV-A. At the beginning, the
algorithm takes as an input a schedule that is feasible when the
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Algorithm 1 GreedyF(k, ~xn)

1: ~x∗n ← ~xn, k ← k − 1;
2: if condition (1c) does not hold then
3: k ← k + 1
4: return k, ~xn;
5: end if
6: ∀τi ∈ T , ai ← (

Cc
i

fk
+ ∆l

i)− (
Eo

i

P (fk) +
Sc
i

fk
+ Πi);

7: tc ←
∑n
i=1 xi(

Sc
i

fk
+ Πi);

8: < ← (tc +
∑n
i=1(1− xi)(C

c
i

fk
+ ∆l

i))−D;
9: if < ≤ 0 then

10: return GreedyF(k, ~xn);
11: end if
12: ∀τi ∈ T |xi = 0 and ai > 0, Order them according to ai

into the list L;
13: while L 6= ∅ and < > 0 do
14: Pick the task τj from L with the maximum aj ;
15: if tc +

Sc
j

fk
+ Πj + Ij ≤ D then

16: x∗j ← 1;

17: tc ← tc +
Sc
j

fk
+ Πj ;

18: < ← <−
(

(
Cc

i

fk
+ ∆l

i)− (
Sc
i

fk
+ Πi)

)
;

19: end if
20: L ← L \ {τj};
21: end while
22: if < ≤ 0 then
23: retrun GreedyF(k, ~x∗n);
24: else
25: k ← k + 1
26: return k, ~xn;
27: end if

processor runs at the maximum frequency fmax (e.g. all the
tasks are executed locally and meet the deadline). Then, it tries
to reduce the energy consumption without violating the real-
time constraints. The greedy algorithm does not guarantee to
find a feasible schedule with the minimum energy consumption
as in the dynamic programming algorithm, but it is much
faster. If the greedy algorithm does not find a feasible schedule
that reduces the energy consumption, it returns the feasible
schedule that was taken as an input. The objective function in
1a can be written as follows:

minimize P (f)
( n∑
i=1

(
Cci
f

+ ∆l
i)−

n∑
i=1

xi

[
(
Cci
f

+ ∆l
i)− (

Eoi
P (f)

+
Sci
f

+ Πi)
])

=P (f)
( n∑
i=1

(
Cci
f

+ ∆l
i)−

n∑
i=1

xiai

)
, (2)

where ai = (
Cci
f

+ ∆l
i)− (

Eoi
P (f)

+
Sci
f

+ Πi).

If a task τi with ai > 0 is offloaded, it reduces the energy
consumption with the amount of P (f) · ai, and also reduces
the total execution time on the client side. Therefore, the value
of ai is used as a heuristic in our greedy algorithm. We assume
that the frequency range of [fmin, fmax] is discretized into m
frequency levels {f1, f2, . . . , fm}, where f1 and fm are the
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Fig. 5: Illustration of Algorithm 1.

minimum and the maximum possible frequencies respectively.
The algorithm starts from a feasible schedule at the maximum
frequency fm as shown in Figure 5a. For each iteration, the
frequency is lowered one level, and the algorithm tries to
find a feasible schedule that reduces the energy consumption.
The greedy algorithm GreedyF(k, ~xn), which is described in
Algorithm 1 and illustrated in Figure 5, takes two inputs: a
feasible schedule with the offloading decision ~xn, and the
frequency index k. The value of k is equal to m at the first
iteration of the algorithm. The algorithm works as follows:

• We start by reducing the frequency one level (Line 1).
If the result of any offloaded task does not return back
to the server within the deadline (according to condition
(1c)), the algorithm stops and returns the previous feasible
schedule with the previous frequency index (Lines 2 - 5).

• All variables are initialized, where ~x∗n is used to maintain
the last feasible schedule, tc is the total setup and com-
munication time for the offloaded tasks, and < represents
the difference between the total local finishing time and
the deadline D (Lines 1, 6 - 8).

• If the schedule is still feasible with the lower frequency,
the algorithm calls itself again with the new lower fre-
quency level (Lines 9 - 11). Otherwise, the total local
finishing time exceeds the deadline and then we have
< > 0, as illustrated in Figure 5b.

• Only the local tasks, that reduce the energy consumption
and the total local finishing time in the case of offloading,
are ordered according to ai > 0 into the list L (Line 12).

• As long as the schedule is not feasible (< > 0), the
algorithm keeps picking a task τj from the list L with
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the maximum value of aj . If it is feasible for offloading,
the algorithm assigns it for offloading and updates the
values of tc and <, as shown in Figures 5c and 5d (Lines
13 - 21).

