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Abstract—In computing systems, a job/process/task/thread
may suspend itself when it has to wait for some other internal
or external activities, such as computation offloading or memory
accesses, to finish before it can continue its execution. In the
literature, there are two commonly adopted self-suspending
sporadic task models in real-time systems: 1) the dynamic self-
suspension model and 2) the segmented self-suspension sporadic
task model. A dynamic self-suspending sporadic task is specified
with an upper bound on the maximum suspension time for a
job (task instance), which allows a job to dynamically suspend
itself arbitrary often as long as the suspension time upper
bound is not violated. By contrast, a segmented self-suspending
sporadic task has a predefined execution and suspension pattern
in an interleaving manner. The dynamic self-suspension model is
very flexible but inaccurate, whilst the segmented self-suspension
model is very restrictive but very accurate. The gap between these
two widely-adopted self-suspension task models can be potentially
filled by the hybrid self-suspension task model.

The investigation of the impact of self-suspension on timing
predictability has been started in 1988. This survey paper
provides a short summary of the state of the art in the design
and analysis of scheduling algorithms and schedulability tests for
self-suspending tasks in real-time systems.

1 Introduction
Advanced embedded real-time computing systems for

safety-critical applications have timing requirements to ensure
the functional correctness and timeliness. The seminal work
by Liu and Layland [33] considered the scheduling of periodic
tasks. More advanced task models have been designed in the
past decades to improve the expressiveness of the task models
to match the system behavior. For scheduling tasks in real-
time systems, there are two correlated problems: 1) how to
design scheduling policies to schedule the real-time tasks and
2) how to validate whether their deadlines will be met in the
resulting schedule. In this paper, the former is referred to as
the scheduler design problem, whilst the latter is referred to
as the schedulability test problem.

One important assumption in most of the existing ap-
proaches is that a job does not suspend itself, i.e., once a
job starts executing on the processor, it either runs until it
is finished or until it is preempted by a job with higher
priority which is granted access to the processor instead.
Such an assumption enables the widely-adopted critical instant
theorem [33], the busy-window concept [31], etc. When a
task can suspend itself, most of such existing schedulability
analyses for many scheduling algorithms cannot be applied
without any modifications. Self-suspension can happen due
to scenarios where: (1) the latency of the memory accesses

and I/O peripherals is hidden by using direct memory access
(DMA), (2) there are external devices for accelerating the
computation by using computation offloading, (3) another task
on another processor already holds the resource (e. g., locked
semaphores) required by the task to finish its computation,
etc. In those cases, a job may suspend itself and release the
processor to let the processor idle or to run another job (even
with lower priority) to improve the execution efficiency.

We consider a system of n sporadic self-suspending tasks.
A sporadic task τi releases an infinite number of jobs and is
characterized by its worst-case execution time (WCET) Ci,
its minimum inter-arrival time (or period) Ti and its relative
deadline Di. In addition, each job of task τi has also a
specified worst-case self-suspension time Si. When a job of
task τi arrives at time t, the job should finish no later than
its absolute deadline t +Di, and the next job of task τi can
only be released no earlier than t+Ti. If the relative deadline
Di of task τi in the task set is always equal to (no more
than, respectively) the period Ti, such a task set is called
an implicit-deadline (a constrained-deadline, respectively) task
set (system). Otherwise the task set has arbitrary deadlines.

There are two self-suspension task models that are
widely used in the literature: the dynamic and the seg-
mented self-suspension (sporadic) task model. The dynamic
self-suspension model allows a job of task τi to sus-
pend itself at any moment before it finishes as long as
the worst-case self-suspension time Si is not violated. The
segmented self-suspension model further characterizes the
computation segments and suspension intervals as an ar-
ray (Ci,1, Si,1, Ci,2, Si,2, ..., Si,mi−1, Ci,mi

), composed of mi

computation segments separated by mi − 1 suspension inter-
vals. For notational brevity, we assume that Si =

∑mi−1
j=1 Si,j

when mi ≥ 2, i.e., there is at least one suspension interval.

Both of the above self-suspension models are meaningful
and important. The dynamic self-suspension model has high
flexibility since it does not need the system designers to
detail the suspension and execution behavior very precisely.
However, if the suspension patterns are well-defined and can be
characterized with known suspension intervals, the flexibility
of the dynamic self-suspension model can make the analysis
and scheduling design rather pessimistic, whilst the segmented
self-suspension model is more appropriate. Therefore, these
two models are used for different scenarios.

The dynamic self-suspension model is very flexible but
inaccurate, whilst the segmented self-suspension model is
very restrictive but very accurate. The gap between these two
widely-adopted self-suspension task models can be potentially



suspension model flexibility? accuracy?
dynamic [9], [14], [23], [32] very flexible (high) inaccurate (low), over flexible
hybrid (pattern-oblivious) [45] less flexible than dynamic applicable in most cases for known mi

(medium to high) (low to medium)
hybrid (pattern-clairvoyant) [45] less flexible than pattern-oblivious

(medium to low)
more accurate than patter-oblivious
(medium to high)

segmented [9], [13], [21], [38], [40], [43], [46] very restrictive (low) only accurate and applicable for fixed pat-
terns (high), over restrictive

TABLE I: High-level comparison of different self-suspension models, from [45].

filled by the hybrid self-suspension task model, recently pro-
posed by von der Brüggen et al. [45]. For a hybrid self-
suspension task, we assume that in addition to Si, each task τi
has at most a known number of mi − 1 suspension intervals.
This means that the execution of each job of τi is composed
of at most mi computation segments separated by mi − 1
suspension intervals, similar to the segmented self-suspension
model. The sum of the execution times of the computation
segments of a job of task τi is at most its WCET Ci, while
the sum of the lengths of the self-suspension intervals of a job
of task τi is at most its worst-case suspension time Si. All
these values are positive for self-suspending tasks.

• This is more precise than the traditional dynamic self-
suspension task model, where mi is not considered.

• This more flexible and less precise than the traditional
segmented self-suspension task model, where the WCET
of each of the mi computation segments and the worst
case suspension time for each of the mi − 1 suspension
intervals is fixed and specified.

