Fixed-Priority Scheduling of Mixed Soft and Hard
Real-Time Tasks on Multiprocessors

Jian-Jia Chen', Wen-Hung Huang!
ITU Dortmund University, Germany

Abstract—' This paper answers several open questions of
practical concerns to schedule soft real-time (SRT) tasks, to
guarantee their bounded tardiness, under fixed-priority schedul-
ing in homogeneous multiprocessor systems. We consider both
cases with only SRT tasks and with mixed sets of SRT and
hard real-time (HRT) tasks. For the case in which the system
has only SRT tasks, we show that any fixed priority assignment
policy yields a capacity augmentation factor of 2 — ﬁ where M
is the number of processors. We prove the optimality of the
utilization-monotonic (UM) priority assignment (i.e., assigning
higher priorities to high-utilization tasks) under our sufficient test
for guaranteeing bounded tardiness. We show that UM priority
assignment can yield a utilization bound of]‘24]Jvrfl , which is shown
asymptotically the best possible bound.

For the case in which the system has mixed SRT and HRT
tasks, we present two new fixed-priority assignment algorithms
and their associated schedulability tests. One is a clustering-
based greedy priority assignment policy and another is based
on Audsley’s optimal priority assignment (OPA) approach. We
show that the utilization bounds, augmentation factors, and
speedup factors are still maintained by the hard real-time
cases. Therefore, introducing soft real-time tasks does not create
additional problems (at least in those metrics) for scheduling
if the priority assignments are properly done. As demonstrated
by extensive experiments, these two policies yield reasonably
good performance overall and much better performance than
the deadline-monotonic priority assignment.

1 Introduction

Motivation. The driving problem that motivates this work is
to correctly support a mixed set of soft and/or hard real-time
workloads under fixed-priority scheduling. Some applications
need hard real-time (HRT) guarantees. Some need only soft
real-time (SRT) guarantees, where deadlines can be occasion-
ally missed but any such misses must be provably bounded.
We consider a set of sporadic real-time tasks. Each task 7;
has its worst-case execution time C; and minimal inter-arrival
time 7;. An HRT task 7; is also associated with a relative
deadline D;. A soft real-time task does not have any specified
relative deadline, but its response time (or tardiness) should be
bounded. We assume global scheduling, in which each job of
a task can be executed in any of the available processors. The
utilization of task 7; is C;/T;.

An extensive amount of work has been focusing on
scheduling HRT tasks and analyzing the corresponding schedu-
lability (see [12]), where tasks must meet their deadlines.
More recently, an extensive set of works has been done on
supporting soft real-time task systems on a multiprocessor,
where tasks’ response times must be provably bounded. One
seminal work on SRT task scheduling is done by Devi and

'This paper is supported by DFG, as part of the Collaborative Research
Center SFB876 (http://sfb876.tu-dortmund.de/) and NSF grant CNS 1527727.

978-1-5386-1898-1/17/$31.00 © 2017 IEEE

Zheng Dong?, Cong Liu?
2The University of Texas at Dallas, USA

S i I S HE S s B S N
St/ t— t 1 Ct1T—t
S AU s EU e S E— !

(a) Priority assignment under RM (b) A feasible priority assignment

Fig. 1: A motivational example illustrating that neither RM (nor DM)
yields feasible priority assignments when both HRT and SRT tasks
are present for two processors.

Anderson [15], where it is proved that global earliest-deadline-
first (GEDF) scheduling is optimal for scheduling SRT tasks
on a multiprocessor, i.e., SRT tasks can be correctly scheduled
under GEDF on a multiprocessor without any utilization loss.
Unfortunately, there does not exist any efficient schedulability
test for SRT task systems under fixed-priority scheduling.
Under fixed-priority scheduling, each task is assigned to a
priority level, and the priority does not change over time.

Motivated by these, we answer two open questions of
practical concerns in this paper: (i) how to appropriately assign
priority levels to SRT sporadic task systems and what are
the corresponding fixed-priority schedulability tests? (ii) how
to resolve the first problem if there exists a mixed set of
HRT and SRT tasks? To answer these questions, an intuitive
idea is to apply well-known fixed-priority schemes such as
rate-monotonic (RM) or deadline-monotonic (DM) and derive
the corresponding schedulability tests. However, we find out
that current priority assignment policies may not effectively
support a mixed task set with both HRT and SRT constraints.
Consider an example task set with three tasks scheduled in
a two-processor system, where both tasks 7 and 7o have
an execution cost of 3ms and a period of Sms, and task
73 has an execution cost of 5Sms and a period of 10ms. 7
and 73 are HRT tasks while 75 is an SRT task. As seen in
Figure 1(a), under RM, the HRT task 75 misses its deadline;
while Figure 1(b) shows that there exists a feasible priority
assignment (where 7; and 73 are given higher priority) for
all tasks to meet their timing constraints (7o has a tardiness
bound of 1ms)?. This simple example motivates the needs of
designing new priority assignment polices as well as deriving
the corresponding schedulability tests. (We will provide more
general examples in Sec. 3 to further motivate the importance
of priority assignments in resolving this problem.)

Related work. Davis and Burns [12] have a very compre-
hensive survey for scheduling HRT sporadic tasks in mul-
tiprocessor platforms. The problem of globally scheduling
SRT sporadic task systems on multiprocessors with bounded
tardiness has received much attention (e.g., several recent

2The example is carefully designed such that the worst-case tardiness
under the fixed-priority scheduling is exactly like Figure 1(b) (by testing all
combinations with an exhaustive search).

dissertations focus on this topic [14], [19]). Existing results
with respect to SRT sporadic task systems are only based
on global dynamic-priority scheduling, e.g., GEDF. They only
focus on SRT task systems by ignoring the coexistence of HRT
and SRT tasks in a task set.

However, how to efficiently support an SRT sporadic task
system on a multiprocessor under fixed-priority scheduling
remains open. Fortunately, in 2015, Huang and Chen [18]
provided an efficient response-time analysis (RTA) to calculate
WCRTs of sporadic tasks scheduled under fixed-priority on a
multiprocessor platform. The analysis in [18] can be used to
verify whether the response time (hence, tardiness) is bounded.
Although their RTA [18] can be applied to determine the
schedulability of a given SRT task system, we still have to
answer the two critical questions: (i) How to identify a proper
priority assignment policy for the SRT case? (ii) For differ-
ent priority assignment policies, what are the corresponding
analytical properties?

Moreover, although there exists a set of methods that seek
to handle a mixed set of HRT and “best-effort” tasks on either
a uniprocessor or a multiprocessor (see Chapter 7 of [22] for
an overview on such methods), the problem of supporting a
mixed set of HRT tasks and SRT tasks with bounded tardiness
remains an open problem.

Contribution. We make the following contributions.

1) We investigate the performance under various priority
assignment policies for scheduling SRT sporadic task sys-
tems on a multiprocessor and identify a proper priority as-
signment policy that yields a reasonable utilization bound.
Specifically, we prove that the utilization-monotonic pri-
ority assignment (i.e., assigning higher priorities to high-
utilization tasks) is optimal to ensure bounded tardiness
among all priority assignment policies under the adopted
sufficient schedulability tests. Finally, we show that the
utilization-monotonic (UM) priority assignment can yield
a utilization bound of % for guaranteeing bounded
tardiness. We also present an example SRT task set
with a utilization bound of % + € that cannot be
correctly scheduled under any fixed-priority assignment
policy, where € can be arbitrarily small.

