technische universitat
dortmund

Probabilistic Schedulability Tests for
Uniprocessor Fixed-Priority Scheduling

under Soft Errors

Kuan-Hsun Chen and Jian-Jia Chen

Department of Informatics, TU Dortmund University, Germany

https://Is12-www.cs.tu-dortmund.de/

Citation: 10.1109/SIES.2017.7993392

BIBTEX:

@inproceedings{DBLP:conf/sies/ChenC17,

author =

title =

booktitle

pages
publisher
year

url

doi

{Kuan{-}Hsun Chen and

Jian{-}Jia Chen},

{Probabilistic schedulability tests for uniprocessor fixed-priority
scheduling under soft errors},

{12th {IEEE} International Symposium on Industrial Embedded Systems,
{SIES} 2017, Toulouse, France, June 14-16, 2017},

{1--8},

{{IEEE}},

{2017},

{https://doi.org/10.1109/SIES.2017.7993392},
{10.1109/SIES.2017.7993392},

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works.

CS I2 e

https://ls12-www.cs.tu-dortmund.de/
10.1109/SIES.2017.7993392

Probabilistic Schedulability Tests for Uniprocessor
Fixed-Priority Scheduling under Soft Errors

Kuan-Hsun Chen and Jian-Jia Chen
Department of Informatics, TU Dortmund University, Germany
Email: {kuan-hsun.chen, jian-jia.chen} @tu-dortmund.de

Abstract—Due to rising integrations, low voltage operations,
and environmental influences such as electromagnetic interfer-
ence and radiation, transient faults may cause soft errors and
corrupt the execution state. Such soft errors can be recovered by
applying fault-tolerant techniques. Therefore, the execution time
of a job of a sporadic/periodic task may differ, depending upon
the occurrence of soft errors and the applied error detection and
recovery mechanisms. We model a periodic/sporadic real-time
task under such a scenario by using two different worst-case
execution times (WCETSs), in which one is with the occurrence of
soft errors and another is not. Based on a probabilistic soft-error
model, the WCETs are hence with different probabilities. In this
paper, we present efficient probabilistic schedulability tests that
can be applied to verify the schedulability based on probabilistic
arguments under fixed-priority scheduling on a uniprocessor
system. We demonstrate how the Chernoff bounds can be used to
calculate the task workloads based on their probabilistic WCETs.
In addition, we further consider how to calculate the probability
of /-consecutive deadline misses of a task. The pessimism and the
efficiency of our approaches are evaluated against the tighter and
approximated convolution-based approaches, by running exten-
sive evaluations under different soft-error rates. The evaluation
results show that our approaches are effective to derive the
probability of deadline misses and efficient with respect to the
needed calculation time.

I. INTRODUCTION

Due to rising integrations, low voltage operations, and
environmental influences such as electromagnetic interference
and radiation, transient faults may occur and flip a bit in the
underlying hardware [3], which may corrupt the execution
state or cause soft errors. Depending upon types and locations,
a transient fault may severely affect the system behavior
or even lead to system failures. Such transient faults can
be resolved by adding additional circuits in the hardware
or by applying software based fault tolerance techniques,
e.g., Re-execution, Checkpoint-Based recovery, Dual Mod-
ular Redundancy (DMR), and Triple Modular Redundancy
(TMR) [9, 12, 18]. However, the correctness of the system
behavior depends not only on the functional correctness, but
also on the timeliness. Even if all the transient faults can
be handled properly, the additional computation incurs an
execution time overhead in most of the cases if the additional
circuit overhead is prohibited.

One natural assumption when applying fault-tolerant soft-
ware techniques is that the system functions normally most of
time, which aligns with the safety standards in the industry
requiring low (or very low) probability of failure (e.g., due

978-1-5386-3166-9/17/$31.00 © 2017 IEEE

to deadline misses) such as IEC-61508 [13] and ISO-26262
[14]. Therefore, it is meaningful to use probabilistic worst-
case execution times (WCETs) to model the execution of
a task depending upon the occurrence of soft errors. This
allows the system designer to provide probabilistic arguments
based on the occurrence of error recovery. Otherwise, the
system designer has to take the worst-case execution time (by
assuming that the recovery always takes place) in the response
time analysis, which can be very pessimistic.