Table I provides a summary of the flexibility and the accuracy
of different self-suspension task models.

Organization: In light of the increasingly importance of
self-suspending behavior in many applications, we come to a
point to summarize the state of the art in this survey paper.
Chen et al. [15] have recently provided high-level summaries
of the general analytical methods for self-suspension tasks,
the existing flaws in the literature, and potential fixes. This
paper here will tackle the survey from a different angle. We
aim to provide more detailed discussions about the existing
designs and analyses and give more concrete summary of the
scheduler design and schedulability tests in the state of the
art. As the survey paper in [15] has already emphasized the
misconceptions and flaws in the literature, in this paper, we will
focus our discussions on the valid solutions and approaches in
the state of the art. We hope that this survey paper can provide
the researchers and designers in real-time embedded systems
a technical summary of the state of the art for scheduling and
analyzing self-suspending sporadic real-time tasks.

The rest of the paper is organized as follows: Section 2
provides the terminologies and assumptions used in this survey
paper. We will summarize the state-of-the-art approaches to
deal with dynamic, segmened, and hybrid self-suspension
task models in Sections 3, 4, and 5, respectively. Section 6
concludes the paper with discussions of open questions.

2 Terminologies and Assumptions
Throughout the paper, we will implicitly consider unipro-

cessor platforms. The input task set is denoted by T. We

consider three self-suspension task models as introduced in
Section 1, i.e., the dynamic, the segmented, and the hybrid
self-suspension task. We will consider only implicit-deadline
and constrained-deadline task systems. Moreover, we consider
only preemptive scheduling. To the best of our knowledge,
there is no specific result for non-preemptive scheduling in
the literature yet. Non-preemptive scheduling can still be
meaningful in the segmented and hybrid self-suspension task
models, but should be avoided in the dynamic self-suspension
task model since the lower-priority jobs can easily block a very
short computation segment. Since a dynamic self-suspension
task can suspend itself arbitrarily often, the blocking by
lower-priority jobs will significantly impact the schedulability.
We will shortly explain how to incorporate non-preemptive
scheduling in Section 6.

Speedup Factors: Since real-time systems focus on the worst-
case properties to meet or to miss the deadlines, direct approx-
imation on the schedulability answers is usually not possible.
Alternatively, researchers have widely used the resource aug-
mentation bound or the speedup factor to quantify the imper-
fectness of the scheduling algorithms and the schedulability
tests [25]. If an algorithm A has a speedup factor ρ ≥ 1, then
it guarantees that the schedule derived from the algorithm A
is always feasible by running at speed ρ, if the input task set
admits a feasible schedule on a unit-speed processor.

Under the setting of self-suspending tasks, there are two
options for speeding up. If the suspension length cannot be
reduced by changing the local execution platform (e.g., due to
computation offloading), then speeding up the processor only
affects the execution time but the self-suspension time remains
the same. If the suspension length can also be coherently
reduced by changing the local execution platform (e.g., due to
multiprocessor synchronization), then we assume that speeding
up affects both the execution time and the self-suspension time
in the same way. The former is termed as the speedup factor
as usual, and the latter is termed as the suspension-coherent
speedup factor. We will only discuss the former case. For
discussions related of the latter case, please refer to [9] for
details.

3 Dynamic Self-Suspension Task Systems
In this section, we consider the dynamic self-suspension

task model. Specifically, this model has been studied in [2],
[3], [7], [9], [14], [18], [23], [26], [32], [36] and in Jane W.S.
Liu’s book [34, Pages 164-165]. This model has been also
widely adopted in the literature for analyzing the schedulability
of real-time tasks with shared resources that are protected with
suspension-based locks (e.g., binary semaphores) in multipro-
cessor systems under partitioned fixed-priority scheduling. The



self-suspension time of a task due to lock contention is usually
called its remote blocking time in the literature.

3.1 Scheduler Design Problem
The scheduler design problem is to design a scheduling

algorithm to handle self-suspending tasks. For the dynamic
self-suspension task model, the computational complexity of
this problem remains unknown. Most work considers either
earliest-deadline-first (EDF) preemptive scheduling or fixed-
priority preemptive scheduling. Specifically, rate-monotonic
(RM, smaller period, higher priority) and deadline-monotonic
(DM, smaller relative deadline, higher priority) priority assign-
ments are two specific fixed-priority approaches widely used
in the literature. The priority assignment used in [23], denoted
as PASS-OPA, is based on the optimal-priority assignment
(OPA) algorithm from Audsley [1] with an OPA-compatible
schedulability analysis, i.e., an over-approximation of the test
in Theorem 4 in Section 3.2.

For dynamic self-suspension task systems the speedup
factor of any fixed-priority preemptive scheduling, compared
to the optimal schedules, is not bounded by a constant if
the suspension time cannot be reduced by speeding up, as
shown in [9]. Such a statement of unbounded speedup factors
was proved in [9] for earliest-deadline-first, least-laxity-first
(LLF), and earliest-deadline-zero-laxity (EDZL) scheduling
algorithms. How to design good schedulers with a constant
speedup factor remains as an open problem.

To validate whether the resulting schedules are feasible
or not, sufficient or exact schedulability tests for the sche-
duling algorithm should also be provided. For dynamic self-
suspension task systems, a schedulability test for EDF was
provided by Devi in [18] without a proof. The correctness of
the test in Theorem 8 in [18] remains open. There are several
(sufficient) schedulability tests for fixed-priority scheduling in
the literature, we will summarize them in Section 3.2.

3.2 Schedulability Test under Fixed-Priority
Preemptive Scheduling

We now summarize the schedulability tests for fixed-
priority scheduling from the results that have been recently
developed for dynamic self-suspension tasks. Note that, only
constrained-deadline and implicit-deadline task systems are
considered here. Extensions to arbitrary-deadline task systems
(i.e., there is a certain task τi with Di > Ti) have never been
studied in the literature.