2) We present two new fixed-priority assignment algorithms
and their associated schedulability tests to schedule a
mixed set of HRT and SRT sporadic tasks on a multi-
processor: a clustering-based greedy priority assignment
policy and an optimal priority assignment-based (OPA-
based) priority assignment policy. As demonstrated by
extensive experiments, these two policies yield reasonably
good performance overall and much better performance
than DM. Also, as demonstrated by experiments, these
two policies are in general incomparable but may be
preferred under different circumstances where the number
of SRT tasks varies.

2 System Models

This section presents the system model used in this paper.
We will first present the task and scheduling models, and, then,
formally define the schedulability of a task set, consisting of
mixed SRT and HRT tasks. At the end of the section, we will
define the capacity augmentation factors and speedup factors to
be used for quantifying the imperfectness of the schedulability
tests and the scheduling policies.

2.1 Task and Scheduling Model

We consider n independent sporadic real-time tasks T =
{m1,72,...,7n} upon a system comprised of M identical
processors, where M > 2 is an integer. Each sporadic
task 7; can release an infinite number of jobs (also called
task instances) under the given minimum inter-arrival time
(temporal) constraint 7; (also called period). That is, if a job
of task 7; arrives at time 6,, the next instance of the task
must arrive no earlier than 6, plus the minimum inter-arrival
time, i.e., 8, + T;. For each sporadic task 7;, the worst-case
execution time (WCET) C; of task 7; is also specified. The
WCET can be obtained by using static timing analysis. We
assume that all task parameters are positive integers. Since all
the M processors are identical, the execution time of a job of
a task does not depend on the processors that execute the job.

We assume that the system is fully preemptive, and allows
global inter-processor migration. The cost of preemption and
migration has been subsumed into the worst-case execution
time of each task. At any given time, a job is executed on
at most one processor. Moreover, we do not allow intra-task
parallelism. That is, a job of task 7; cannot start its execution
until all the jobs of task 7; that arrive earlier are completed.
Therefore, at any time point, the jobs of the (at most) M-
highest priority tasks in the ready queue are executed on the
processors. Due to the disallowance of intra-task parallelism,
at some time point, we may have more than M jobs available
to be executed, but less than M jobs are executed.

2.2 Definitions and Schedulability Guarantees

Throughout this paper, we refer to the utilization of task
7, as U; = C;/T;. We further assume Y., U; < M and
max; U; < 1. We denote hp(7;) the set of the tasks with higher
priority than task 7;. For the simplicity of presentation, we
define the following terms:

e Worst-case response time R of an HRT or SRT task 7y:
An upper bound of the response times of all the jobs of
task 7, € T for any legal sequence of the jobs of T.
We call a sequence of jobs of the task system T a legal
sequence if any two consecutive jobs of task 7; € T are
separated by at least T;.

e Tardiness bound A, of an SRT task 74: the worst-case
response time of task 7, minus the period of task 7, if Ry
is larger than T3, i.e., Ay = max{0, Ry — T }.

We consider systems in which both SRT and HRT tasks
co-exist in the system. For the rest of the paper, we define
Tsort and Thqrq as the subsets of the SRT and HRT tasks
in T, respectively. The cardinality of a set X is |X]|. For
notational brevity, 15, and np,4,-q are the cardinality of T ¢
and T4, respectively.

For an HRT task 75, € T}qrq, it is also specified with a
relative deadline constraint Dj. Therefore, an HRT task 7
imposes a hard constraint: Ry < Dj. We assume that Cj, <
Dy, for an HRT task 7, € T},4,q; otherwise, the task cannot be
feasibly scheduled anyway. If the relative deadline Dy, of task
T, in Therq 1S always equal to the period T}, such a task set
Tharaq 18 called implicit-deadline HRT task set. If the relative
deadline Dy, of task 75 in Tj4-q is always no more than the
period T}, such a task set T, 1s called constrained-deadline
HRT task set. Otherwise, such a task set is called arbitrary-
deadline HRT task set.

If a task is an SRT task in T's, s, there is no specific relative
deadline constraint’, but the tardiness has to be bounded.
That is, we have to ensure that the maximum tardiness (or
equivalently the worst-case response time) of soft real-time
task 7, € Top¢ is not infinity. We will implicitly look at the
bounded response time, which implies the bounded tardiness,
of task 7, for the rest of the paper.

We consider fixed-priority multiprocessor scheduling. Each
task is assigned to a static priority level. At run-time, the jobs
of the M -highest priority tasks in the ready queue are executed
on the M processors. Note that a job of task 7; cannot start
until all the jobs of task 7; that arrive earlier are completed.
There are several simple priority assignment algorithms. For
example, the global rate-monotonic (RM) priority assignment
gives a task higher priority if its period is shorter. Moreover,
the global deadline-monotonic (DM) priority assignment gives
a task higher priority if its relative deadline is shorter. (Ties
can be arbitrarily broken in both cases.)

We define the schedulability of the task system as follows:

Definition 1 (Feasibility). Given two sets Tso¢t and Tprq of
sporadic real-time tasks, a schedule is feasible if Ry, < Dy, for
each task 1y, € Thorq and Ay < oo for each task ¢ € Tyops.

Definition 2. Given two sets Tgop: and Thorq of sporadic
real-time tasks, a schedulability test of a scheduling algorithm
is a test to verify whether its resulting schedule is always
feasible for the tasks in Tsopy and Tharq.

Our objective is to answer the open question: how to
feasibly schedule HRT and SRT tasks under fixed-priority
multiprocessor scheduling, to ensure the hard real-time guaran-
tees for Tpqrq and bounded tardiness for Ts,f;. A necessary
condition for the feasibility of any scheduling policy is

o U; <1 for every task 7 € Tyopt U Thora,
e (; < D; for every task 7; € Thyrq, and
° Z?:l U; <M.

2.3 Different Bounds and Factors

It has been shown that fixed priority scheduling is non-
optimal for scheduling hard real time systems in uniprocessor
systems [21] and multiprocessor systems [16]. Throughout this
paper, we will quantify the error of the schedulability tests and
the scheduling policies by providing their utilization bound,
resource augmentation by using speed-up factors [23] and the
capacity augmentation factors [20].

The utilization bound U* of a scheduling algorithm pro-
vides a simple schedulability test. That is, if >, U; < MU*,
then the task set can be feasibly scheduled by the schedul-
ing algorithm. For implicit-deadline HRT task systems on
uniprocessor (i.e., M = 1), Liu and Layland [21] provide a
utilization upper bound In2 ~ 0.693 under rate-monotonic
(RM) scheduling. Multiprocessor global RM for HRT tasks
cannot admit a utilization bound better than U* = ﬁ + ¢, for
arbitrarily small € > 0, due to “Dhall’s effect” [16]. The best
utilization bound so far for global fixed-priority scheduling is
at most U* = 38% [1]. However, the utilization bound to
guarantee bounded tardiness for SRT tasks under global fixed-
priority multiprocessor scheduling remains open.

