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Abstract

In this paper, we investigate the quality of several linear-time schedulability
tests for preemptive and non-preemptive fixed-priority scheduling of
uniprocessor systems. The metric used to assess the quality of these tests is
the resource augmentation bound commonly known as the processor speedup
factor. The speedup factor of a schedulability test corresponds to the smallest
factor by which the processing speed of a uniprocessor needs to be increased
such that any task set that is feasible under an optimal preemptive
(non-preemptive) work-conserving scheduling algorithm is guaranteed to be
schedulable with preemptive (non-preemptive) fixed priority scheduling if this
scheduling test is used, assuming an appropriate priority assignment. We show
the surprising result that the exact speedup factors for Deadline Monotonic
(DM) priority assignment combined with sufficient linear-time schedulability
tests for implicit-, constrained-, and arbitrary-deadline task sets are the same
as those obtained for optimal priority assignment policies combined with exact
schedulability tests. Thus in terms of the speedup-factors required, there is no
penalty in using DM priority assignment and simple linear schedulability tests.

Keywords: Speedup factors; fixed-priority real-time scheduling;
non-preemptive and preemptive scheduling; schedulability tests.

1. Introduction

We consider the sporadic task model, in which a task τi is characterised
by its worst-case execution time (WCET) Ci, its relative deadline Di, and its
period or minimum inter-arrival time Ti. The utilization Ui of task τi is defined
as Ci/Ti.

For a task set τ , if Di ≤ Ti holds for every task τi ∈ τ , the task set is said
to have constrained deadlines. If Di = Ti holds for every task then τ is an
implicit-deadline task set. Otherwise τ is an arbitrary deadline task set.

Earliest-Deadline-First Preemptive (EDF-P) scheduling is an optimal
uniprocessor scheduling algorithm in the sense that if a valid schedule exists
for a task set, then the schedule produced by EDF-P will also meet all
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deadlines [15]. In the non-preemptive case, no work-conserving1 scheduling
policy is optimal, since optimality can require the presence of inserted idle
time. Nevertheless, EDF Non-Preemptive (EDF-NP) scheduling is optimal
among all work-conserving non-preemptive scheduling algorithms [16].

In this paper we explore both fixed priority preemptive (FP-P) and fixed
priority non-preemptive (FP-NP) scheduling, where each task is assigned a
unique fixed-priority which is inherited by all of its jobs. Although
fixed-priority scheduling policies are not optimal with respect to schedulability,
they have been widely adopted by both industry and academia for use in
real-time systems due to their low scheduling overheads and simple
implementation.

A number of different metrics can be used to quantify the quality of different
scheduling algorithms and their schedulability tests. In this paper, we use the
resource augmentation bound or speedup factor [18]. The speedup factor ρ
for FP-P (FP-NP) scheduling is the minimum factor by which the processor
speed needs to be increased to ensure that any task set that is schedulable by
EDF-P (EDF-NP) is guaranteed (according to some schedulability test) to be
schedulable using fixed priorities, assuming an appropriate priority assignment
policy. As with prior work in this area, we assume that speeding up the processor
by a factor of ρ implies that the WCET of each task τi is reduced to Ci/ρ.

We note that while previous work on speedup factors for uniprocessor
systems has mainly focused on determining speedup factors assuming exact
schedulability tests and priority assignment policies that are optimal in terms
of schedulability, it is also interesting to explore how the required speedup
factor changes with both the priority assignment policy and the schedulability
tests used. In particular, is there a penalty in terms of a larger speedup factor
for using a simple priority assignment policy such as Deadline Monotonic
(DM) and sufficient schedulability tests that run in linear-time? Answering
this question is the focus of the paper.

Contribution: We draw together results, either explicitly or only
implicitly shown in previous publications [21, 8, 4, 10, 22] to build an overall
picture of the exact speedup factors for linear-time schedulability tests
combined with DM priority ordering. We note that since [10] and [22, 8] were
developed in parallel it was not possible for the authors of those papers to see
the joint implications of their work until they were published. We complete
this interesting picture by deriving upper bounds on the speedup factors for
preemptive and non-preemptive fixed priority scheduling of arbitrary-deadline
task sets assuming linear-time schedulability tests and DM priority
assignment.