To deal with such scenarios using probabilistic WCETs,
probabilistic response-time analyses, e.g., [2, |1, 16], can be
applied. Diaz et al. [1 1] developed a framework for calculating
the deadline miss probability, but it only works for small
examples as reported in [I11] (e.g., 2 tasks with 7 jobs in
the hyper-period), which is practically impossible to apply for
generating the entire response time distribution. Axer et al. [2]
proposed to evaluate the response-time distribution and iterate
over the activations of job releases for non-preemptive fixed-
priority scheduling. Maxim et al. [16] provided a probabilistic
response time analysis by assuming probabilistic minimum
inter-arrival times and probabilistic worst-case execution times
on the fixed-priority scheduling policy. Tanasa et al. [19]
developed a mathematical way to approximate the calculation
of probabilistic response time distributions.

Overall, the aforementioned approaches are all based on
convolution operations to calculate the probability density
functions, indicating exponential time complexity. Naturally,
they are computationally expensive to be applied when the
number of tasks or jobs is large. Several approximation tech-
niques like re-sampling [1 6], dynamic-programming with user-
defined granularity, etc. may reduce the time complexity by
introducing manual configurations. However, there is no fun-
damental analysis, to the best of our knowledge, to determine
the required approximation needed in the above methods for
balancing the trade-off between the accuracy and complexity.
From our experiments, we note that the resulting error may be
significant or the analysis is still not able to finish even with
the approximation techniques (in Section VI). Recently, Xu
et al. in [20] presented how to obtain the maximum number
of deadline misses in a given time window. However, their
method does not provide the probability of deadline misses.

In this paper, we alternatively provide efficient schedu-

lability tests by using Chernoff bounds' and the moment-
generating function (mgf) [17] (in Section IV) to calculate the
probability of deadline misses without using any convolution.
We notice that the convolution-based analyses are not neces-
sary when our interest is a safe upper bound on the probability.
Since our Chernoff-bound-based analyses are more efficient
(at a price of less accuracy of the probability), we can further
extend to handle more general cases for /-consecutive deadline
misses. To the best of our knowledge, our paper is the
first work providing the upper bound on the probability of
consecutive deadline misses of a specific task. Please note
that, our approaches are not better in terms of accuracy of
the probabilistic arguments, but they are essentially much
faster than the convolution-based approaches and have better
applicability. In the evaluation, we present how pessimistic
and efficient the derived bound is, comparing to the tighter
and approximated convolution-based approaches in [16].
Our Contributions: Instead of striving for a probabilistic
response time analysis, in this paper, we intend to provide ef-
ficient and sufficient (probabilistic-based) schedulability tests
under fixed-priority scheduling to obtain the probability of
deadline misses of a given task 7. We further consider the
probability of /-consecutive deadline misses. Our contributions
are as follows:

« Based on an assumption that the execution time of a job
is independent from other jobs, we adopt the moment-
generating functions and the Chernoff bounds as our
backbone to safely bound the probability that the released
workload in a specified time interval cannot finish in the
given time interval in Section III.

« Based on the above backbone, we develop two prob-
abilistic analyses to evaluate the upper bounds on the
probability of deadline misses and /-consecutive deadline
misses for any positive integer £ in Section IV.

« We show the relationship between the upper bound on the
probability of /-consecutive deadline misses and the spec-
ified error rate by conducting extensive simulations based
on synthesized task sets under different configurations.
The pessimism and the efficiency of our approaches are
also evaluated by comparing with the tighter and approx-
imated convolution-based approaches [16] in Section VI.

II. SYSTEM MODEL AND NOTATION

In this section, we first review the task and scheduling
models adopted in this paper. After that, the error handling
model is introduced and the studied problem is defined.

A. Task and Scheduling Models

Given a set of m independent sporadic tasks I' =
{m1,72, -+ ,Tn} In a uniprocessor system, each task 7; has
a minimum inter-arrival time (or period) 7;, which specifies
the minimum time between two consecutive job releases of
7;, and a deadline D;, which specifies the relative deadline of

IChernoff bounds could give upper limits on the probability that a sum of
random variables is greater or smaller than a given value.

each job of task 7;. That is, a job of task 7; released at time ¢,
must be finished before or at time t, + D; and the next job of
task 7; must be released at or after time ¢, + 7;. Each task has
two different worst case execution times C{* > C depending
on the occurrence of soft errors that are explained in detail in
Section II-B. In this paper, we consider two types of task sets:
1) The relative deadline D, of each task 7; is equal to its period
T;,i.e., D, = T; V1; € T, so-called implicit-deadline task sets,
or 2) D, < T; Vr; € T, so-called constrained-deadline task
sets.