If we constrain the total utilization) G < 1

+ and
the maximum utilization max,, U; <

MT; — b

7. it is possible to

provide the schedulability guarantee of global RM by setting
bto3— ﬁ [2], [4], [8]. Such a factor b has been recently
named as a capacity augmentation factor [20]. A capacity
augmentation factor provides a balanced factor between the
maximum utilization among the given tasks and the total
utilization of the tasks.

An algorithm A is with speed-up factor b (e.g., [23]):
If there exists a feasible schedule for the task system, it is
schedulable by algorithm A by speeding up (each processor)
to b times as fast as in the original platform (speed). A
sufficient schedulability test for scheduling algorithm A is
with speed-up factor b: If the task system cannot pass the
sufficient schedulability test, the task set is not schedulable by
any scheduling algorithm if (each processor) is slowed down
to % times of the original platform speed.

In the above three definitions, a utilization bound U*
implies a capacity augmentation factor Ui and a capacity
augmentation factor b implies a speedup factor b as well.
Therefore, it is obvious that the utilization bound is weaker
than the capacity augmentation factor, and the capacity aug-
mentation factor is weaker than the speed-up factor.

3 Motivational Examples

This section presents the motivational examples to ex-
plain why proper priority assignments are important. With
an improper priority assignment, like global rate-monotonic
scheduling, the utilization bound can be very low. One example
is as follows:

Example 1. We are given n = M + 1 tasks on M > 2
processors: M tasks are light with execution time € and period
1 and one task is heavy with execution time 1+ 0 and period
1+ 0, where 0 < § < € < 1.* If the heavy task is the lowest
priority task, its tardiness goes to oo in the worst cases, as
illustrated in Figure 2.

This shows that global rate-monotonic scheduling is not a
very good priority assignment strategy. However, this does not
rule out the possibility to use global fixed-priority scheduling.
The above example was indeed the example provided by Dhall
and Liu [16] to demonstrate that global EDF (also for global
RM) scheduling has very low utilization bound for HRT tasks.
Here, such an argument still holds for soft real-time tasks
under fixed-priority scheduling. That is, an improper priority
assignment may result in a low utilization bound. (Note that
the above example does not have unbounded tardiness under
global EDF.)

In many systems, HRT tasks are placed greedily with
higher priority levels than any SRT tasks. However, the fol-
lowing example shows that such a design is also problematic.

Example 2. Consider the same example as used in Example 1.
The M light tasks are HRT tasks and the heavy task is an SRT
task. Therefore, assigning the SRT task as the lowest priority
task leads to unbounded tardiness for the SRT task, as also
explained in Example 1.

In the above two examples, if the heavy task is not the
lowest-priority task, we can use Theorem 1 (introduced later)
to verify the feasibility of the resulting schedules.

3This can be also relaxed to allow different settings of the relative deadlines,
but this does not change our solutions and conclusions in this paper.

4We use fractional numbers here for being aligned with the well-known
Dhall’s effect. The same effect can be created by using only integer parameters.

D M light tasks

, heavy task ,

|

i
v
€

1—¢

] i ‘ i1
Fig. 2: The unbounded tardiness of the heavy real-time task assigned

to the lowest priority. By releasing all the jobs periodically, at time
£, the workload left from the first £ jobs of the heavy task is € - £.

To get rid of the Dhall’s effect (in the case of purely
HRT task systems) for the troublesome case in Example 1,
Andersson et al. [1], [2] propose to use RM-US[¢] and SM-
US[¢] algorithms, which give the highest priority levels to the
tasks 7; with U; > <. The priority assignment of the remaining
tasks with U; < ¢ are then based on rate-monotonic scheduling
for RM-US[<] and slack-monotonic scheduling for SM-US[¢].
For RM-US, ¢ is 57— ~ 0.33 when M is sufficiently large,
and for SM-US, ¢ is ¢ 2 = ~ 0.38. Andersson et al. [1], [2]
show that the utilization bound U* is ¢ in these two algorithms.

Using RM-US or SM-US can improve the utilization bound
to 33% and 38% for the input instances in Examples 1 and 2.
However, that also implies that the worst-case response time
of the SRT tasks are bounded by its period, which may be
not necessary. Moreover, these approaches cannot be applied
for constrained-deadline and arbitrary-deadline task systems in
T1arq- Our solutions are more general and applicable for task
systems in which certain tasks only need bounded tardiness
and the tasks in Tpq,.q can be arbitrary-deadline tasks.

4 Response-Time Analysis

This section summarizes the state of the art in the worst-
case response time analysis for global fixed-priority schedul-
ing. The following two theorems are mainly from Huang and
Chen [18]. For the simplicity of presentation, we will mainly
use the polynomial-time worst-case response time analysis in
Theorem 1, but most of the arguments in this paper can still
hold with the schedulability test in Theorem 2.

Theorem 1 (revised Theorem 2 in [18]). Suppose that the
priority assignment is given. The worst-case response time Ry
of task Ty in the global fixed-priority scheduling is at most

Cr if |hp(mi)| < M,
Rp <RI else if MU+, oy Ui < M, (1)
o0 otherwise,

MCy+Z5+30 cnp(ry,) Ci(1-Ui)
M_Znehp(fk) Ui

the sum of the (M — 1) largest R; - U;’s among the tasks in

hp(Tk).S

A simple corollary of Theorem 1 to test whether an SRT
task has bounded tardiness is as follows:

where RL = and Zs. denotes

Corollary 1. Task 3, has bounded tardiness (response time) if
(]) ‘h’p(Tk:” < M’ or (2) MUk: +Zﬂ'€hp(‘rk) U; < M and all
the higher-priority tasks in hp(ty) are with bounded response
times.

5The definition of R}; is slightly different here, since we need to use the
(M — 1) largest R; - U; instead of the (M — 1) largest D; - U; in [18].

Therefore, for a given priority assignment, we can use
Theorem 1 and Corollary 1 to test whether an HRT task 7%
meets its deadline and an SRT task 73 has bounded tardiness
or not, respectively.

Let Q(t) be the maximum interference from the higher
priority tasks in hp(7;) with an interval length ¢. How to
calculate Q) (t) can be found in [18].° Here, we only give the
final results. For any interval length ¢, the workload function
Wi (t) of a sporadic task 7; bounds the maximum cumulative
execution requirement by jobs of 7; that are released and may
execute within any interval of length .

t

For a given positive integer h and task 7, let Ry j be the
smallest ¢ satisfying the following inequality:

Qu(t) <m x (t — hCy). 3)

The concept of the analysis in [18] is to classify the higher-
priority tasks with two different functions I} (¢) and I?(t) for
an interval length ¢, in which

I} (t) =min (Wi (t),maz(0,t — hCy + 1)) “4)

I2(t) =min (Wi(R; +t), maz(0,t — hCyx +1)) . (5)
It is proved in [18] that we only need to consider at most

M —1 tasks with I2(¢), for any given ¢ > 0. Let IPTFF () =
IZ(t) — I} (t). Therefore, by [18],

W)= > 1N+ >

Ti€hp(k) the (M — 1) largest
7i € hp(k)

Distinct from the uniprocessor response time analysis,
Q(t) is a function of the worst-case response time R; of a
higher-priority task 7; € hp(k). The worst-case response time
Ry, of task 7, with |hp(7g)| > M is at most:

Ry < R}, = maxhe{lw,H}{Rk’h —(h=1Tg}, @
where H = min{h > 1|% + hCi < hTy}.” The
following theorem is the schedulability test from [18].