3.2.1 Pseudo-Polynomial-Time Tests: We first summarize the
existing results for testing the schedulability of a suspending
task τk under fixed-priority preemptive uniprocessor schedu-
ling with pseudo-polynomial-time complexity. The worst case
for task τk happens when task τk always suspends itself
whenever the processor can execute task τk as long as the
suspension time is not exhausted. That is, the suspension
of task τk happens exactly when the processor idles for
scheduling the higher-priority tasks. Therefore, the suspension
time of task τk is converted into computation in all the analyses
for dynamic self-suspension task systems under fixed-priority
scheduling.

The following tests assume that all the tasks with higher-
priority than τk, denoted by hp(k), can meet their deadlines,
and that τk and all task in hp(k) are constrained deadline
tasks, i.e., Di ≤ Ti,∀τi ∈ hp(τk) and Dk ≤ Tk. They
all have pseudo-polynomial-time complexity (except the test
in Theorem 5 which needs exponential time). Task τk is
schedulable under the fixed-priority preemptive scheduling if
one of the conditions in the following five theorems holds. The
correctness of those theorems can be found in the unifying
analysis by Chen et. al [14].

Theorem 1 (Suspension as Computation):

∃t | 0 < t ≤ Dk, Sk + Ck +
∑

τi∈hp(τk)

⌈
t

Ti

⌉
(Ci + Si) ≤ t

(1)

Theorem 2 (Suspension as Carry-In):

∃t | 0 < t ≤ Dk, Sk + Ck +
∑

τi∈hp(τk)

(⌈
t

Ti

⌉
+ 1

)
Ci ≤ t

(2)

Theorem 3 (Suspension as Blocking):

∃t | 0 < t ≤ Dk, Ck +Bk +
∑

τi∈hp(τk)

⌈
t

Ti

⌉
Ci ≤ t, (3)

where Bk = Sk +
∑
τi∈hp(τk) min{Si, Ci}.

Theorem 4 (Suspension as Jitter):

∃t | 0 < t ≤ Dk, Sk+Ck+
∑

τi∈hp(τk)

⌈
t+Di − Ci

Ti

⌉
Ci ≤ t

(4)

Theorem 5 (Combining Jitter and Blocking): There is a
vector ~y = (y1, y2, . . . , yk−1) with yi ∈ {0, 1} and

∃t|0 < t ≤ Dk,

Sk + Ck +

k−1∑
i=1

⌈
t+Q~yi + (1− yi)(Di − Ci)

Ti

⌉
Ci ≤ t (5)

where Q~yi is defined as
∑k−1
j=i Sj · yj and the k − 1 higher-

priority tasks are indexed from the highest priority to the lowest
priority, i.e., τ1 is the highest-priority task.

Specifically, for the test in Theorem 5, Chen et al. [14]
concretely consider three possible vectors

• yi = 0 for every τi in hp(τk). This case is basically the
same as Theorem 4.

• yi = 1 if Si ≤ Ci, and, otherwise, yi = 0 if Si > Ci for
every τi in hp(τk). This case dominates Theorem 3.

• yi = 1 if Ci

Di
(Ti − Ci) > Si

∑i
`=1(

C`

T`
), and, otherwise,

yi = 0 for every τi.

Moreover, Theorem 3 dominates Theorem 1 and Theorem 4
dominates Theorem 2. Therefore, among the schedulability
tests for fixed-priority preemptive scheduling in the literature,
Theorem 5 is the tightest one. Note that, in the original analysis
by Chen et al. [14], the term Di −Ci in Eqs. (4) and (5) was
tighter by using Ri−Ci, where Ri is the worst-case response
time of a higher-priority task τi, under the assumption that
Ri ≤ Ti.



3.2.2 Constant-Time Schedulability Tests: The analyses from
Theorems 1 to 5 can be applicable for both implicit- and
constrained-deadline task systems. Here, we only consider a
typically adopted rate-monotonic (RM) priority assignment,
i.e., Di = Ti ≤ Dk = Tk for any τi ∈ hp(τk). We further
derive the following RM schedulability tests exhibiting only
constant-time complexity based on the recent schedulability
analysis framework k2U [11] as follows.

Theorem 6: Task τk is schedulable under RM preemptive
scheduling if one of the following conditions holds:(

Ck + Sk
Tk

+ 2

) ∏
τi∈hp(τk)

(
Ci
Ti

+ 1

)
≤ 3 (6a)

∑
τi∈hp(τk)

Ci
Ti
≤ ln

(
3

Ck+Sk

Tk
+ 2

)
(6b)

Proof: This comes from the k2U framework where αi ≤ 2
and βi ≤ 1, as explained in [11] and [32].

Theorem 7: Task τk is schedulable under RM preemptive
scheduling if one of the following conditions holds:(

Ck +Bk
Tk

+ 1

) ∏
τi∈hp(τk)

(
Ci
Ti

+ 1

)
≤ 2 (7a)

Ck +Bk
Tk

+
∑

τi∈hp(τk)

Ci
Ti
≤ ln(2) (7b)

where Bk = Sk +
∑
τi∈hp(τk) min{Si, Ci}.

Proof: This comes from the k2U framework where αi ≤ 1
and βi ≤ 1 [11], and the blocking time setting is from Eq. (3).

Theorem 8: Task τk is schedulable under RM preemptive
scheduling if

∑
τi∈hp(τk)

Ci

Ti
< 1 and

Sk + Ck
Tk

+

∑
τi∈hp(τk)

(
2Ci − C2

i

Ti

)
Tk

+
∑

τi∈hp(τk)

Ci
Ti
≤ 1 (8)

Proof: This is based on a safe linear approximation of the
schedulability test in Theorem 4 as follows:⌈

t+ Ti − Ci
Ti

⌉
Ci ≤

(
t+ Ti − Ci

Ti
+ 1

)
Ci

By solving Sk+Ck+
∑
τi∈hp(τk)

(
t+Ti−Ci

Ti
+ 1
)
Ci = t under

the condition that
∑
τi∈hp(τk)

Ci

Ti
< 1, we know that task τk

can meet its deadline if

t =
Sk + Ck +

∑
τi∈hp(τk)

(
2Ci − C2

i

Ti

)
1−

∑
τi∈hp(τk)

Ci

Ti

≤ Tk (9)

The condition in Eq. (9) can be rewritten as in Eq. (8).