Throughout this paper, we assume a preemptive fixed-
priority scheduling policy where the priority of a task cannot
be changed during runtime. This policy is widely used in the
industrial practice and is supported in most real-time operating
systems. The tasks in this paper are indexed from 1 to n; where
71 has the highest priority and 7,, has the lowest one.

B. Error Handling Model

To handle soft errors induced by transient faults, we assume
that the tasks can be protected by certain fault tolerance
techniques, so that soft errors may only affect the execution
time without silent data corruption or even system crash. Two
different worst case execution times (WCETSs) are assumed for
a task. In an abstract view, if there is no fault occurred during
the execution of task 7;, the execution is a normal execution
with a smaller WCET denoted as C}¥. If there is a fault
detected, this job of task 7; has a longer WCET denoted as
CZA for potential error recovery for an abnormal execution, i.e.,
C# > CON. In this model, we assume that the fault detection is
done at predefined checkpoints or the end of a job execution.
This means, the overhead of the fault detection is part of C’Z»N .
These values can be specified depending upon the used fault
tolerance techniques. We assume the occurrence of soft errors
can be modeled by a given probability P#*, which aligns with
the probability of task 7; executing in abnormal executions.
We use the same assumption in [2] that the probability IF’{‘ is
independent of previous errors and executions.

For the simplicity of presentation, we only consider two
different WCETs for each task throughout the paper, but the
proposed approaches are applicable for any general probabilis-
tic distributions. We will explain how this assumption can be
relaxed in Section V.

C. Probabilistic Deadline Misses

The proposed probabilistic analyses are designed to provide
a probabilistic guarantee for a specific task 7 that calculates
the upper bound on the probability of deadline misses based on
probabilistic WCETs. The upper bound probability of deadline
misses is defined as follows:

Definition The probability of deadline misses of task T,
denoted by ®y, is an upper bound on the probability that
a job of task Ty is not finished before its (relative) deadline
Dy.

In addition to the probability of deadline misses, we also
consider the upper bound on the probability of ¢-consecutive

deadline misses. We use & to &, , to represent the case for
¢-consecutive deadline misses in Section IV-B.

III. BACKBONE OF OUR ANALYSES

To calculate the probability of deadline misses of task 7y,
we analyze the higher-priority workload released from 0 to t,
for certain specified ¢ > 0. Suppose that hp(7x) is the set of
tasks with higher priority than 75, and hep(7y) is hp(7)U{7% }.
For a task 7; in hp(7y), suppose that p;; jobs are released to
interfere task 75 up to time ¢, detailed in Section IV. We also
define py ; as the number of jobs of task 7 in this analysis
window.

The workload of the jobs released by the tasks in hp(7x)
and task 7 from 0 to ¢ is the sum of prs + 32, cpoiry) Pist
job’s execution time. In this paper, we use the moment
generating function (mgf) of a random variable [17], which
is an alternative specification of its probability distribution.

Since there are two alternative WCET values, i.e.,
{CA,CN} for task 7; in our task model, the mgf of the
(worst-case) execution time of task 7; with respect to a given
real number s is

mgf;(s) = exp(C{' - 5)- P +exp(C]¥ - 5)- (1-Pf) (1)

In fact, the mgf can be used for any execution time distri-
butions. Assume each task 7; has v; number of (but finite)
possible values of execution time Cf, and each of them is
associated to a probability P/. Eq.(1) can be generalized to

mgf; (s) =iexp(03~ s)- P)
j=1

For the simplicity of presentation, we only use Eq.(1) in the
rest of the paper.

