Faster Model-Based Optimization Through
Resource-Aware Scheduling Strategies

Jakob Richter! ™) Helena Kotthaus?(®), Bernd Bischl®, Peter Marwedel?,
Joérg Rahnenfiihrer!, and Michel Lang!

! Department of Statistics, TU Dortmund University, Dortmund, Germany
{richter,rahnenfuehrer,lang}@statistik.tu-dortmund.de
2 Department of Computer Science 12, TU Dortmund University,
Dortmund, Germany
{helena.kotthaus,peter.marwedel }@tu-dortmund.de
3 Department of Statistics, LMU Miinchen, Munich, Germany
bernd.bischl@stat.uni-muenchen.de

Abstract. We present a Resource-Aware Model-Based Optimization
framework RAMBO that leads to efficient utilization of parallel computer
architectures through resource-aware scheduling strategies. Conventional
MBO fits a regression model on the set of already evaluated configura-
tions and their observed performances to guide the search. Due to its
inherent sequential nature, an efficient parallel variant can not directly
be derived, as only the most promising configuration w.r.t. an infill cri-
terion is evaluated in each iteration. This issue has been addressed by
generalized infill criteria in order to propose multiple points simulta-
neously for parallel execution in each sequential step. However, these
extensions in general neglect systematic runtime differences in the con-
figuration space which often leads to underutilized systems. We estimate
runtimes using an additional surrogate model to improve the scheduling
and demonstrate that our framework approach already yields improved
resource utilization on two exemplary classification tasks.

Keywords: Black-box optimization - Hyperparameter tuning - Model
selection - Model-based optimization - Resource-aware scheduling -
Performance management - Parallelization

1 Introduction

In the field of hyperparameter optimization for machine learning methods, effi-
cient black-box optimization is often necessary to obtain a well-performing
hyperparameter configuration for a given data set. A state-of-the-art optimiza-
tion strategy for expensive black-box functions is the model-based optimization
(MBO) [6]. MBO is an iterative optimization algorithm that starts on an initial
set of already evaluated configurations. In each step a regression model is fitted

J. Richter and H. Kotthaus—These authors are contributed equally.

© Springer International Publishing AG 2016
P. Festa et al. (Eds.): LION 2016, LNCS 10079, pp. 267-273, 2016.
DOI: 10.1007/978-3-319-50349-3_22

268 J. Richter et al.

on the so far available evaluations. It serves as a surrogate model to predict the
outcome of the black-box on yet unseen configurations. The infill criterion of the
model guides the search to a new configuration which is usually a compromise
between good predicted performance and uncertainty of the search space region —
expected improvement is a popular choice. The new configuration is evaluated,
appended to the current data and the next iteration step starts until the budget
of evaluations is depleted. Many extensions to the basic MBO algorithm have
been suggested for parallel point proposal [3].

One popular application for MBO is hyperparameter tuning [10,12] where
the objective function is defined as a resampled performance measure of a
machine learning algorithm. Here, resource requirements like CPU utilization
or memory usage heavily vary depending on the type and configuration of the
applied machine learning algorithm. Heterogeneous runtimes have already been
addressed in [11] where the authors suggest to model these with an additional
surrogate leading to an “expected improvement per second” which favors less
expensive configurations. We also use surrogate models to estimate resource
requirements but instead of adapting the infill criterion, we use them for effi-
cient scheduling of parallel point evaluations. Resource-aware scheduling is an
active field of research which is often tailored specifically for different hardware
platforms, from small embedded systems [13] up to heterogeneous clusters [4]. In
contrast to these classical scheduling problems, we are in control of the job gener-
ation as we can query the resource model for jobs with suitable resource require-
ments and postpone or skip suggested jobs if deemed not promising enough.