Theorem 2 (revised Theorem 1 in [18]). Suppose that the
priority assignment is given. The worst-case response time Ry
of task Ty, in the global fixed-priority scheduling is at most

Cr if |hp(Ti)| < M,
Ry < Ry else if MUy + Znehp(m) Ui <M,)]
o0 otherwise,

where R} is derived from Eq. (7).

5To formally summarize the equations precisely, it would take roughly two
pages that serve only little information related to our methods. We decide to
only shortly present the equations to derive €2 (¢) here for the simplicity of
the presentation flow.

"The least common multiple of the periods of the tasks in hp(1y) and Ty
can be very large, and H can become infinite. More discussions can be found
in Sections 4.2 and 4.3 in [18].

5 Soft Real-Time Guarantees

Throughout this section, we consider that the system only
has soft real-time tasks, i.e., Tpqrq is empty. One essential
question is to define the priority levels of the tasks. Although
Example 1 provides some bad news, if we further constrain
ourselves to disallow high-utilization tasks, in fact, we can
obtain a capacity augmentation factor (asymptotically) 2 — T14
for any arbitrary fixed-priority assignment for soft real-time
tardiness guarantees.

Theorem 3. Any arbitrary priority assignment has a capacity
augmentation factor 2 — ﬁ + € for ensuring the bounded
tardiness of soft real-time tasks in Tgops, in which € is an
extremely small positive number.

Proof: By the argument, we suppose that Y ., Af—T <
1 1 _ ¢
m and Uk < m for k = 1, 2, s, n. Therefore, for
a task 7, we have
>, U

MU.+ Y Ui=(M- 1)U+
Ti€hp(TK)U{TK }

Ti €hp(Tk)
M—-1 M
<71 + 5 1 = M.
2= 2w
As a result, by Theorem 1, we know that task 7 has bounded
tardiness for k = 1,2,...,n. [|

The above theorem shows that capacity augmentation (as
well as speedup) factors are not meaningful for quantifying
the sub-optimality of global fixed-priority scheduling for SRT
tasks. Instead, here, we will analyze the utilization bounds.

5.1 Utilization Monotonic (UM)

Corollary 1 provides a sufficient condition for ensuring the
bounded tardiness. We know that the M highest priority tasks
will automatically have bounded delay equal to the worst-case
execution time due to Corollary 1 under the assumption that
U; <1 for every task 7; in Ty, ¢;. Moreover, it can be observed
that putting a high-utilization task 7, to be a lower-priority
task implies that the condition MU + U; < M in
Corollary 1 is more difficult to achieve.

The above discussions actually lead to the following simple
priority assignment: utilization monotonic (UM) by assigning
the higher-utilization task as a higher-priority task, in which
ties are broken arbitrarily. (One can also break the ties by using
the rate-monotonic priority assignment if two tasks are with
the same utilization.) The utilization monotonic assignment
actually solves the issues in Example 1.

For the rest of this section, for notational brevity, we index
the n = ngoy¢ tasks in Typp¢ from 1 to m, in which Uy > Uy >
-+ > U,. With the above algorithm, we have the following
theorems:

Ti€hp(Tk)

Theorem 4. Utilization monotonic priority assignment is
optimal to ensure bounded tardiness by using the SRT schedu-
lability test in Corollary 1.

Proof: This can be proved by swapping. Suppose that
there are two tasks, (1) one is assigned to the priority level k
and one to the priority level k41, and (2) the task in priority
level k is with smaller utilization. For notational brevity, let
these two tasks be indexed as 7 and 7,1. That is, Uy, < U1
and both tasks 74 and 71 are with bounded tardiness by using
the schedulability test in Corollary 1. We can easily prove that

swapping their priority levels does not affect the schedulability.
It is clear that swapping the priority level of 7, and 7441 has
no impact on the tasks whose priority levels are higher than
Tk

If K < M, the above swapping remains a feasible priority
assignment trivially. We focus on the other case with £ > M.
Task 7j41 is still with bounded tardiness after the swapping
of the priority levels, i.e., Agy1 is bounded and Ry is
bounded. Moreover, since the schedulability test in Corollary 1
is adopted, the bounded tardiness assumption before swapping
implies that MUk41+3 ., cpp(r,.) Ui < M and R; # oo for
every task 7; € hp(7,11). By the assumption Uy4q > Uy, we
have MU, + ZTiehp(Tk+1) U; < M, which implies that the
worst-case response time of task 7, after swapping is bounded
since the higher-priority tasks are with bounded tardiness.

According to the condition in Corollary 1, this swapping
has no impact regarding to the bounded tardiness of any other
lower-priority tasks. Therefore, we can keep swapping two
consecutive priority levels. This means that the utilization-
monotonic priority assignment is optimal when we use the
SRT schedulability test in Corollary 1.]

Theorem 5. All the tasks in the task set Ts,p; are with
bounded tardiness guarantees (soft real-time schedulable) un-
der utilization-monotonic (UM) fixed-priority multiprocessor
scheduling if U; <1 for every task 7; € Tsor and

Z Ui<M2+1. 9)

Ti€Tsoft

Proof: We index the n = ng,y tasks in Ty, p; from 1 to
n, in which Uy > Uy > --- > U, According to Corollary 1,
task 75 has bounded response time if £k < M. We focus on
the case when |Ty,f:| > k > M + 1. Therefore, we have

k—1 k
MU+ Ui=(M-1)Uc+ Y Ui
=1 =1

k k k
U M—1
g(M—l)E:T1+§ Ui<< +1)§ U
=1

M+1 p
2M
< U; < M,
<(g3) T us

Ti€Tsoft

where the first inequality comes from ordering of the algorithm
with Uy > Uy > --- > U, the second inequality comes from
the case that k > M + 1, the third inequality comes from the
fact that k£ < |Ts, | and the last inequality is due to Eq. (9).
By Corollary 1, we reach the conclusion.]

Note that the above theorems only provide the schedula-
bility test for SRT tasks under a global multiprocessor fixed-
priority scheduling. Once the bounded tardiness is ensured,
if the worst-case tardiness is required, we can either use
Theorem 1 or Theorem 2 to calculate the worst-case response
time (or worst-case tardiness) accordingly. Moreover, the op-
timality of UM in Theorem 4 is only based on the adopted
schedulability test in Corollary 1. To the best of our knowledge,
the test in Corollary 1 is the only test known for bounded
tardiness in fixed-priority scheduling.

5.2 Tightness

We conclude this section by showing that the utilization
bound in Theorem 5 is asymptotically tight.

Theorem 6. There exists an input instance with n = M + 1
tasks in T sy p1, in which ZneTgnﬂ U; = %—l—e, and the task
set does not admit any fixed-priority assignment with bounded

tardiness, for M > 2 and arbitrarily small e.

Proof: We prove this theorem by providing a concrete
example. For notational brevity, we use fractional parameters
instead of integer parameters. Each of the M + 1 tasks has the
same period 1, execution time l +

M
instance has > .p . U; = o H + e. For n0tat10nal brevity,
let o be ﬁ Since all the M + 1 tasks are identical, there

is only one fixed-priority assignment.