Note that the time complexity to evaluate the schedulability
tests in Theorems 6, 7, and 8 is O(1) if

∏
τi∈hp(τk)(1 +

Ci

Ti
),∑

τi∈hp(τk) Ci,
∑
τi∈hp(τk)

Ci

Ti
, and

∑
τi∈hp(τk)

C2
i

Ti
have been

calculated in the previous iterations iteratively. Moreover,

the above constant-time schedulability tests can be further
generalized for any fixed-priority assignment by using the
k2U framework [11] together with the scheme in [12] to
automatically derive the parameters αi and βi needed in the
k2U framework.

The computational complexity of the schedulability test
problem for dynamic self-suspension task systems under fixed-
priority preemptive scheduling is at least as hard as that in the
ordinary sporadic task systems (without self-suspension) un-
der fixed-priority scheduling, whose computational complexity
remains unknown. Whether it is harder than the schedulability
test for ordinary sporadic task systems remains open.

3.3 Flawed Analyses
The investigation of the impact of dynamic self-suspension

behavior in real-time systems has been started in 1994 by
Ming [36]. However, many research results are based on
one misconception which models the interference from the
higher-priority tasks under fixed-priority scheduling by using
suspension as jitter in a different form as in Eq. (4). To
calculate the worst-case response time of the task τk under
analysis, there have been several results in the literature, i. e.,
[2], [3], [26], [36], which propose to calculate the worst-case
response time Rk of task τk by finding the minimum t (in the
range of 0 < t ≤ Dk) with

t = Ck + Sk +
∑

τi∈hp(τk)

⌈
t+ Si
Ti

⌉
Ci (10)

That is, the jitter of a higher-priority task τi in hp(τk) in
Eq. (10) is set to Si, whilst the jitter is set to Di − Ci in
Eq. (4).

It was shown in [6], [15] that the test in Eq. (10) is opti-
mistic and flawed. The above analysis in Eq. (10) was adopted
by Lakshmanan et al. [29] in 2009 as the schedulability test to
deal with fixed-priority locking protocols in the multiprocessor
synchronization problem. This technique was later reused in
several other work. For further details about the reasoning and
the impact of such a misconception, please refer to [15].

4 Segmented Self-Suspension Task Systems
It was shown by Ridouard et al. [43] that the scheduler

design problem for the segmented self-suspension task model
is NP-hard in the strong sense. Ridouard et al. [43] termed
this problem as the feasibility problem for the decision version
to verify the existence of a feasible schedule. The proof in [43]
only needs each segmented self-suspending task to have one
suspension interval with two computation segments. For this
model, EDF and RM do not have any speedup factor shown
in [43].

Since the segmented self-suspension structure provides
more detailed information, there have been also several ap-
proaches in the literature to handle segmented self-suspension.
We will classify these approaches into three categories:

• EDF-based scheduling in Section 4.1: Most of these
results are based on the Fixed-Relative-Deadline (FRD)
strategies [13] proposed by Chen and Liu. An FRD ap-
proach assigns a fixed relative deadline to a computation



segment of a task. Each computation segment uses the
corresponding relative deadline for calculating its absolute
deadline when it arrives to the system. The scheduling
policy is based on EDF, where the absolute deadlines of
the computation segments are used to decide the priorities
of the computation segments.

• Task-level fixed-priority preemptive scheduling in Sec-
tion 4.3: This is a traditional approach which assigns a
static priority level to a task. We will mainly discuss how
to perform the schedulability tests in Section 4.3.

• Segment-level fixed-priority preemptive scheduling in
Section 4.4: This strategy gives an individual priority level
to a computation segment. The results in the literature
have also used the concept of period enforcement in
Section 4.2 to reduce the interference from the higher-
priority computation segments.

4.1 EDF-Based Scheduling
For each τi, an FRD policy assigns an individual relative

deadline Di,j to a computation segment Ci,j of task τi.
The computation segments are then scheduled based on these
absolute deadlines using EDF scheduling. When a job of task
τi and hence the first computation segment arrives at time t,
it is scheduled with the absolute deadline t+Di,1. The self-
suspension interval has to be finished before t + Di,1 + Si,1
and the second computation segment has the absolute deadline
t +Di,1 + Si,1 +Di,2, etc. To ensure that each computation
segment can have a sufficient amount of time, we need to
ensure that

∑mi

j=1Di,j ≤ Di − Si, where Si =
∑mi−1
j=1 Si,j .

As addressed by Huang and Chen [21], the schedulability
test of the resulting schedule under an FRD policy can be
analyzed by transforming the task set into an equivalent
generalized multiframe (GMF) task model, introduced by
Baruah et al. [4]. A GMF task ψi consisting of mi frames
is characterized by the 3-tuple ( ~Ci, ~Di, ~Ti), where ~Ci, ~Di,
and ~Ti are mi-ary vectors (Ci,1, Ci,2, ..., Ci,mi) of execu-
tion requirements, (Di,1, Di,2, ..., Di,mi) of relative deadlines,
(Ti,1, Ti,2, ..., Ti,mi) of minimum inter-arrival times, respec-
tively. From the analysis perspective, a self-suspension task
τi under FRD scheduler is equivalent to a GMF task ψi,
by considering the computation segments as the frames with
different separation times:

Lemma 1: For constrained-deadline task systems, suppose
that Ti ≥ Di ≥

∑mi

j=1Di,j +
∑mi−1
j=1 Si,j for every task

τi. The schedulability test problem under FRD scheduling
is equivalent to the schedulability analysis of the following
generalized multiframe task model by converting each self-
suspending task τi into a GMF task ψi in which

~Ci = (Ci,1, Ci,2, ..., Ci,mi
) , ~Di = (Di,1, Di,2, ..., Di,mi−1)

(11)
and

~Ti = (Di,1 + Si,1, Di,2 + Si,2, . . . , Di,mi
+ Si,mi

) , (12)

where Si,mi
≡ Ti− (

∑mi

j=1Di,j +
∑mi−1
j=1 Si,j) for complete-

ness.