2. Speedup-Optimal Priority Assignment

With Deadline-Monotonic (DM) priority assignment higher-priorities are
assigned to tasks with shorter relative deadlines, with any ties broken
arbitrarily to give unique priorities. DM priority assignment is what we refer
to in this paper as schedulability-optimal for constrained-deadline task sets

1A scheduling algorithm is called work-conserving if it never idles the processor when there
is a job ready to be executed.
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under FP-P scheduling [20]. A priority assignment policy P is referred to as
schedulability-optimal with respect to a class of task sets (e.g. those with
constrained-deadlines) and a fixed priority scheduling algorithm (e.g. FP-P) if
all task sets in the class that are schedulable with some other priority
assignment policy are also schedulable using priority assignment policy P .

DM priority assignment is not schedulability-optimal for FP-P scheduling
of arbitrary-deadline task sets [19] or for FP-NP scheduling of any of the three
classes of task sets, i.e., implicit-, constrained-, and arbitrary-deadline [17]. In
these cases, Audsley’s algorithm [1] can be used to find a schedulability-optimal
priority assignment. It is also applicable to FP-P scheduling of systems in the
presence of blocking [6].

We now introduce the concept of a speedup-optimal priority assignment for
fixed priority scheduling. We refer to a priority assignment policy as
speedup-optimal if the speedup factor that it requires when combined with an
exact schedulability test is no larger than the speedup factor required by any
other priority assignment policy. Again, this can be applied to different classes
of task set and different fixed priority scheduling algorithms (FP-P or FP-NP).
The optimality of a priority assignment policy with respect to schedulability
implies that it is also speedup-optimal for the same class of task sets; however,
non-optimality with respect to schedulability does not necessarily imply
non-optimality with respect to the speedup factor required. This leads to the
following interesting observation.

The recent work of Davis et al. [10] and von der Brüggen et al. [22] shows
that DM priority assignment is a speedup-optimal priority assignment policy for
fixed priority scheduling in all of its forms, i.e. FP-P and FP-NP scheduling of
implicit-, constrained-, and arbitrary deadline tasks sets.

Since DM priority assignment is schedulability-optimal for implicit and
constrained deadline task sets under FP-P scheduling, this implies that it is
also speedup-optimal in those cases. Somewhat surprisingly, Deadline
Monotonic priority assignment is also speedup-optimal for both FP-P
scheduling (Theorem 1 in [10]) and FP-NP scheduling (Theorem 7 in [10]) of
task sets with arbitrary deadlines. These theorems show that the exact
speedup factors are unchanged when DM priority assignment is used in place
of Audsley’s algorithm [1]. Similarly, DM priority assignment is also
speedup-optimal for task sets with implicit or constrained deadlines under
FP-NP scheduling, since the upper bounds on the speedup factors proven for
DM priority assignment in those cases [22] match the lower bounds determined
assuming Audsley’s algorithm [11, 10]. This implies that the bounds are exact
for both DM priority assignment and schedulability-optimal priority
assignment using Audsley’s algorithm.

In the remainder of the paper, we show that the upper bounds on the
speedup factors for fixed priority scheduling using DM priority assignment are
the same as the lower bounds (proven for exact tests and schedulability
optimal priority assignment policies) even when simple linear-time
schedulability tests are used. Hence we show that similar to the simplification
from schedulability-optimal priority assignment to DM priority assignment,
the simplification from exact pseudo-polynomial or exponential schedulability
tests to simple linear-time sufficient tests also brings no additional penalty in
terms of the speedup factors required.
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3. Linear-Time Schedulability Tests

We focus only on linear-time schedulability tests for fixed priority scheduling
with DM priority assignment (for brevity referred to as DM scheduling). We
assume that there are n sporadic tasks and that those tasks are indexed in
order of non-decreasing relative deadlines, i.e., D1 ≤ D2 ≤ D3 ≤ · · · ≤ Dn.
Suppose that the first k − 1 tasks are already verified to be schedulable under
DM scheduling. We focus on testing the schedulability of task τk in linear time.
We note that all of the tests for fixed-priority scheduling in this section can be
efficiently implemented by using appropriate data structures to amortize the
overall time complexity to O(n) for testing all n tasks. This is discussed in the
appendix.