Let all the M +1 tasks release their first jobs at time 0 and
the subsequent jobs periodically. At time ¢, the (£ 4 1)-th job
of the lowest-priority task arrives. According to global fixed-
priority scheduling, the resuiual workload (or backlog) of the
lowest-priority task at time £ is o) l—(1—3—0)-L = 20L.
(That is, in the time interval (0 l%] the M higher priority tasks
will use (1 o) -£ amount of time and the lowest priority task
only runs for (1 — % — o) - £ amount of time.)

Therefore, the (£+ 1)-th job of the lowest-priority task has
to wait until the residual workload has been finished. As a
result, the response time of the (£ 4 1)-th job of the lowest-
priority task is at least %—FO’ + 20/, which is unbounded when
¢ is sufficiently large.? [

6 Mixture of HRT and SRT Tasks

In this section, we consider that T, s; and T},.q are not
empty. We will present how to assign the priority levels of
each task in these two sets. We will present how to assign the
priority levels as follows:

e Section 6.1 will design a simple greedy strategy to assign
the priority levels with three clusters. We will assume that
the HRT tasks in T},,.q are implicit-deadline tasks.

e Section 6.2 will explain how to extend the above greedy
strategy to handle arbitrary-deadline and constrained-
deadline task systems in Tpqq.

e Section 6.3 will explain how to adopt Audsley’s priority
assignment strategy [3] to potentially improve the greedy
approach. However, to make the schedulability test com-
patible with Audsley’s priority assignment strategy, some
pessimism is introduced.

6.1 Greedy Assignment with Three Clusters

In this subsection, we will consider a simpler case: the
task set Tpqrq 1S an implicit-deadline task set. We propose to
use the following simple priority assignment motivated by the
above discussions:

o Tjgn: If the utilization U; of task 7; € Tsopt U Tharq is
larger than or equal to 0.5, we greedily put this task to
Thign. These tasks in T4, are prioritized by using the
utilization-monotonic priority assignment.

e T, ;q41c: This task set consists of the residual tasks of the
HRT tasks that are not in T, gp, i.e., Triiddie = Thara \
Thigh. These tasks in T',,;44; are prioritized by using
any HRT task priority ordering algorithm, that has been
proposed in the literature, e.g., RM-US [2], [5], [8], OPA
[11], SM-US [1].

8We do not calculate the actual response time here, since such a value is
not necessary to explain the consequence of unbounded tardiness.

e T,,.,: This task set consists of the residual tasks of
the SRT tasks that are not in Tpgpn, ie., T =
Tsost \ Thigh- These tasks in Ty, are prioritized by
the utilization-monotonic priority assignment.

The tasks in TY,;4, are assigned to higher priority levels than
the tasks in T,,;44ie, and the tasks in T,,;44;e are assigned to
higher priority levels than T,,,.

The above priority assignment is referred to as the greedy
three-cluster priority assignment for the rest of the paper.
We can now examine the feasibility of the resulting fixed-
priority multiprocessor schedules. We provide the following
three lemmas individually for verifying the feasibility of the
tasks in each of the three priority clusters.

Lemma 1. If a task 7, in Th,gp cannot be feasibly scheduled
(to meet the hard deadline if Ty, is from Tparq or to have
bounded tardiness if T, is from Tyop) in the greedy three-

cluster priority assignment, then |Thign| > M + 1, ie,
> U; > MEL
Ti€Thign ~ ¥ =

Proof: This is by the definition of the algorithm. |

Lemma 2. Suppose that all the tasks in Ty;gn are feasibly
scheduled. Moreover, suppose that the priority assignment
algorithm for assigning the priority levels of Tiqdie has
a utilization bound ¢, in which ¢ < 0.5. If a task T
in Tiddie cannot be feasibly scheduled to meet the hard
deadline in the greedy three-cluster priority assignment, then

Z‘nﬁ EThighUT middie Ui>¢- M.

Proof: We only sketch the proof since the concept is very
similar to the original proofs of RM-US[<] [2], [5], [8]. The
impact of the soft real-time tasks in T};45, can be imagined as
if they are promoted to ensure the hard real-time deadline set
to T; > C; for each task 7; € T'p,;45. Due to the tasks in Tp;gp,
we can imagine that there are only M — |Tp;gn| processors
available for the tasks in Tmiddle. By the clustering algorithm,
we have EneTMgh Ui > 5 |T;,,igh\. By the utilization bound
of the priority assignment algorithm and the failure of task
Th, We have Yo U > ¢ (M — |Thgn|). Since
¢ < 05 and {7} € Tiigae # 0, we conclude that

Ti €T highUTmiddie Ui > %|Thigh|+<.(M_ |Thigh|) = g.]wl.
Lemma 3. Suppose that all the tasks in Thign U Tiddie
are feasibly scheduled. If a task T in T, cannot be
feasibly scheduled to have bounded tardiness in the greedy
three-cluster priority assignment (by using the response time

analysis in Theorem 1 or Theorem 2 or Corollary 1), then
M+1
Z"’iETSOftUThwd Ui 2 5=

Proof: By the assumption that 74 is in Ty,,, we know
Ui < 0.5. By Corollary 1, task 7, has unbounded tardi-
ness only when MU + Znehp(rk)Ui > M. Therefore,

) . M+1
ZT’i ETsoftUTha'l‘d U,L Z Uk + ZT{,Gh[)(T}g) U Z 2 - u
Now, we can conclude the theorem.

Theorem 7. If

Y U<

Ti €T high

M+1 and Z

Ti €T highUT middie
M+1
and Z U; < 5

Ti€Ts0tUThard

Ui§§’Ma

then the greedy three-cluster priority assignment provides a
feasible schedule for Tyarq and Tsop, where ¢ < 0.5 is
defined according to the scheduling policy (e.g., RM-US[s]
or SM-US[<]) in Tiddie-

Proof: Due to Lemmas 1, 3, and 2 by contrapositive. B

Note that the condition in Theorem 7 can be further
generalized by testing the schedulability by using Theorems 1
and 2 and Corollary 1. We can conclude the discussion of this
algorithm section by the following corollary.

Corollary 2. The speedup factor and the capacity augmen-
tation factor of the greedy three-cluster priority assignment
algorithm are both 1, which is defined according to the
scheduling policy in T, iqdie, when ¢ < 0.5.

6.2 Constrained and Arbitrary Deadlines

This subsection further presents a generalization of the pri-
ority assignment in Section 6.1. For constrained- and arbitrary-
deadline tasks in T,,;qq1, @ simple strategy is to use global
deadline monotonic (DM) priority assignment and use Theo-
rems | or 2 to analyze the feasibility. Note that, there have
been several results in the literature to verify the feasibility of
deadline-monotonic scheduling, including [5], [6], [10], [18]
for arbitrary-deadline cases, and [7], [8], [10], [17], [18] for
constrained-deadline cases. All of them can be adopted based
on a similar argument in the proof of Lemma 2.

Since we assume that U; < 1 and C; < D; for every
task 7; in T, the tasks in T};4, can meet their deadlines if
|Thigh‘ < M. If |Thigh‘ > M, we know that ZneT U, >
(M +1)/2. Therefore, the speedup factor of the greedy three-
cluster priority assignment algorithm is defined by the speedup
factor (if > 2) of the corresponding scheduling policies and
schedulability tests for the tasks in T,;q41e. As a result, we
can have a speedup factor of 3 — ﬁ for constrained-deadline
task systems inherited from [7], [10] or a speedup factor of
3.73 for arbitrary-deadline task systems inherited from [6].