Proof: The proof is in Lemma 1 in [21]. Note that the
proof in [21] implicitly assumed that Di =

∑mi

j=1Di,j +∑mi−1
j=1 Si,j and set Si,mi

≡ Ti −Di.

Since we will use EDF for scheduling the subjobs, we re-
call the following property derived by Chetto and Chetto [17].

Lemma 2 (Chetto and Chetto [17]): We are given a set J
of jobs, in which each job Jj has its arrival time aj , WCET
Cj and, absolute deadline dj . The set J can meet the deadlines
on one processor by using EDF, if and only if the following
condition holds:

∀ai < dk,
∑

τj :ai≤aj and dj≤dk

Cj ≤ dk − ai (13)

When EDF is used to schedule the generalized multiframe
tasks, the demand bound function (DBF) analysis, originally
developed in [4], can be applied. The concept of the DBF
can be explained by using Eq. (13). For a task τi in a
given interval [t0, t0 + t], i.e., ai is t0 and dk is t0 + t in
Eq. (13), its maximum contribution to the left-hand side of
Eq. (13) is due to the jobs arrived at or after t0 with absolute
deadlines at or before t0+ t. Regardless of the considered task
models, as long as (working-conserving) EDF scheduling is
applied, the schedulability analysis is simply to first quantify
dbfAi (t) as the maximum demand requested by a task τi in
any given interval [t0, t0 + t], and then to validate whether∑
τi
dbfAi (t) ≤ t for every t ≥ 0, where A is a specific

algorithm for deciding the relative deadline assignments.

Instead of going into the details, we will demonstrate how
to use such a concept for implicit-deadline task systems in
which mi = 2 and Ti = Di. That is, each task suspends
at most once. To get the maximum demand over an interval
[t0, t0+ t] for a GMF task, one of the frames must be released
at time t0 and all consecutive frames are released as early as
possible. If Ci,1 is released at t0 it has to be finished not later
than t0 +Di,1. Ci,2 is released at Di,1 + Si and has to be
finished at t0 + Di,1 + Si + Di,2 = Ti. This pattern repeats
periodically with period Ti. As shown in [46], this leads to

dbf1i (t,Di,1) =

⌊
t+ (Ti −Di,1)

Ti

⌋
Ci,1 +

⌊
t

Ti

⌋
Ci,2 (14)

When Ci,2 is released at t0 it has to be finished at t0+Di,2 =
t0+Ti−Si−Di,1. Ci,1 is released at t0+Di,2 and has to be
finished at t0 +Di,1 +Di,2. Therefore, the resulting DBF is

dbf2i (t,Di,1) =

⌊
t+ (Di,1 + Si)

Ti

⌋
Ci,2 +

⌊
t+ Si
Ti

⌋
Ci,1

(15)

By Eqs. (14) and (15), we reach the following lemma and
theorem:

Lemma 3: The DBF for τi under an FRD assignment is
the maximum of the two patterns:

dbfFRDi (t,Di,1) = max(dbf1i (t,Di,1), dbf
2
i (t,Di,1)) (16)

Theorem 9 (Theorem 1 in [46]): An FRD schedule is fea-
sible if and only if∑

τi∈T

dbfFRDi (t,Di,1) ≤ t, ∀t ≥ 0. (17)

The key question for FRD strategies is the assignment of
the relative deadlines of the subjobs, i.e., how to distribute the
execution interval Di − Si among the subjobs. The following



approaches have been used for implicit-deadline task systems,
i.e., Di = Ti, in the literature:

• Proportional (Proportional relative deadline assignment):
Di,1 =

Ci,1

Ci,1+Ci,2
· (Ti−Si); Di,2 =

Ci,2

Ci,1+Ci,2
· (Ti−Si),

introduced by Liu et al. [35] in 2014. The speedup factor
of this strategy is not bounded by a constant, as shown
by Chen and Liu in [13].

• EDA (Equal relative Deadline Assignment):
Di,1 = Di,2 = (Ti − Si)/2, by Chen and Liu [13] in
2014.1 The speedup factor of this strategy is at most 3,
compared to the optimal scheduling strategy.

• Shortest Execution Interval First Deadline Assignment
(SEIFDA): assigns the relative deadlines of the tasks in
an increasing order of the task’s execution interval Ti−Si
with respect to the previously assigned deadlines of tasks
with smaller execution interval, by von der Brüggen et
al. [46]. This strategy has a speedup factor of 3, and one
specific strategy of SEIFDA analytically dominates EDA
while another specific strategy of SEIFDA analytically
dominates Proportional.

While the speedup factors for SEIFDA and EDA are
identical, SEIFDA clearly outperforms EDA in the evaluations
(as shown in [46]) due to the strong enforcement used in EDA.
For a more detailed discussion please refer to [16].

Another possibility is to apply mixed integer linear pro-
gramming (MILP) to find the suitable relative deadlines for
FRD. This approach has been adopted by Peng and Fisher
[41] and von der Brüggen et al. [46]. Specifically, the MILP
in [41] is applicable for constrained- and arbitrary-deadline
systems.

4.2 Period Enforcement
Under task-level fixed-priority scheduling, the scheduling

penalty associated with self-suspensions is maximized when
a higher-priority task defers the completion of one job just
until the release of the next job. The root cause is increased
interference due to the back-to-back execution effect.

The key idea underlying the period enforcement is to
artificially delay the execution of computation segments if a
job resumes “too soon.” There are three existing approaches
to avoid such back-to-back interference:

• Release-time enforcement for computation segments,
used in [21] for fixed-priority and in [13], [46] for
dynamic-priority scheduling: This strategy releases the
computation represented by a computation segment of
task τi periodically (or sporadically with the minimum
inter-arrival time Ti). This strategy is also widely used
in other problems in real-time systems, e.g., end-to-end
delay analysis, semi-partitioned scheduling, etc. Under
this strategy, it is guaranteed that a computation segment
is released with respect to the minimum inter-arrival
time if the suspension interval prior to the computation
segment (if it exists) can be guaranteed to finish no later
than its predefined segment release time. This approach

1A typo in the schedulability test in Theorem 3 in [13] was identified by
the authors in 2015.

is also called phase modification (PM) in [44] and static
offset in [40].