• Finally, if the algorithm finds a feasible schedule as in
Figure 5e, it calls itself again with the index of the lower
frequency and the new offloading decision ~x∗n. Otherwise,
it stops and returns the last feasible schedule with the
previous frequency index (Lines 22 - 27).

The total setup and communication time tc consists of two
parts: (1) total setup and transmission time for the offloaded
tasks which is equal to

∑n
i=1 xi(

Sc
i

fk
+ ∆o

i ) and this part is
executed at the beginning of the schedule, (2) total receiving
time of the results which is equal to

∑n
i=1 xi∇i and this

part is executed at the end of the schedule. The local tasks
are executed between these two parts as shown in Figure 5e.
The time complexity of Algorithm 1 is O(m n log n), which
includes searching the m frequency levels.

C. Greedy Algorithm for Sporadic Tasks

In this subsection, we propose a Greedy algorithm, called
GreedyS algorithm, to reduce the Energy consumption for
Sporadic real-time tasks. To solve this problem, two decision-
making points should be considered: task scheduling and
offloading decision. If we decide to offload a task, it means
that the execution of a job of the task is divided into two
parts, separated by an offloading interval. Therefore, we map
the problem of scheduling sporadic real-time tasks with com-
putation offloading to the problem of scheduling sporadic real-
time tasks with self-suspensions. In the problem of scheduling
self-suspending tasks, the task can suspend its execution for a
specific amount of time when it performs read/write operations
with input/output devices or when it waits for an event. The
real-time literature has focused on two self-suspending task
models: the dynamic self-suspension model and the segmented
suspension model. The dynamic self-suspension task model
allows self-suspension to take place as long as it does not
suspend longer than the specified worst case self-suspension
time. The segmented self-suspending task model defines the
execution behaviour of a job of a task by predefined compu-
tation segments and self-suspension intervals.

The recent report by Chen et al. [3] provides a com-
prehensive survey and explains why several analyses in the
state-of-the-art of self-suspending tasks are in fact unsafe. Our
studied computation offloading problem falls into the category
of segmented suspension model with only one self-suspension
interval. The best result in this category for scheduling is by
Chen and Liu [2].1 The problem is to find a feasible schedule
for such a task model. For the case with at most one self-
suspension, the task τi consists of two execution units (Ci,1 and
Ci,2) separated by a suspension interval Λ. According to the
system model presented in [2], if a task τi does not suspend, its
execution time is equal to Ci,1, and both Ci,2 and Λ are equal
to 0. Now we will link the local and the offloaded tasks in our
system model to the tasks that do not suspend and the tasks
that suspend in the sporadic task model with self-suspensions

1The recent result by Huang and Chen [5] shows that the same method can
still yield good solutions for multiple self-suspension segments, but this is out
of the scope of this paper.

respectively. For given offloading decisions xi and a frequency
level f in our problem, we can define the following terms:

• Ci,1 = xi(
Sc
i

f + ∆o
i ) + (1− xi)C

c
i

f + ∆l
i,

• Ci,2 = xi∇i,
• Λ = xiIi,
• Di,1 = Do

i and
• Di,1 = Dr

i .

The work in [2] presents a Fixed-Relative-Deadline (FRD)
approach to schedule the real-time tasks that may perform
one self-suspension on a uniprocessor so that the tasks meet
the deadlines. A proposed approach, called Equal-Deadline
Assignment (EDA), assigns equal relative deadlines (Di,1 and
Di,2) for the execution units Ci,1 and Ci,2 of a task with
self-suspension, where Di,1 = Di,2 = Ti−Λi

2 . Then, the EDF
algorithm is used to schedule the execution units according to
the newly assigned relative deadlines. It has been shown in [2]
that the EDA approach provides a feasible schedule for a set
of sporadic real time tasks T with at most one self-suspension
if:

n∑
j=1

Uj =

n∑
j=1

Cj,1 + Cj,2
Tj

≤ 1, and (3a)

∀τi ∈ T ,
i∑

j=1

dbf EDA
j (Di,1) ≤ Di,1, (3b)

where the tasks are ordered according to Di,1 (or Di,2)
such that Di,1 ≤ Dj,1 for i < j,

dbf EDA
j (t) =

{
0 0 ≤ t < Dj,1

C ′j + (t−Dj,1)Uj Dj,1 ≤ t , and

C ′j = max{Cj,1, Cj,2, Cj,1 + Cj,2 − UjDj,1}.