6.3 Assignment from Lowest Priority

In our greedy priority assignment in Section 6.1, soft
real-time tasks in T),, may have unbounded tardiness due
to unfavorably high utilizations from tasks in T,;qq1. This
may be tackled by promoting the priorities of same soft real-
time tasks in T},,, to higher levels. Unfortunately, permuting
all the priority assignments for checking the feasibility is
computationally intractable. Instead, we here consider Optimal
Priority Assignment (OPA) proposed by Audsley [3]. The
OPA algorithm assigns each priority level to one of the
unassigned tasks that has no deadline miss along with the
other unassigned tasks, assumed to have higher priorities. The
iterative priority assignmen terminates as soon as either no
unassigned task can be assigned at the current priority level or
all priority levels are assigned. OPA was designed originally
for uniprocessor fixed-priority scheduling for hard real-time
tasks with arbitrary deadlines. It has been extended to handle
also global multiprocessor fixed-priority scheduling by Davis
and Burns [11] for constrained-deadline hard real-time tasks.

As pointed out by Davis and Burns [11], if a schedulability
test is compatible with the OPA algorithm, we can obtain an
optimal priority assignment (with respect to the schedulability
test). Nevertheless, for being OPA-compatible, three conditions
must be complied. These conditions are as follows [11]:

e Condition 1. The schedulability of a task 73 may, accord-
ing to schedulability test S, depend on any independent
properties of tasks with priorities higher than 7y, but not
on any properties of those tasks that relate to their relative
priority ordering.

e Condition 2. The schedulability of a task 7, may, accord-
ing to schedulability test S, depend on any independent
properties of tasks with priorities lower than 7, but not
on any properties of those tasks that relate to their relative
priority ordering.

e Condition 3. When the priorities of any two tasks of
adjacent priority are swapped, the task being assigned the
higher priority cannot become unschedulable according to
schedulability test S, if it was previously schedulable at
the lower priority.

The tests in Theorems 1 and 2 are not compatible with
OPA, since they depend on the response time of the higher-
priority tasks and the response time of a higher priority task
depends on the priority orderings. Therefore, Condition 1 is
violated. Suppose that we are now about to assign the priority
level ¢ and there are g tasks left in T's, ¢y U Thqrq. To verify
whether task 7, € Tsop: U Tharg can be feasibly assigned in
the priority level g, we need to check two cases:

e If task 75 is an SRT task, we need to check whether
(M =1)Uk + 3, e, ;10T para Ui < M holds.

e If task 75, is an HRT task, we need to check whether
R} < Dj.

In fact, the first test for SRT task 73, is OPA-compatible, but
the second test for HRT task 7j is not. For higher-priority
hard real-time tasks, we can greedily assume that their worst-
case response time will be met and the examination of the
assumption will be taken place in the upcoming iterations.
However, for a higher-priority soft real-time task, its worst-
case response time (or tardiness) may be very long, which
disables the possibility to directly use Theorem 1 for verifying
whether an HRT task 75 can be placed in the priority level g
if Tsoy¢ 1s not empty.

We can observe one trick to make the test in Theorem 1
OPA-compatible by investigating Eq. (5) to quantify the inter-
ference of a higher-priority task 7; € hp(7y). If 7; is a soft
real-time task, the maximum interference resulting from I?(t)
is at most t — h - C + 1, regardless of its worst-case response
time. Therefore, if there are s SRT tasks in hp(7x), then the
worst-case response time of task 7, can be considered as if
there is only interference from the HRT tasks in hp(7;) and
M — s processors. As a result, we have the following corollary
of Theorem 1 to safely handle such situations.

Corollary 3. Suppose that there are s SRT tasks in hp(7y)
with s < M. Let M' be M — s. The worst-case response time
Ry, of task T, is at most
Cr if [hp(m)| < M,
R < R}i else if M'Uy, + Zne(
00 otherwise,

)UZ <M/,

hp(T)NThard

(10)
where

M'Cy + Zs + 3 e (hp(ri) 1T ara) Ci(1 = Ui)
M=

R; =
ZT«; €(hp(tk)NThard) Ui

and Zs, denotes the sum of the (M' — 1) largest D; - U;’s
among the tasks in hp(t,) N Thara.

Algorithm 1 OPA-based Priority Assignment

Input: T,.,¢¢, Thard, M processors;
Output: priority assignment for the tasks in T ¢¢ and Tharqas
q < |Tsoft| + |Thard|;
1: while ¢ > 1 do

2: if | Tsof¢| > O then
3: if 3r, in |Tsop| such that (M — LU, +
€T 30 £+UT hard U; < M then
4 assign such a 7, to priority level g (ties are broken arbitrarily);
5 TsofteTsoft\{Tk};q(_q_l;
6: continue;
7: end if
8: end if
9: if | Thqara| > 0 then
10: if 375 in |Thaerq| such that 74, can be feasibly scheduled by
Corollary 3 then
11: assign such a 7, to priority level g (ties are broken arbitrarily);
12: Thard < Thard \ {Tk}; g—q—1
13: continue;
14: end if
15: end if
16: return “no feasible priority assignment is found”;

17: end while
18: return “the priority assignment as a feasible one”;

Proof: This corollary can be proved formally by following
the same analysis flow as in [18]. The reason why it holds
is due to the over-approximation here by greedily setting the
worst-case response time R; of a higher-priority SRT task
7; € hp(r1) to any arbitrarily large number to enforce I7(t)
to t — h - Ck + 1. In the response time analysis in Eq. (3),
this logically implies that one processor is removed from the
available processors as if this processor is always occupied by
this SRT task 7;. [|

We now prove that testing an HRT task 7, by using
Corollary 3 is OPA-compatible since all the three conditions
listed above can be easily verified.

Lemma 4. The sufficient schedulability test by Corollary 3 is
OPA-compatible.

Proof: Eq. (10) for the schedulability of task 75, depends
only on the set of higher-priority tasks (both hard and soft real-
time tasks) but not on their relative priority ordering. Hence,
Condition 1 holds. Similarly, they are independent on the set
of lower-priority tasks, and hence Condition 2 holds.

Inspections of Eq. (10) show that the more the number of
available processors, the less the response time by Eq. (10). As
a result, the set of soft real-time high-priority tasks assumed to
fully occupy one processor for each task according to Eq. (10)
adversely affects the upper-bound response time by Eq. (10)
of the task being analyzed. Similarly, the set of hard real-
time higher-priority tasks adversely affects the upper-bound
response time by Eq. (10) of the task being analyzed: the more
the hard real-time higher-priority tasks, the larger the response
time by Eq. (10).

Now, consider two tasks 7, and 7 initially at priorities k
and k + 1, respectively. We separately consider two cases as
follows:

e If task 7 is a soft real-time task and the condition that
.(M - 1)U +_ZT11€T_so_ftUThard' U; < M in Algorithm 1
is satisfied, this condition is still satisfied when task 7
shifted one priority level up to priority k, since there will
be a decrease in the utilizations from higher-priority tasks.

e If task 7, is a hard real-time task and schedulable ac-
cording to Corollary 3, it is still schedulable when it is
shifted one priority level up to priority level k, since the
only change of higher-priority task demand is the removal
of task 7, (soft or hard real-time tasks) from the tasks that
are assigned higher priority than task 73 .