3.1. Speedup Factors

We first introduce the technique that we will use to prove the speedup factors
in the case of arbitrary-deadline task sets.

Baruah et al. [2] derived an exact test for arbitrary deadline task sets
scheduled under EDF-P based on the concept of the demand bound function.
We refer to

dbfi(t) = max

{
0,

⌊
t−Di

Ti

⌋
+ 1

}
Ci (1)

as the demand bound function of task τi for a time interval of length t. Baruah
et al. [2] showed that a task set is schedulable under EDF-P if and only if 1)
the total utilisation is no greater than 1 (i.e.

∑n
i=1 Ui ≤ 1) and 2) for any time

interval of length t, the total processor demand dbf(t) requested by the task set
is no greater than the length of the interval.

dbf(t) =

n∑
i=1

dbfi(t) ≤ t (2)

George et al. [17] extended this demand bound test to the non-preemptive
case, introducing a blocking factor B(t). Hence an arbitrary deadline task set is
schedulable under EDF-NP if and only if 1) the task set utilisation is no greater
than 1, and 2) for any interval of length t ≥ D1 (where D1 is the smallest task
deadline)

dbf(t) +B(t) ≤ t (3)

Here, the maximum blocking time B(t) for a time interval of length t is defined
as

B(t) = max
∀i,Di>t

(Ci −∆) (4)

with ∆ > 0 but infinitesimally small [10].
In contrast, the maximum blocking timeBk for task τk under non-preemptive

DM scheduling is defined as

Bk = max
∀τi∈lp(k)

(Ci −∆) (5)

where lp(k) is the set of tasks with priorities lower than that of task τk. Note, as
the tasks are in DM priority order, none of these lower priority tasks can have a
deadline that is shorter than that of task τk. Assuming DM priority order, then
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it follows that B(Dk) ≥ Bk with the two quantities being equal unless there is
some lower priority task with the same deadline and a long execution time.

In the following, we assume the more general form (3) of the demand
bound test for both preemptive and non-preemptive scheduling, assuming in
the preemptive case that B(Dk) = Bk = 0. If we can prove that any task set φ
that is unschedulable according to some schedulability test for FP-P (FP-NP)
scheduling is also unschedulable under EDF-P (EDF-NP) on a processor
whose speed has been reduced, i.e., scaled by a factor of 1/ρ, then that suffices
to show that ρ is an upper bound on the speedup factor for the test.
Therefore, to prove an upper bound on the speedup factor ρ for a linear-time
schedulability test for preemptive or non-preemptive DM scheduling, we only
need to show that failure of the schedulability test implies either

n∑
i=1

Ui >
1

ρ
(6)

or
dbf(Dk) + B(Dk)

Dk
>

1

ρ
(7)

which in turn implies that the task set cannot be scheduled under EDF-P (EDF-
NP) on a processor of speed 1/ρ. Assuming DM priority order, we observe the
following relationship which we use later.

dbf(Dk) + B(Dk)

Dk
≥
Ck +

∑k−1
i=1 Ci +Bk
Dk

(8)

We note that any lower bound speedup factor for FP-P (FP-NP) versus
EDF-P (EDF-NP) proven for an exact test for FP-P (FP-NP) is also valid for
any sufficient test for the same scheduling algorithm. This is the case because
by definition, an exact test dominates any sufficient test for the same algorithm,
since there are no task sets which are deemed schedulable by the sufficient test
that are not also schedulable according to the exact test. In the following, we
provide a set of speedup factor upper bounds for simple linear-time sufficient
schedulability tests. Since these upper bounds are the same as the lower bounds
(and exact values) previously published for exact tests, the speedup factors are
also tight (exact) for the linear-time tests.

3.2. Preemptive DM Scheduling

Implicit-Deadlines. The well-known Liu and Layland bound [21] provides a
schedulability test by verifying that

k∑
i=1

Ui ≤ k(21/k − 1) (9)

Alternatively, the hyperbolic bound by Bini et al. [3] can be used to verify
whether

k∏
i=1

(1 + Ui) ≤ 2 (10)
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Since EDF-P can schedule all implicit-deadline tasks sets with utilisation not
exceeding 1 [21], both (9) and (10) lead directly to linear-time schedulability
tests with an exact speedup factor of 1/ ln 2.