• Period enforcer in [42]: The period enforcer determines
for each computation segment an eligibility time. If a
computation segment resumes before its eligibility time,
the execution of the segment is delayed until the eligibility
time is reached. The calculation of the eligibility time
follows some rules to ensure that the minimum distance
of two instances of the same computation segment is
guaranteed to be at least Ti. This approach is also called
release guard (RG) in [44].

• Slack enforcement in [30]: The slack enforcement poli-
cies were designed for segmented self-suspending real-
time tasks with only one suspension interval in [30]. The
actual release time of the second computation segment of
a job is calculated by utilizing the slack time. However,
the proof of the correctness seems incomplete, as pointed
out in [15].

Note that the period enforcer is different from the release-
time enforcement (phase modification). In the period enforcer
algorithm, the setting of the eligibility time of the next in-
stance of a computation segment is dependent on the run-time
behavior related to the time when the (current) instance of the
computation segment starts to be executed. In the release time
enforcement, a feasible fixed offset of a computation segment
is defined and always respected, i.e., a computation segment
Ci,j is released exactly at time t+Offseti,j where Offseti,j
is the offset and t is the arrival time of a job of task τi.

Although the period enforcement techniques can effectively
reduce the additional interference due to the self-suspending
behavior of a higher-priority task, such methodologies can also
be a source of deadline misses. Consider the following example
with two tasks under RM scheduling:

• C1 = 2, D1 = T1 = 10 (without any self-suspension);
• C2,1 = 1, S2,1 = 6, C2,2 = 1, D2 = T2 = 11 (segmented

suspension with one self-suspension interval).

This task set is in fact schedulable by RM scheduling by
applying the analysis introduced by Nelissen et al. [38].2
Since the worst-case response time of C2,1 is 3, the fixed
offset (under the release-time enforcement) of the second
computation segment of task τ2 has to be set to 3 + 6 = 9.
However, the worst-case response time of C2,2 is also 3 (after
the segnment is released). The release-time enforcement is not
feasible due to 3 + 6 + 3 > 11 = T2. This specific example
was also used by Chen and Brandenburg [10] to explain why
the period enforcer can be a source of deadline misses.

Note that the objective of such period enforcement tech-
niques is to reduce the interference from the higher-priority
tasks. However, this is at a price of potentially sacrificing
the schedulability of the higher-priority tasks under such en-
forcements. In the above example, the enforcement techniques
in fact prolong the response time of task τ2 to reduce its
interference to lower-priority tasks, e.g., τ3 if it exists. As a
result, period enforcement techniques are not always superior.

The release-time enforcement technique has been utilized
by Palencia and Harbour [40] and Huang and Chen [21] for

2We either release a job of task τ1 together with C1,1 or together with
C2,1. In both cases, the worst-case response time of task τ2 is 10.



task-level fixed-priority scheduling and Ding et al. [19] and
Kim et al. [28] for segment-level fixed-priority scheduling.
Specifically, Huang and Chen [21] showed that EDA and
deadline-monotonic fixed-priority preemptive scheduling can
have a speedup factor of m2 compared to the optimal sched-
ules, where m is maxτi{mi} under the assumption that m ≥ 2.
When the release-time enforcement technique is used, the
schedulability test for segmented self-suspension tasks under
fixed-priority preemptive scheduling can be done by validating
the equivalent GMF tasks. Details about segment-level fixed-
priority scheduling can be found in Section 4.4.

4.3 Task-Level Fixed-Priority Scheduling
In this subsection, we will discuss the worst-case response

time analysis and the schedulability tests for segmented self-
suspending tasks with constrained deadlines under task-level
fixed-priority preemptive scheduling without any period en-
forcement. For such a case, the complexity of verifying the
schedulability of a task set has been left open until a recent
proof of its coNP-hardness in the strong sense by Chen [9]
and Mohaqeqi et al. [37] in 2016. They showed that testing
whether task τk can meet its deadline in the following scenario
is coNP-hardness in the strong sense:

• the scheduling algorithm is fixed-priority;
• τk is the lowest-priority task; and
• all the higher-priority tasks are ordinary sporadic tasks.

Even for such a special scenario, there was an incorrect
critical instant theorem defined in [30] as follows:

• every task releases a job simultaneously with τk;
• the jobs of higher-priority tasks that are eligible to be

released during the self-suspension interval of τk are
delayed to be aligned with the release of the subsequent
computation segment of τk; and

• all the remaining jobs of the higher-priority tasks are
released with their minimum inter-arrival time.

The above misconception was disproved by a counterexample
provided by Nelissen et al. [38] in 2015.

4.3.1 Enumerating Possible Critical Instants: Nelissen et
al. [38] also developed and applied the necessary condi-
tions for deriving the worst-case response time of task τk
under the above scenario. To analyze the worst case, for
j = 1, 2, . . . ,mk, suppose that the arrival time and finishing
time of the j-th computation segment of a J of task τk are
gj and fj , respectively. By definition, g1 ≤ f1 ≤ g2 ≤ f2 ≤
· · · ≤ gm ≤ fm, and fm − g1 is no more than the worst-case
response time Rk of τk. For constrained-deadline task systems,
the worst-case response time of task τk happens (as necessary
conditions) when

Condition 1: all higher-priority tasks τ1, τ2, . . . , τk−1 only
release their jobs in intervals [gj , fj) for j = 1, 2, . . . ,mk,

Condition 2: gj+1 − fj is Sjk, ∀j = 1, 2, . . . ,m− 1, and
Condition 3: all the jobs are executed with their WCETs.

Therefore, the worst-case response time of task τk can be
obtained by enumerating all possible (mk)

k−1 combinations
based on Condition 1 above. Note that some combinations are
not possible and should be eliminated from the considerations.
For example, the task set presented in Section 4.2 does not

allow task τ1 to release two consecutive jobs to align with
both C2,1 and C2,2 from the same job of task τ2 since this
violates the minimum inter-arrival time of task τ1. Therefore,
such a combination should be eliminated.