Hence, in either of the two cases, Condition 3 holds. [|

Similarly, it is not difficult to prove that the overall test
(for testing an SRT task 75, or an HRT task 7;) is OPA-
compatible. Therefore, we can adopt OPA for the priority
assignment. The algorithm is listed in Algorithm 1. According
to the above analysis, we also notice that the schedulability
test for HRT tasks is more pessimistic, as we have to remove
one processor greedily when there is one higher-priority SRT
tasks. However, the test for soft real-time tasks is only to verify
whether (M — 1)Uy, + ZTiETsuftUThard U; < M, with less
pessimism. Therefore, if we can either assign priority level g
to an HRT task or an SRT task (they are both schedulable at
this priority level), it is in general better to assign this priority
level to an SRT task. As a result, in Algorithm 1, we adopt
such a policy to start from soft real-time tasks before HRT
tasks when considering the priority assignment.

The priority assignment based on OPA can be good if the
number of soft real-time tasks is not too large. The reason
is due to the over-approximation in Corollary 3 by greedily
reducing the availability of s processors when there are s
higher-priority SRT tasks. However, such a treatment may be
pessimistic as the worst-case response time of a soft real-time
task may still be short if it is a higher-priority task.

Theorem 8. If Algorithm I derives a priority assignment, this
assignment provides a feasible schedule for Thqrq and Tg, 4.

Proof: This comes from the above discussions. [|

7 Experiments

In this section, we conduct experiments using synthesized
task sets with a range of parameters that are wide enough to
cover SRT workloads in practice (e.g., the periods for SRT
video decoding applications typically range from 17ms (i.e.,
4K video with 60 FPS) to 67ms (e.g., AVI video with 15
FPS)). The metric to compare the results is to measure the
acceptance ratio of the above tests with respect to a given goal
of task set utilization level Uy, /M. We generate 100 task sets
for each utilization level (i.e., total utilization of the generated
task set divided by M), from 0.01 to 0.99, in steps of 0.01.
The acceptance ratio of a level is the number of task sets that
are schedulable divided by the number of task sets, i.e., 100.

7.1 Simulation Environment

We first generated a set of sporadic tasks. The cardinality
of the task set was 10 times the number of processors. The
UUniFast-Discard method [9] was adopted to generate a set
of utilization values with the given goal. We here used the ap-
proach suggested by Davis and Burns [13] to generate the task
periods according to the exponential distribution. The order of
magnitude p to control the period values between largest and
smallest periods is parameterized in evaluations. (For example,
Ims—10ms for p = 1, 1ms—100ms for p = 2). The execution
time was set accordingly, i.e., C; = T;U;. The value of %
to control the ratio between the number of hard real-time tasks
and the number of soft real-time tasks is also parameterized in

: T
evaluations. (For example, % =2, 1,% and %.) We also

©-OPA-2
-©-OPA-1 0.9
+Greedy-2 o8
4-Greedy-1 &U 0.7t
“DM-2

4-OPA-2
0.9r -©-OPA-1 0.9
o8 +Greedy-2| Qo8
g 0.7 A Greedy-1 é:“ 0.7h
0.6} +Dm-2 0.6} 0.6}
3o =DM-1 3o =DM-1 3o
cos 1 o5t < 0.5
Fo4 | Foa o4 oA
[0] [0] [0] -
g 0.3 1 8 0.3f 8 0.3-4Greedy-2
< 0.2} 1 < 0.2F < 0.2)4Greedy-1
1 L %DM-2
0 01 02 03 04 05 AR D 01 02 03 04 0506 07 08 001 0 01 02 03 04 05 06 07 08 09
UM b
|Thard\ —9 \Thardl 1 |Thard\ 1
@ Tsorel (b) Tsoptl 2 © Tsofel 9
Fig. 3: Acceptance ratios on 8 processors, where :Dpl € [0.8,1] for 7; € Tharq and p = 2.

©-OPA-2 ©-OPA-2 ©-OPA-2
0.9 o OPA-1 0.9 OPA-1 0.9r ©OPA-1
Los8f + Greedy-2 o8 +Greedy-2 Los8 +Greedy-2
E 0.7+ 4 Greedy-1 g 0.7t 4 Greedy-1 C(E 0.7t 4 Greedy-1
| %+ DM-2 06 +DM-2 06 *DM-2
e = DM-1 8o = DM-1 e = DM-1
< 0.5 1 < 0.5 < 0.5
504" 1 5 0.4f 5 0.4f
Boat 1 Boat 8Boat
Loz 1 Loz Loz
0.1} 1 0.1t 0.1
O 01 02 0304 0506 07 08 00 1 % 01 02 03 040506 07 08 08" % 01 02 03 04°05 0507 08 0T T
b b
IThmd\ 1Tharal _ |Th al _
a =2 b) taherd — 1 ¢) iperdl — 1
() soft‘ () ‘Tsoftl () soft‘ 9

Fig. 4: Acceptance ratios on 8 processors, where T?'
K

report the evaluation results of the proposed tests with pure
soft real time task systems.

7.2 Results for Mixed HRT and SRT Systems

We have proposed two priority assignment algorithms:
greedy three-cluster priority assignment (Greedy) in Sec-
tions 6.1 and 6.2 and OPA-compatible priority assignment
(OPA) in Section 6.3. The tests evaluated are shown as follows:

e DM-1: The priority levels are assigned according to
deadline-monotonic (DM). Since a soft real-time task
does not have any specified relative deadline in our prob-
lem definition, we artificially use its period while using
DM priority assignment. However, the schedulability test
applies Theorem 1, from the highest-priority task to the
lowest-priority task, to calculate the corresponding worst-
case response time and to verify whether the worst-case
response time and tardiness can satisfy the requirement.

e DM-2: The same as DM-1, and the response time calcu-
lation is according to Theorem 2.

e Greedy-1: The priority assignment is the three-cluster
priority assignment in Section 6.2 (based on DM in
T, nidq1e) and the response time calculation is according
to Theorem 1.

e Greedy-2: The same as Greedy-1 and the response time
calculation is according to Theorem 2.

o OPA-1: The priority assignment is OPA in Section 6.3
and the response time calculation of a hard real-time
task is according to the extension, i.e., Corollary 3, of
Theorem 1.

e OPA-2: The priority assignment is OPA in Section 6.3
and the response time calculation of a hard real-time task

€ [0.6,0.8] for 7; € Tjqrq and p = 1.

is according to the extension of Theorem 2.

The obtained schedulability results are shown in Figure 3
(the organization of which is explained in the caption). Task
relative deadlines for HRT tasks were uniformly drawn from
the interval [0.8T;, T;]. We first notice that the response time
analysis with OPA and Greedy can admit a larger number of
task sets than the response time analysis with DM in all cases.
For example, as seen in Figure 3a, when % = 2 and
M = 8, OPA and Greedy can achieve 100% schedulablllty
when UE equals 0.25 and 0.3 respectively, while DM fail to

do so when zv? merely exceeds 0.1 respectively. Note that

when % is smaller, the improvement margin by OPA

and Greesciy over DM increases. This is because OPA and
Greedy prioritize the SRT tasks with reasonable strategies,
but for DM, the priority of task is assigned only according to
deadline-monotonic scheduling. Another observation is Greedy
outperforms OPA when |‘ T’“"dl‘ becomes small enough. This is
because when more SRT taslés are involved in the task system,
the performance of OPA suffers from its pessimistic strategy
when there are higher-priority SRT tasks.