Constrained-Deadlines. The linear-time test provided by Chen et al. in Section
5.1 of [8] can be used to determine schedulability by verifying the hyperbolic
form (

Ck +
∑
τi∈hp2(τk) Ci

Dk
+ 1

) ∏
τi∈hp1(τk)

(1 + Ui) ≤ 2 (11)

where hp1(k) is the set of tasks with higher-priority than τk that have periods
less than Dk, and hp2(τk) is the set of tasks with higher-priority than τk that
have periods greater than or equal to Dk. Theorem 2 in [8] proves that the
upper bound speedup factor for this test is 1/Ω ≈ 1.76322. Since this is the
same as the lower bound proven in [13] it is also exact.

Arbitrary-Deadline. The linear-time test we use in this case is a weaker form of
the response time upper bounds provided by Davis and Burns in Eq. (26) in [9]
and Bini et al. in Eq. (11) in [4]. Schedulability can be verified by checking if

Dk ≥
Ck +

∑k−1
i=1 Ci

1−
∑k−1
i=1 Ui

(12)

If task τk cannot pass the above linear-time test, then re-arranging (12), it
means that

1 <
Ck +

∑k−1
i=1 Ci

Dk
+

k−1∑
i=1

Ui (13)

Therefore, it must be the case that either or both of (i)
Ck+

∑k−1
i=1 Ci

Dk
> 0.5 and

(ii)
∑k−1
i=1 Ui > 0.5 hold. From (6), (7), and (8) this implies that the task set

cannot be scheduled on a processor of speed 0.5 under EDF-P, and hence an
upper bound on the speedup factor is 2. Since this is the same as the lower
bound proven in [10] it is also exact.

3.3. Non-Preemptive DM Scheduling

Implicit-Deadlines and Constrained-Deadlines. The linear-time schedulability
test is provided by von der Brüggen et al. in Section 4 in [22]. Schedulability is
determined by verifying whether(

Bk + Ck +
∑
τi∈hp2(k) Ci

Dk
+ 1

) ∏
τi∈hp1(k)

(1 + Ui) ≤ 2 (14)

where hp1(k) is the set of tasks with higher-priority than τk that have periods
less than Dk, and hp2(τk) is the set of tasks with higher-priority than τk that
have periods greater than or equal to Dk. Theorem 5 in [22] proves that the
upper bound speedup factor for the above test is 1/Ω ≈ 1.76322, compared to
EDF-NP. Since this is the same as the lower bound proven in [11] and [10] it is
also exact.
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Constraints Preemptive Non-Preemptive

lower bound
upper bound
(DM, linear)

upper bound
(DM, expo.)

lower bound
upper bound
(DM, linear)

upper bound
(DM, expo.)

implicit-
deadline

1/ln(2) ≈ 1.44269 [21]
1/Ω ≈

1.76322 [11]
1/Ω ≈

1.76322 [22]
1/Ω ≈

1.76322 [22]
constrained-

deadline
1/Ω ≈

1.76322 [13]
1/Ω ≈

1.76322 [8]
1/Ω ≈

1.76322 [13]
1/Ω ≈

1.76322 [11]
1/Ω ≈

1.76322 [22]
1/Ω ≈

1.76322 [22]
arbitrary-
deadline

2 [10] 2 (this paper) 2 [12] 2 [10] 2 (this paper) 2 [11]

Table 1: Speedup Factors: lower bounds, upper bounds for linear-time schedulability tests,
and upper bounds for pseudo-polynomial / exponential-time schedulability tests.