The linear-time feasibility analysis described above is used
in our proposed algorithm below to test the schedulability of
the tasks in our system model.

The second decision-making point is to determine the
offloading decision of the tasks. Our proposed algorithm,
described in Algorithm 2, determines the offloading decision
of the tasks in addition to the speed of the clients processor
so that the energy consumption is minimized. The algorithm
starts from any feasible schedule (e.g. all the tasks are ex-
ecuted locally at the maximum processor speed and meet
their deadlines) and tries to minimize the energy consump-
tion using the DVFS and the computation offloading without
violating the feasibility of the schedule. In each round, the
frequency of the processor is decreased one level to reduce
the energy consumption, where we consider the discretized
m frequency levels {f1, f2, . . . , fm} and the heuristic ai from
Subsection IV-B. If the schedule becomes infeasible due to the
frequency decrement, the algorithm assigns tasks for offloading
according to the heuristic ai to reduce the total demand of
the tasks and then find a feasible schedule. The inputs of the
proposed algorithm are the offloading decision vector ~xn and
the index of the frequency level that are necessary to schedule
the tasks feasibly under the EDF algorithm. The GreedyS
algorithm works as follows:
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Algorithm 2 GreedyS(k, ~xn)

1: ~x∗n ← ~xn, k ← k − 1;
2: if condition (3) holds then
3: return GreedyS(k, ~xn);
4: end if
5: ∀τi ∈ T , ai ← (

Cc
i

fk
+ ∆l

i)− (
Eo

i

P (fk) +
Sc
i

fk
+ Πi);

6: ∀τi ∈ T |xi = 0 ∧ ai > 0 ∧ Do
i ≥

Sc
i

fk
+∆o

i ∧ Dr
i ≥ ∇i,

order them according to ai into the list L;
7: while L 6= ∅ do
8: Pick the task τj from L with the maximum aj ;
9: x∗j ← 1;

10: L ← L \ {τj};
11: Relocate τj in the schedule;
12: if condition (3) holds then
13: return GreedyS(k, ~x∗n);
14: end if
15: end while
16: k ← k + 1
17: return k, ~xn;

• At the beginning, the algorithm maintains the offloading
decision vector of the previous feasible schedule and
reduces the frequency one level. If the schedule is still fea-
sible by running the processor at the new lower frequency,
the algorithm calls itself again to target a lower frequency
level (Lines 1 - 4). If the feasibility analysis does not
guarantee a feasible schedule, the algorithm continues to
find a feasible schedule by reducing the workload on the
client using the computation offloading.

• The heuristic of ai is calculated for each task (recall that
Πi = ∆o

i + ∇i). The tasks that are beneficial (ai > 0)
and feasible for offloading (Do

i ≥
Sc
i

fk
+ ∆o

i ∧ Dr
i ≥

∇i) are ordered into a list called L (Lines 5 - 6). The
heuristic evaluates the tasks according to the reduction in
the energy and the workload gained if they are offloaded.

• To find a feasible schedule, the algorithm offloads the
tasks according to the heuristic where the task with the
highest energy and time reduction is offloaded first (Lines
7 - 15). If the algorithm finds a feasible schedule, it tries
again to target a lower frequency level. Otherwise, the
algorithm returns the last feasible schedule (Lines 16 -
17).

After finding a feasible schedule that reduces the energy
consumption, the tasks are scheduled under the EDF algo-
rithm. The GreedyS algorithm selects the frequency level that
achieves the minimum energy consumption among all levels.
If the algorithm finds a feasible schedule at fmin and there
are still local tasks with ai > 0, it can continue assigning
these tasks for offloading to have lower energy consumption.
The time complexity of the algorithm for a specific frequency
level is O(n3), and the total time complexity for evaluating
the m levels is O(m · n3).

Another feasibility analysis from [15] can be used to test
the feasibility of sporadic real-time tasks, that can be offloaded
with a negligible reception time (i.e., ∇i ≈ 0), under EDF.
Suppose that the offloading decisions of the tasks are known
and they are ordered according to Di non-decreasingly (i.e.,
Dk ≤ Dl if k < l), where Di = xiD

o
i + (1 − xi)D

l
i and

Do
i = Dl

i − Ii. According to the feasibility analysis in [15], a

TABLE I: Tasks parameters of the case study.
×104 cycles ms

Task Description Cc
i Sc

i ∆o
i Ri

τ1 Motion Detection 5190 0 21 21
τ2 Object Recognition 38060 173 1 102
τ3 Stereo Vision 15224 2076 22 41
τ4 Motion Recording 3114 0 21 14

set of sporadic tasks with a negligible reception time can be
feasibly scheduled by the EDF algorithm on a processor with
a speed of f if:

n∑
j=1

uj =

n∑
j=1

xj
Sj
Tj

+

n∑
j=1

(1− xj)
Cj
Tj
≤ 1 (4a)