However, enumerating all combinations requires
exponential-time complexity. Nelissen et al. [38] also
provided a safe over-approximation by applying mixed integer
linear programming (MILP). Mohaqeqi et al. [37] proposed
to improve the efficiency of the schedulability test of task τk
by using abstract refinement, which constructs an abstract
with an over-approximation of the worst-case response time
of task τk. For example, consider that task τk suspends only
once and the k − 1 higher-priority tasks do not suspend at
all. The abstract refinement starts with the most pessimistic
combination which releases one job of each higher-priority
task τi to align with Ck,1 and another job of each τi to align
with Ck,2. Then, it checks whether the deadline of task τk
can be met. If yes, then, the abstract reveals a safe worst-case
response time to meet the deadline of task τk. If no, one
(arbitrarily) task is selected to be restricted to release one
job aligned with either Ck,1 or Ck,2. The above procedure of
refinement is repeated until a safe conclusion can be made.
This requires also exponential-time complexity.

Moreover, to allow higher-priority tasks to also suspend
themselves, Nelissen et al. [38] converted the higher-priority
self-suspending tasks into ordinary sporadic tasks by intro-
ducing jitters. The original treatment in Section VI in [38]
converted one higher-priority self-suspending task into one
corresponding sporadic task. However, this treatment results
in optimistic analysis. Each computation segment of a higher-
priority task should be treated as an individual sporadic task
with jitter. The treatment in Section VI of [38] remains valid
if each computation segment of a higher-priority task τi is
converted into an ordinary sporadic task with proper jitter.
More detailed explanations can be found in [39].

4.3.2 Offset-Based and Jitter-Based Analyses: Another analyt-
ical approach is to quantify the higher-priority interference by
specifying jitters [7] and offsets [20], [40]. Here, the analyses
in the literature do not assume that the higher-priority tasks
do not suspend themselves. However, jitters have to be set
carefully; otherwise, the quantification of the interference may
be incorrect. For example, the analysis in [7] was shown to be
optimistic in [6], [15].

Without release-time enforcement, two consecutive releases
of a computation segment of a higher-priority segmented
self-suspension task τi may be shorter than the specified
minimum inter-arrival time Ti. Palencia and Harbour [40] used
the dynamic offset concept to represent such behavior. They
proposed to consider the gap between the maximum offset
and the minimum offset as jitter, and then integrate such jitter
when analyzing the worst-case response time of a computation
segment under analysis based on the worst-case interference.
Huang and Chen [20] proposed to use the multi-segment
workload function to quantify the maximum interference from
the higher-priority tasks.

After presenting how to quantify the worst-case interfer-
ence from higher-priority tasks, there are (at least) two ways
to analyze the worst-case response time of a segmented self-
suspension task τk:



• Suspension as Computation (called Joint in [5], [38]):
This method converts all the suspension interval lengths
of task τk into computation demand, which can be imag-
ined to treat task τk as a dynamic self-suspending task.

• As Interference Restarts (called Split in [5], [38]): This
method treats each of the computation segments of task
τk as if the worst-case higher-priority interference restarts,
regardless of the previous computation segments.

It is possible to evaluate all the 2mk combinations (i.e., whether
a computation segment should use the Joint or Split approach)
and take the best combination, since each combination leads to
a safe upper bound of the worst-case response time of τk. How
to model the task under analysis was not explicitly explained
in [40]. Based on the conditions in Eq. (36) and Eq. (37)
in [40], we believe that the split approach was adopted.

4.4 Segment-Level Fixed-Priority Scheduling
In the FRD approach, a computation segment has a fixed

relative deadline. When EDF is applied, it is unnecessary
to force the release time of a computation segment to be
strictly enforced. However, when fixed-priority scheduling is
applied, the release-time enforcement presented in Section 4.2
can reduce the interference from the higher-priority tasks.
Moreover, it is even possible to give an individual priority
level to a computation segment.

Such an approach is called segment(-level) fixed-priority
preemptive scheduling. The approach has been specifically
studied in [19], [28]. However, such an approach has to
be carefully handled. Specifically, the priority assignment
algorithms in [19], [28] used an unsafe schedulability test
to verify the priority assignments. They both optimistically
assume that the traditional critical instant theorem under fixed-
priority scheduling by Liu and Layland [33] holds since the
release of a computation segment is periodically enforced.
Therefore, their analyses optimistically only consider a specific
case which releases higher-priority computation segments at
the same time to interfere with a lower-priority computation
segment under analysis. However, this assumption is incorrect,
due to a counterexample presented in [15].

A revision of [28] is in [27], in which one additional carry-
in computation segment from a task is taken into consideration
in the schedulability test in Section 4 in [27].

4.5 Flawed Designs and Analyses
There have been several flaws in this topic, as mentioned in

the previous discussions. For details, please refer to the recent
technical report by Chen et al. [15].

5 Hybrid Self-Suspension Task Systems
As already stated in the introduction, the dynamic and

segmented self-suspension models have a very high discrep-
ancy regarding flexibility and accuracy. While the dynamic
model is very flexible but inaccurate, the segmented model is
very restrictive but highly accurate. To fill this gap, von der
Brüggen et al. [45] proposed hybrid self-suspension models.
If, compared to the dynamic self-suspension model, additional
information on the tasks is available, those models can be used
with different trade-offs between flexibility and accuracy.

All the hybrid self-suspension models assume that for
each task τi the maximum number of suspension intervals
mi − 1 and therefore the maximum number of computation
segments mi is known in addition to the suspension time Si
and the WCET Ci. Therefore, they are all more precise than
the dynamic self-suspension model as mi is not considered,
and more flexible and less precise than the segmented self-
suspension model as the exact knowledge of the WCETs of
the mi computation segments is not assumed.

The hybrid self-suspension models assume that
each task τi can be described by a set of p
disjunct execution/suspension patterns, each similar to
the patterns used in the segmented self-suspension
model, i.e, τi = {(C1

i,1, S
1
i,1, C

1
i,2, . . . S

1
i,mi−1, C

1
i,mi

),
. . . , (Cpi,1, S

p
i,1, C

p
i,2, . . . S

p
i,mi−1, C

p
i,mi

)}. The hybrid self-
suspension models are further classified into the pattern-
oblivious and pattern-clairvoyant models.