2 Resource-Aware Model-Based Optimization

Our framework (RAMBO) is shown in Fig. 1. In the first of three steps, the MBO
Method proposes a set of promising configurations w.r.t. the infill criterion.
Each configuration forms a job with different resource demands. Based on all
previous evaluations, we build surrogate regression models to predict the com-
putational resources for arbitrary configurations. Such a model is called Job
Utility FEstimator and is used to create Job Profiles. Configurations to evaluate
are selected in the Job Selection step. Jobs are prioritized depending on their
estimated usefulness for optimization and their predicted resource requirements.
The Scheduling step uses the estimated Job Profiles and a System Description
(e.g., number of CPUs and free memory) to efficiently map the jobs to the avail-
able resources. The jobs are started and can be monitored by a Job Tracker.
Since job profiles are only estimated, a job whose resource utilization deviates
from its predicted requirements might need to be rescheduled or stopped to guar-
antee efficient resource utilization. We propose two possibilities to update the
model with results. One way is the synchronous feedback, where the results of
all jobs within one iteration are gathered before each model update. The other
way is to update the model each time a job has finished its computation in an
asynchronous fashion. Either way, the updated model is then used to propose
new candidate points.

Faster MBO Through Resource-Aware Scheduling Strategies 269

System

Description:
| Job utiity Estimator | Infill-Criterion o #CPUs
lemory

— .
{ MBO Method H Job Selection]——-’@
i

Job Profile:
Rl S Mapping Method oy #gzsm‘):r:z
R Outlier Handlin o
Syn. vs. Asyn. ~. 9 #Priority

Feedback * Tt 9

A
|_I I Scheduling & ’

Job Tracker

Fig. 1. Ressource-Aware Model-Based Optimization Framework.

To demonstrate our general framework, we show a simple exemplary setup
in this work. We pick kriging as surrogates to model the misclassification error
and the logarithmic runtime. We opt for a multipoint Lower Confidence Bound
(LCB), which is an optimistic estimate of the objective function, similar to [5]
as infill criterion, which we call qLCB. qLCB simultaneously generates ¢ con-
figurations by drawing ¢ random values A; (i = 1,...,q) from the exponential
distribution with a mean of 2. Each)\; results in a different trade-off between
exploitation (\; |) and exploration (A; T) and thus leads to a different optimal
configuration x; after solving

x; := argmin [LCB(x, A\;)] = arg min [§(x) — A\;5(x)] . (1)
X X

Here, (x) denotes the posterior mean and §(x) the root of the posterior standard
deviation of the regression model at point x, respectively. Unfortunately, there
is no direct ordering of the set of obtained candidates x;. Therefore, we assign
candidates with a balanced exploration-exploitation trade-off a higher priority:
p; = — [log(X\;) —log(2)] is inversely proportional to the absolute distance of \;
to its expected value 2 on a log-scale.

For scheduling, we use the synchronous approach. In each iteration we gen-
erate a list of ¢ = 3m proposed jobs with the help of qLCB. We then determine
the job j;», ¢* := argmax; p;, with highest priority and run it CPU; exclusively.
Accordingly, on a system with m homogenous CPUs the remaining jobs are
scheduled on CPUs,...,CPU,,, limited by the upper time bound #;-, which is
directly derived from the estimated runtime of job j;«. Jobs which have an esti-
mated runtime ¢; < ¢;+ are mapped in decreasing order of their priorities to the
remaining CPUs in a greedy first fit manner. A job j; is mapped on CPU if
its runtime #; < f;» — ZzeJ t; where J, is the set of jobs already mapped to
CPUy. Jobs of the inital list that do not fit on any CPU are discarded. If any
CPU is left without a job we query the surrogate model for a new job for each
CPU with a runtime smaller or equal to #;+ to fill the gaps. When all scheduled
jobs are evaluated the surrogate model is updated and the iteration starts over.

270 J. Richter et al.

3 Evaluation

The subject of the experimental setup is to apply our framework on the w6a'
and magic04? data set to configure an SVM with the radial basis function kernel

k(x,x') = exp(—y [[x — x'||*) (2)

as implemented in the R package e1071 [7], based on libsvm. The kernel para-
meter v and the cost C of constraint violations are both box-constrained to the
interval [—15,15] on a log,-scale. We compare our approach to two established
alternatives:

Random Search (RS): A simple parallelized random search. This relatively
naive yet often effective [1] approach does not need a synchronization step
like MBO, therefore the next random point will be scheduled immediately
after each function evaluation which guarantees maximum load of all CPUs.

gLCB: A simple MBO approach with a multipoint LCB infill criterion [3], using
a kriging model and naive scheduling. At each sequential step, ¢ = ncores
points are selected minimizing the LCB (1) w.r.t. random \; ~ Exp(3)

(i=1,...,9).