∀τi ∈ T ,
i∑

j=1

xj

(
Di −Do

j

Tj
+ 1

)
Sj
Di

+

i∑
j=1

(1− xj)
Cj
Tj
≤ 1,

(4b)

where Sj =
Sc
j

f + ∆o
j and Cj =

Cc
j

f + ∆l
j . Algorithm 2 can be

easily and slightly modified to consider sporadic tasks with a
negligible reception time as follows:

• The feasibility condition in (3) (Lines 2 and 12) is
replaced with the condition in (4).

• Πi = ∆o
i in Line 5.

• The condition Dr
i ≥ ∇i in Line 6 is omitted.

V. EXPERIMENTAL EVALUATIONS AND SIMULATIONS

The proposed middleware was evaluated by implementing
a surveillance system as a case study and synthesis workload
simulations. A feasible schedule was used as a baseline to
evaluate the efficiency of the DPF and GreedyF algorithms,
such that all the tasks are executed locally at the maximum
speed. For the GreedyS algorithm, the baseline schedule was
derived for each simulation case using the proposed algorithm
in [15] at the maximum processor speed. The algorithms are
compared to the approach that offloads a task if its energy
consumption in the case of the offloading is less than its energy
consumption in the case of the local execution. We use the
abbreviation LOD to denote such an approach that considers a
Local Offloading Decision for each task. Tight deadlines were
assigned so that the schedule of the tasks becomes infeasible if
the processor runs at any lower frequency than the maximum
one fmax. Therefore, the DVFS cannot be used alone here to
reduce the energy consumption, because the tasks will miss
the deadlines. The normalized energy saving (or reduction) of
an algorithm is equal to 1− (the energy consumption of the
derived schedule using this algorithm divided by the energy
consumption of the baseline schedule for the same task set).

A. Case Study of a Surveillance System

We implemented a case study of a surveillance system
that consists of a client and a server. The client is equipped
with two cameras, left and right, to capture images from
the environment. The client performs four independent image
processing tasks on the captured images which are described
in Table I with their parameters. The reception time for the
results of the tasks does not exceed 0.2 ms, and the average
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Fig. 6: Case study results for the frame-based tasks.

TABLE II: Case study results for the sporadic tasks.
Us = 100% Us = 15%

Normalized energy savings (%) 69.91 15.68
Running frequency (MHz) 33 266

value equals 0.042 ms. The parameters represent the worst-
case values based on profiling. Tasks execution continues along
the input video stream in a periodic manner. The server has a
Pentium(R) Dual-Core 2.8 GHz 64-bit CPU. On the client side,
we adopted the IBM PPC405LP 32-bit processor model and
the Intel PRO/Wireless 3945ABG (802.11a/b/g) card model.
The frequency levels of the processor are 33, 100, 266 and 333
MHz. The corresponding power consumption levels are 19, 72,
600, and 750 mW respectively. The idle power of the processor
equals 12 mW. The network card consumes 30, 150, 1400 and
1800 mW during its sleep, idle, reception and transmission
states respectively.

The results of the case study for frame-based tasks using
different utilization values are shown in Figure 6. We observe
that the results of the DPF and GreedyF algorithms are the
same for the utilization of 25% and 100%. However, the DPF
algorithm saves more energy for the utilization of 10% due to
the optimal decision for each frequency level. Furthermore, the
LOD algorithm was not able to reduce the energy consumption
for the utilization of 25% and 10%, i.e., the server serves more
than one client. For Us = 100%, the LOD algorithm offloads
all the tasks. However, the DPF and GreedyF algorithms
offload just tasks τ2 and τ3 which improves the energy saving.
The relative deadlines of the sporadic tasks were generated
randomly so that the total utilization of the tasks equals 100%
when they are executed locally. Table II shows the results of the
derived schedules by the GreedyS algorithm for Us = 100%
and Us = 15%. In the case of the full utilization, the remote
response time of the tasks is relatively shorter than in the case
of Us = 15%. In this case, the algorithm offloads more tasks
to reduce the workload of the client’s processor and then run it
at the lowest frequency in order to save more energy as shown
in the table.