5.1 Pattern-Oblivious Models

Such models assume that details of the execu-
tion/suspension patterns of a task are known offline, i.e.,
during analysis. But, at run time (online), it is not possible
to determine which pattern will be executed when a job of
a task arrives. Therefore, scheduling decisions have to be
taken independently from the executed execution/suspension
pattern. Depending on the concrete knowledge of the
execution/suspension patterns during the analysis, the
following two models were explicitly discussed in [45]:

• Individual Upper Bounds (IUB): for each computation
segment, individual execution time upper bounds are
known, i.e., Ci,j is no more than the individually specified
Cmaxi,j for each j = 1, 2, . . . ,mi. Suspension of a job of
task τi happens at most mi − 1 times and the length of
the j-th suspension interval is at most Smaxi,j for each j =
1, 2, . . . ,mi−1. As the worst-case execution time of a job
of task τi is at most Ci while the maximum suspension
time is at most Si, this results in

∑mi

j=1 C
max
i,j ≥ Ci and∑mi−1

j=1 Smaxi,j ≥ Si. Note that this scenario can also be
applied if the concrete execution/suspension patterns are
unknown as long as Cmaxi,j and Smaxi,j can be determined
for all computation segments and suspension intervals,
respectively. This model is more precise than the dynamic
self-suspension model as the information about the the
number of suspension intervals mi−1 can be considered
in the scheduling decisions.

• Multiple Paths (MP): a task τi is described by p dif-
ferent execution paths with known execution/suspension
patterns, in which a job of task τi can suspend at most
mi− 1 times. This model is more precise than the model
with individual upper bounds as it allows to consider
additional information, e.g., that Cmaxi,1 and Cmaxi,2 are in
different patterns and therefore Ci,1 and Ci,2 cannot be
maximized at the same time. However, as the knowledge
about specific execution/suspension patterns is needed,
this model is less flexible as the model with individual
upper bounds.
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Fig. 1: Comparison of the hybrid self-suspension models with approaches for the dynamic self-suspension model, showing that the schedulability
can be increased when the additional information is used carefully (from [45] with minor changes).

5.2 Pattern-Clairvoyant Model

This model assumes that the execution/suspension pattern
of a job is known both offline and online. Therefore, sche-
duling decisions can be taken for each pattern individually.
This model can for example be applied when it is possible
to determine the executed pattern based on a small set of
input variables. In this case the scheduling decisions can
theoretically be taken for each pattern individually. Therefore
this model is more precise than the pattern-oblivious model
that considers multiple paths. However, due to the possible
large number of patterns it may be necessary to partition
those patterns into groups and consider those groups in the
scheduling decisions to avoid a combinatorial explosion in
the design of scheduling algorithms and the corresponding
scheduling test.

5.3 Evaluations

To show the possible gain by using the hybrid self-
suspension models, von der Brüggen et al. in [45] showed
how SEIFDA [46] can be applied to the hybrid self-suspension
models in the special case that all tasks have only one suspen-
sion interval. In the evaluation, they generated random task sets
where each task is represented by multiple paths. They tested
the schedulability for those task sets under SEIFDA assuming
the different hybrid models, i.e., Oblivious-IUB, Oblivious-MP,
and Clairvoyant, compared to EDF scheduling by converting
suspension as computation (SCEDF) and the state-of-the-art
fixed-priority preemptive scheduling for the dynamic self-
suspension model (PASS-OPA by Huang et al. [23]). The
results are presented in Figure 1 for different lengths of
the suspension intervals (sslen), i.e., short: Si ∈ [0.01(Ti −
Ci), 0.1(Ti−Ci)] moderate: Si ∈ [0.1(Ti−Ci), 0.3(Ti−Ci)],
long: Si ∈ [0.3(Ti−Ci), 0.6(Ti−Ci)]. It can be seen that the
pattern-oblivious model with individual upper bounds already
has a much better acceptance ratio than PASS-OPA. This
gap gets larger if the pattern-oblivious model that considers
multiple paths or the pattern-clairvoyant model is used. This
shows that considering additional information about the execu-
tion/suspension pattern carefully can potentially lead to a huge
gain regarding the schedulability. For details regarding the
evaluations and the hybrid self-suspensions models in general
please refer to [45].

6 Conclusion and Discussions
In light of the increasingly importance of self-suspending

behavior in embedded real-time systems, this paper provides
a survey on the valid solutions and approaches in the state
of the art for scheduling self-suspending tasks and analyzing
their schedulability. We hope that this survey paper can provide
the researchers and designers in real-time systems a technical
summary of the state of the art for uniprocessor systems.

Please note that all the approaches presented in this pa-
per implicitly assume preemptive scheduling. Non-preemptive
scheduling strategies for self-suspending task systems were not
explicitly presented in the literature, but some of the existing
methods and approaches can be directly extended. For the
segmented self-suspension task model, we can additionally
consider the blocking time due to a lower-priority job for
each computation segment. For the dynamic self-suspension
task model, non-preemptive scheduling can only be exploited
when the number of computation segments is bounded. For
such a case, we can also additionally consider the blocking
time due to a lower-priority job for each computation segment,
e.g., in [8], [22], [24]. Therefore, such a treatment can also be
applied for the hybrid self-suspension task model.

The results presented in this paper are hopefully only inter-
mediate research progress, especially for scheduling dynamic
and hybrid self-suspension task systems. Chen [9] has recently
shown that the classical scheduling algorithms, i.e., any fixed-
priority scheduling, EDF, least laxity-first (LLF), and EDZL
(earliest deadline zero laxity), all have unbounded speedup fac-
tors for scheduling dynamic self-suspending tasks. Moreover,
the existing scheduling strategies that are sound in the state of
the art for segmented self-suspension task systems are all based
on FRD strategies. It is unknown whether other treatments
without any FRD enforcement can work well. There are many
open problems ahead of the researchers in this research topic.
We hope to report successful scheduling strategies and tighter
schedulability analyses for self-suspending tasks in the future.
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