Since the concept of a fixed budget of evaluations does not translate well into a
scenario with heterogeneous runtimes, we define the budget via the elapsed time.
We use a 3-fold cross validation to define the objective function for the tuner
and an outer 10-fold cross validation to evaluate the optimization results. All
variants start with an initial latin hypercube design with 10 points. To increase
comparability, initial designs are fixed per outer cross-validation fold.

The software is implemented in R using mlr® to interface the machine learn-
ing algorithms and m1rMB0? as optimization toolbox. BatchExperiments [2] is
used to parallelize the experiments on high performance computing cluster. The
traceR framework [8,9] guarantees reliable measures of computational resources.

Figure 2 shows the mean misclassification errors (MMCE) of the best config-
uration after 1, 10, 120 and 180 min. The left hand side displays the tuning error,
i.e. the over-optimistic error on the internal tuning set. The right hand side shows
the MMCE on the outer cross-validation. Unfortunately, on these data sets only
marginal improvements are achieved after evaluation of the initial design. Yet our
RAMBO approach seems to perform well, yielding comparable performance and
sometimes slightly less variance. The reasons for this can be found in Fig. 3 which
visualizes the mapping of parallel jobs. We can observe unused CPU time for

! Platt: http://www.csie.ntu.edu.tw/~cjlin/libsvimtools/datasets/binary /w6a.

2 Bock: https://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma-+Telescope.

3 Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Studerus, E.,
Casalicchio, G., Jones, Z.M.: mlr: machine learning in R. J. Mach. Learn. Res.
17(170), 1-5 (2016). http://jmlr.org/papers/v17/15-066.html

4 Bischl et al., m1rMBO: Model-Based Optimization for mlr. https://github.com/
berndbischl/mIrMBO.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/w6a
https://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope
http://jmlr.org/papers/v17/15-066.html
https://github.com/berndbischl/mlrMBO
https://github.com/berndbischl/mlrMBO

Faster MBO Through Resource-Aware Scheduling Strategies 271

wéa magic04 wéa magic04
0.0225 o oo 0.15-
o 0.025
L]
80'0200_ 0.14 -
£ 0.14- 3 . method
E’00175— SO0 1o e 0.13 EdRs
~VU. ° Lu L] e .
W 9 . E qLcB
§0‘0150— %ﬂ% o.13-ﬁﬁ S0.015+ 0.12- E3 RAMBO
0.0125 4 % %# % 0.010 0.11 - °
T T T T T T T T T T T T T T T T
1 10 120180 1 10 120180 1 10120180 1 10120180
time (minutes) time (minutes)

Fig. 2. Averaged misclassification errors (MMCE): tuning (left) and test data (right)
for the best observed configuration after a given time budget.

magic04
| I
) i
0/ =
[T \M\D | |©
[
] | i [(2
i = |8
i i) i
200

time (minutes)

Fig. 3. Scheduling visualization for one run: The boxes show the mapping of jobs on
CPUs. Less empty spaces indicate higher CPU utilization. Vertical lines indicate the
end of one MBO iteration.

qLCB whereas RAMBO balances long execution times more evenly. The estimation
of runtimes reliably estimates the runtimes so that only 2.3% of the evaluations
exceed t +2- s(t). qLCB often schedules four jobs with vastly different runtimes
and hence wastes available CPU time idling. Thus our results demonstrate that
RAMBO achieves higher CPU utilization, meaning more evaluations which yields
better knowledge of the hyperparameter space and thus higher confidence in the
optimization result. It also shows on magic04 that it not only prefers short jobs
but is also able to schedule long jobs more efficiently. On the w6a dataset RAMBO
is capable of evaluating twice as many configurations as the unscheduled baseline
method qLCB. In contrast it only yields 25% more evaluations on the magic04
dataset which indicates that promising configurations have longer runtimes then
average and vice versa for w6a.