B. Simulation Setup and Results

The generation of simulation parameters is inspired by
the case study but with wider ranges. The parameters of the
tasks were generated randomly with a uniform distribution as
follows:

• Cci : between 106 and 109 cycles.
• Sci : between 106 and Cci cycles.
• ∆o

i : floating-point values between 1 ms and 20 ms.
• ∇i: floating-point values between 0.04 ms and 0.2 ms.
• Ri: C

c
i /fmax

α , where α is the speed-up factor of the server.
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Fig. 7: Energy savings for the DPF and GreedyF algorithms.

A total of 100 rounds were performed for each Us =
{0.25, 0.5, 1}. The server uses a fair-sharing policy, where its
utilization is partitioned between the connected clients equally.
A low utilization value, Us = 0.25, means that the server
serves four clients at the same time or is busy with other
applications and can reserve relatively a short amount of time
for the offloaded tasks. Full utilization, Us = 1, means that
the server is idle and dedicated completely for one client.
In each round, a set of 25 frame-based real-time tasks is
randomly generated for all the values of α = {1, 2, 4, 10}. The
power model in the case study was adopted in the simulation.
A tight deadline D =

∑n
i=1(Cci /fmax + ∆l

i) was assigned
for each task set such that the schedule becomes infeasible
if the processor runs at any lower frequency than fmax. For
the sporadic tasks, the same parameters above were used and
the relative deadlines of the tasks were generated as random
floating-point values so that the total utilization of any task set
without offloading (i.e. Ulocal) is equal to 120%. Therefore,
DVFS cannot be used alone for both task models to reduce the
energy consumption, because the tasks will miss the deadlines.

Figure 7 shows the average normalized energy savings for
the schedules derived by the DPF and GreedyF algorithms. In
general, as the value of α increases, the energy saving also
increases for both algorithms. Because with a faster server
(higher α values), the remote response time of the tasks will be
relatively shorter and the algorithms may offload more tasks.
Furthermore, as the given utilization from the server increases
(less served clients), the energy saving also increases. If the
client obtains more utilization from the server, the remote
response time of the offloaded tasks decreases. Hence, there
will be more offloadable tasks (i.e., their results return before
the deadline) and the client will be able to offload more of
them in order to reduce the energy consumption. Moreover,
we observe that there will be no more reduction in the energy
consumption if the speed-up factor of the server multiplied
by the given utilization is greater than or equal to 2.5. In this
case, the client will not be able to offload more tasks due to the
communication overhead. The LOD algorithm was not able to
derive feasible schedules with reduced energy consumption in
this simulation.

Figure 8 presents the average execution time for the DPF
and GreedyF algorithms in milliseconds, where Us = 1 and
α = 4. As the number of tasks n increases, the average
execution time also increases, but it increases exponentially
for the DPF algorithm. To test the percentage of the fea-
sible schedules obtained by both algorithms, the deadline
is reduced to be D = γ ∗

∑n
i=1(Cci /fmax + ∆l

i), where
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Fig. 10: Simulation results for the GreedyS algorithm.

γ = {0.9, 0.8, 0.7, 0.6, 0.5, 0.4}. Figure 9 shows that the DPF
algorithm finds more feasible schedules than the GreedyF
algorithm. According to the evaluation, the GreedyF algorithm
is much faster than the DPF algorithm. However, the DPF al-
gorithm saves more energy and finds more feasible schedules.
The evaluation results of the GreedyS algorithm are presented
in Figure 10 for different values of α and Us. We observe
that the energy saving increases as the speed-up factor of the
server increases, because the GreedyS algorithm will be able to
offload more tasks. Furthermore, as the given utilization from
the server increases, the energy savings also increases for the
same reason in Figure 7.

VI. CONCLUSION

In this paper, we propose a middleware to reduce the
energy consumption in real-time embedded systems. The algo-
rithms in the middleware performs computation offloading for
sporadic and frame-based real-time tasks in order to reduce
the workload of the client’s processor (i.e., the processor of
the embedded system) and then save energy. The tasks are
offloaded to a powerful server. On the server side, we use
the total bandwidth server to provide response time guarantee
for the offloaded tasks. The proposed algorithms determine
the speed of the client’s processor, schedule real-time tasks
and determine their offloading decision in order to find a
feasible schedule that minimizes the energy consumption. The
algorithms were evaluated using a case study of a surveillance
system and synthesized benchmarks. The simulation results
show that the derived schedules can save in average up to

nearly 40% of the energy consumption, compared to the case
that all of the tasks are executed locally at the maximum
processor speed. For future researches, we will explore other
resource reservation servers.
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