Arbitrary-Deadlines. The linear-time test we use is a weaker form of the
response time upper bounds provided by Davis and Burns in Eq. (33) in [9]
and Bini et al. in Eq. (14) in [4]. Here, schedulability may be verified by
checking:

Dk ≥
Bk + Ck +

∑k−1
i=1 Ci

1−
∑k−1
i=1 Ui

(15)

Therefore, if task τk cannot pass the above linear-time test, it means that

1 <
Bk + Ck +

∑k−1
i=1 Ci

Dk
+

k−1∑
i=1

Ui (16)

Following the same logic as before, it must be the case that either (i)
Bk+Ck+

∑k−1
i=1 Ci

Dk
> 0.5 or (ii)

∑k−1
i=1 Ui > 0.5 or both (i) and (ii) hold. From (6),

(7), and (8) this implies that the task set cannot be schedulable on a processor
of speed 0.5 under EDF-NP, and hence an upper bound on the speedup factor
is 2. Since this is the same as the lower bound proven in [10] it is also exact.

4. Summary and Conclusions

In this paper, we showed the somewhat surprising result that Deadline
Monotonic (DM) priority assignment combined with simple linear-time
sufficient schedulability tests for fixed priority scheduling results in exact
speedup factors with respect to EDF that are identical to those obtained for
optimal priority assignment and exact pseudo-polynomial- or exponential-time
schedulability tests. This result holds across all three classes of task set
(implicit-, constrained- and arbitrary-deadline) as well as for both preemptive
and non-preemptive scheduling (FP-P and FP-NP).

We note that there are other linear-time schedulability tests for fixed-priority
scheduling. Several of which are superior to the very simple linear-time tests
we used in this paper. These include the more precise quadratic bound by
Bini and Parri [5] and Chen et al. [7] for arbitrary-deadline task sets and the
more precise hyperbolic bound for constrained-deadline task sets under non-
preemptive fixed-priority scheduling by von der Brüggen et al. [22]. Since these
tests dominate the ones used in this paper, they also have speedup factors that
are the same as those for exact tests.

Table 1 summarises the results, giving the speedup factor lower bounds
(previously proven for exact tests and thus applying to all valid sufficient
tests), the upper bounds for linear-time tests assuming DM priority
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assignment (shown in this paper) and the upper bounds for exact
pseudo-polynomial or exponential time schedulability tests assuming DM
priority assignment. Note the values for these upper bounds are the same as
those for exact tests using Audsley’s schedulability-optimal priority
assignment algorithm [1], which are not separately shown.

Finally, we note that the exact speedup factors for arbitrary deadline task
sets derived for the comparisons between FP-NP and FP-P and between FP-NP
and EDF-P by Davis et al. in [14] also hold in the case where (non-optimal)
DM priority assignment and a linear time sufficient schedulability test are used
for FP-NP. Thus DM priority assignment combined with a linear-time sufficient
test is also speedup optimal when comparing non-preemptive versus preemptive
scheduling paradigms.
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Appendix: Linear-Time Schedulability Tests

Here, we explain how (9), (10), (11), (12), (14), and (15) can be efficiently
implemented by using appropriate data structures to amortize the overall time
complexity to O(n) for testing all n tasks, i.e., k = 1, 2, . . . ,n. The blocking time for
all tasks can be computed in O(n) time if we compute it starting with the lowest
priority task and save the values in an array. The linear-time complexity for (9),
(10), (12), (15) is obvious since we just need to incrementally include a constant
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number of additional terms when moving from testing task τk to task τk+1. For
example, in (15), we simply have to store

∑k−1
i=1 Ui and

∑k−1
i=1 Ci in two variables and

increase them by Uk and Ck, respectively, when we test τk+1.
The tests in (11) and (14) are also of linear time complexity, provided that the

orders of tasks by their periods and their relative deadlines (from the smallest to the
largest) are given. The details were already discussed in [22]. Here, we summarize the
reasons. For FP-NP and FP-P, when we move from τk to τk+1, we want to analyze
the changes in hp1(k) to hp1(k + 1) and hp2(k) to hp2(k + 1) for this step. As the
relative deadline is increasing with the task priority, no task can ever move from
hp1(k) to hp2(k+ 1). Assume τk is placed in hp2(k). Then all tasks τi ∈ hp2(k) with
Dk ≤ Ti < Dk+1 will be moved to hp1(k + 1). This can be determined in O(1)
time for each task (in an amortized manner) by using a proper data structure, e.g.,
another array sorted according to the periods and some variables to store the internal
information.
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