To show the impact of the relative deadline on the ac-
ceptance ratio for all tests, we also performed simulations
with a smaller % and the results are shown in Figure 4.
Task relative deadlines were uniformly drawn from the interval
[0.6T;,0.8T;]. As seen in Figure 4, OPA and Greedy still
achieve better performance than DM. Another observation
is that for all scheduling algorithms, the acceptance ratio
decreases compared to the corresponding results in Figure 3.
This is because more HRT tasks miss their deadlines when
their relative deadlines decrease.

o SEegar
“vw s o

o

02 03 04 “

u/m

b)yp=2

.. h & g

um |l
-4-sM-Us|]
-©-RM-US|
—k-SM
-£FRM

P

©p=3

Fig. 5: Acceptance ratios with only SRT tasks on 8 processors.

7.3 Results for Pure SRT Systems

In addition to the mixed task systems’ schedulability test,
the pure soft real-time task systems’ behaviour is also im-
portant. We here report the experimental results for SRT task
systems. The tests evaluated are shown as follows:

o UM: The priority levels of the tasks are assigned accord-
ing to utilization-monotonic (UM) scheduling.

e RM: The priority levels of the tasks are assigned accord-
ing to RM scheduling.

e RM-US: The priority levels of the task are assigned
according to RM-US [2] scheduling.

o SM: The priority levels of the tasks are assigned according
to SM scheduling.

e SM-US: The priority levels of the task are assigned
according to SM-US [1] scheduling.

In Figure 5, we show the obtained schedulability results
for pure SRT task systems. Figure 5 depicts the average
of the computed acceptance ratio for each of the priority
assignments when M = 8. In all the tests, we use Corollary 1
to verify whether the tasks have bounded tardiness. As shown
in Theorem 4, UM is an optimal priority assignment in such
cases. Therefore, UM analytically dominates the others. Such
analytical dominance can also be seen in the reported results.

8 Conclusion and Extensions

To the best of our knowledge, this is the first result tackling
bounded tardiness in multiprocessor fixed-priority scheduling.
For the pure SRT case, we show that the utilization-monotonic
priority assignment yields a utilization bound of % For a
mixed set of HRT and SRT tasks, we present two fixed-priority

assignment algorithms and their associated schedulability tests.

With our new findings in this paper, we show that intro-
ducing soft real-time tasks does not create additional problems
(with respect to utilization bounds, speedup factors, or aug-
mentation factors) for scheduling if the priority assignments
are properly done. Note that our proposed greedy three-cluster
priority assignment in Section 6.1 is in general independent
from the adopted schedulability tests. Although we present
the paper based on the recent result by Huang and Chen [18],
any new results should be directly applicable. This paper is
also an initial thread for further exploring the applicability of
mixed SRT and HRT sporadic tasks in the system. A very
interesting future work is to extend these results to provide
fair or weighted tardiness guarantees.

References

[1] B. Andersson. Global static-priority preemptive multiprocessor schedul-
ing with utilization bound 38%. In Principles of Distributed Systems,
12th International Conference, OPODIS, pages 73-88, 2008.

(2]

(3]

(4]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]
(171

[18]

[19]

[20]

[21]

[22]
[23]

B. Andersson, S. K. Baruah, and J. Jonsson. Static-priority scheduling
on multiprocessors. In Real-Time Systems Symposium (RTSS), pages
193-202, 2001.

N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings. Ap-
plying new scheduling theory to static priority pre-emptive scheduling.
Software Engineering Journal, 8(5):284-292, Sep 1993.

T. P. Baker. Multiprocessor EDF and deadline monotonic schedulability
analysis. In IEEE Real-Time Systems Symposium, pages 120-129, 2003.
T. P. Baker. An analysis of fixed-priority schedulability on a multipro-
cessor. Real-Time Systems, 32(1-2):49-71, 2006.

S. Baruah and N. Fisher. Global fixed-priority scheduling of arbitrary-
deadline sporadic task systems. In Proceedings of the 11th International
Conference on Principles of Distributed Systems, pages 215-226, 2008.
S. K. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, and S. Stiller.
Improved multiprocessor global schedulability analysis. Real-Time
Systems, 46(1):3-24, 2010.

M. Bertogna, M. Cirinei, and G. Lipari. New schedulability tests for
real-time task sets scheduled by deadline monotonic on multiprocessors.
In Principles of Distributed Systems, 9th International Conference,
OPODIS, pages 306-321, 2005.

E. Bini and G. C. Buttazzo. Measuring the performance of schedula-
bility tests. Real-Time Systems, 30(1-2):129-154, 2005.

J.-J. Chen, W. Huang, and C. Liu. k2Q: A quadratic-form response time
and schedulability analysis framework for utilization-based analysis. In
2016 IEEE Real-Time Systems Symposium, RTSS, pages 351-362, 2016.
R. I. Davis and A. Burns. Improved priority assignment for global fixed
priority pre-emptive scheduling in multiprocessor real-time systems.
Real-Time Systems, 47(1):1-40, 2011.

R. I. Davis and A. Burns. A survey of hard real-time scheduling for
multiprocessor systems. ACM Computing Surveys (CSUR), 43(4):35,
2011.

R. I. Davis, A. Zabos, and A. Burns. Efficient exact schedulability tests
for fixed priority real-time systems. Computers, IEEE Transactions on,
57(9):1261-1276, 2008.

U. Devi. Soft Real-Time Scheduling on Multiprocessors. PhD thesis,
University of North Carolina at Chapel Hill, 2006.

U. Devi and J. Anderson. Tardiness bounds under global EDF
scheduling on a multiprocessor. In Proceedings of the 26th IEEE Real-
Time Systems Symposium, pages 330-341, 2005.

S. K. Dhall and C. L. Liu. On a real-time scheduling problem.
Operations Research, 26(1):127-140, 1978.

N. Guan, M. Stigge, W. Yi, and G. Yu. New response time bounds for
fixed priority multiprocessor scheduling. In IEEE Real-Time Systems
Symposium, pages 387-397, 2009.

W.-H. Huang and J.-J. Chen. Response time bounds for sporadic
arbitrary-deadline tasks under global fixed-priority scheduling on mul-
tiprocessors. In Proceedings of the 23rd International Conference on
Real Time Networks and Systems, RTNS, pages 215-224, 2015.

H. Leontyev. Compositional Analysis Techniques For Multiprocessor
Soft Real-Time Scheduling. PhD thesis, University of North Carolina at
Chapel Hill, 2010.

J. Li, J.-J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah. Analysis
of federated and global scheduling for parallel real-time tasks. In
Euromicro Conference on Real-Time Systems (ECRTS), pages 85-96,
2014.

C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of the ACM (JACM),
20(1):46-61, 1973.

J. Liu. Real-Time Systems. Prentice Hall, 2000.

C. Phillips, C. Stein, E. Torng, and J. Wein. Optimal time-critical
scheduling via resource augmentation. In Proc. of the 29th ACM
Symposium on Theory of Computing, pages 140-149, 1997.