4 Conclusion

With our RAMBO framework we present a novel approach to perform a
faster model-based optimization through resource-aware scheduling. We demon-
strate that our yet heuristic mapping approach already leads to improved

272 J. Richter et al.

resource utilization and thus to more evaluations within the same time budget.
This potentially yields a better knowledge of the hyperparameter space and thus
higher confidence in the optimization result. In order to efficiently use hardware
resources, we are planning further improvements. Firstly, further work will con-
centrate on integrating memory profiles since memory usage heavily influences
runtime if the amount of RAM in the system is too small to hold all required
data. Secondly, we aim to improve the resource estimation. Thirdly, we are plan-
ning to implement dynamic scheduling of jobs for cases of remaining deviations.
Fourthly, we plan to implement a multi-objective approach with respect to hard-
ware costs, memory, runtime and priority for performance optimization for an
more optimized resource-aware scheduling strategy. This is especially important
for an efficient utilization of heterogeneous architectures.

Acknowledgments. This work was partly supported by Deutsche Forschungsgemein-
schaft (DFG) within the Collaborative Research Center SFB 876, A3.

References

1. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13(1), 281-305 (2012)

2. Bischl, B., Lang, M., Mersmann, O., Rahnenfiihrer, J., Weihs, C.: BatchJobs and
BatchExperiments: abstraction mechanisms for using R in batch environments. J.
Stat. Comput. Simul. 64(11), 1-25 (2015)

3. Bischl, B., Wessing, S., Bauer, N., Friedrichs, K., Weihs, C.: MOI-MBO: multi-
objective infill for parallel model-based optimization. In: Pardalos, P.M., Resende,
M.G.C., Vogiatzis, C., Walteros, J.L. (eds.) LION 2014. LNCS, vol. 8426, pp. 173—
186. Springer, Heidelberg (2014). doi:10.1007/978-3-319-09584-4_17

4. Delimitrou, C., Kozyrakis, C.: Quasar: resource-efficient and QoS-aware Cluster
Management. In: ASPLOS 2014, pp. 127-144. ACM (2014)

5. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Parallel algorithm configuration. In:
Hamadi, Y., Schoenauer, M. (eds.) LION 6. LNCS, vol. 7219, pp. 55-70. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-34413-8_5

6. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. J. Global Optim. 13(4), 455-492 (1998)

7. Karatzoglou, A., Meyer, D., Hornik, K.: Support vector machines in R. J. Stat.
Softw. 15(1), 1-28 (2006)

8. Kotthaus, H., Korb, I., Lang, M., Bischl, B., Rahnenfiihrer, J., Marwedel, P.: Run-
time and memory consumption analyses for machine learning R programs. J. Stat.
Comput. Simul. 85(1), 14-29 (2015)

9. Kotthaus, H., Korb, I., Marwedel, P.: Performance analysis for parallel R pro-
grams: towards efficient resource utilization. Technical report 01/2015, Department
of Computer Science 12, TU Dortmund University (2015). SFB876 Project A3

10. Lang, M., Kotthaus, H., Marwedel, P., Weihs, C., Rahnenfiihrer, J., Bischl, B.:
Automatic model selection for high-dimensional survival analysis. J. Stat. Comput.
Simul. 85(1), 62-76 (2015)

11. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine
learning algorithms. In: NIPS Workshop on Bayesian Optimization, Sequential
Experimental Design, and Bandits, pp. 2960-2968 (2012)

http://dx.doi.org/10.1007/978-3-319-09584-4_17
http://dx.doi.org/10.1007/978-3-642-34413-8_5

12.

13.

Faster MBO Through Resource-Aware Scheduling Strategies 273

Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: combined
selection and hyperparameter optimization of classification algorithms. In: Pro-
ceedings of ACM SIGKDD, pp. 847855 (2013)

Tillenius, M., Larsson, E., Badia, R.M., Martorell, X.: Resource-aware task schedul-
ing. ACM Trans. Embed. Comput. Syst. 14(1), 5:1-5:25 (2015)

	Faster Model-Based Optimization Through Resource-Aware Scheduling Strategies
	1 Introduction
	2 Resource-Aware Model-Based Optimization
	3 Evaluation
	4 Conclusion
	References