Since the execution times of the jobs under considerations
are all independent, the probability distribution of the sum
of the execution time of these jobs can be defined as the
multiplication of their mgfs. Therefore, the distribution of the
sum of the (worst-case) execution time of these jobs is

[T (mef;(s)". 3)

Ti Ehep(Tk)

mgfhep(-rk) (S) =

Suppose that S is the sum of the (worst-case) execution
times of these jobs in hep(7y) from time O to time ¢. We
are interested in deriving the probability for the case S! >
t. This can be derived by using the above mgf, and can be
approximated by using the Chernoff bounds as follows:

Lemma 1: Suppose that S* is the sum of the execution times

of the prt + 3. cpp(ry) Pist J0bs in hep(Ty).
mgf S
P(S" > t) < min &b () (3)))
exp(s-t)
Proof From Lemma 2.9 in [6] and Pages 63-65 in [17], for a

random variable X defined by a moment generating function
mgf(s) for s > 0, the definition of Chernoff bounds is:

P(X >t) < mgf(s)/exp(s-t),Vs > 0. %)

Therefore, a safe upper bound on the probability that S* > ¢
under the moment generating function defined in Eq. (3) is
equivalent to Eq. (4).

With Eq. (4), we can obtain the upper bound on the
probability that the total released workload from hep(7y) is
not able to finish at time point ¢. Although Chernoff bounds
are pessimistic, it is the key of this paper to give the sufficient
test in a quick manner.

IV. PROBABILISTIC TESTS

Here we first show how to obtain a probabilistic upper
bound ®; for a specific task 7, based on the condition
in Eq. (4) and propose a k-point sufficient test. After that,
we further consider how to obtain an upper bound on the
probability of /-consecutive deadline misses. Throughout this
section, we explicitly focus our attention on the analyses of
one task 7. Such analyses could be applied to each task in
any given task sets.

A. Probability of Deadline Misses

Traditionally, if we are only interested in validating the
schedulability for constrained-deadline sporadic task sets in
uniprocessor systems in the worst case, the well-known time-
demand analysis (TDA) [15] can be applied. That is, if

Gt Y H}Cﬁt, (©)

richp(re) | "

3t|0<t§Dk,

then task 7y, is schedulable under the fixed-priority scheduling
algorithm, where C}, and C; in our model can be C;f and C{‘,
respectively. The following theorem shows that we can safely
extend the above test in Eq. (6) to a probabilistic version and
apply the Chernoff bounds in Eq. (4) to calculate a safe upper
bound on the probability of deadline misses.

Theorem 1: Assume a given set of constrained-deadline (or
implicit-deadline) sporadic tasks I

1) If the condition in Eq. (6) holds, then the probability of
deadline misses of task 7 is 0.

2) Otherwise, the probability of deadline misses of task 7y
is upper bounded by @y, defined as follows:

= i t>
Dy, Oglérlljk P(S* > t), @)

where P(S? > t) is derived by taking the right-hand side
from Eq. (4) under p; ; = {Ti for each task 7; in hp(7y)
and pj; = 1.

Proof The first assertion based on TDA holds based on
the worst-case arguments [15]. We only prove the second
assertion. We first prove why testing ¢ in the range (0, Dy]
for 75, is sufficient. Since the jobs of 7, are only preempted
by higher-priority jobs in hp(7y) and preempts any lower-
priority jobs, we can safely remove any lower-priority jobs
and only take 7, ..., 7% into consideration. Suppose a job of
task 75 is ready at time ¢’ with completion time ¢g, in which
tr —t' > Dj. Let t_; be the latest instant before tg, at
which 1) either the processor idles at time t_; or 2) all the

teLy 10 20 | 30 | 40 45 50 60 70 75
arg,—, min(P(S7 > 1)) | 54999 | 54799 | 3.72 | 0.6214 | 0.6358 | 49155 | 0.6483 | 0.711 | 0.7216
mingo(P(S* > t)) 1.0 10 | 1.0 | 0.1041 | 0.05551 | 1.0 | 0.02921 | 0.00049 | 0.00024

TABLE I: Corresponding probabilities of deadline misses on all discretized points ¢ in L gathered from Lemma 2.

jobs of task 7 released strictly before ¢_; have finished their
executions. That is, from ¢_; to tp, the processor executes
only the jobs of task 74 and hp(7y) that are released after or
at _;. Such a time point {_; always exists, i.e., the starting
time of the system.

Now, we remove all the jobs executed before t_; from the
schedule. The new schedule from ¢_; to tg is the same as the
original schedule, in which only jobs arrived at or after ¢t_;
are executed. It is possible that there are multiple jobs of task
T, executed in the time interval [t_1,tr). We consider two
cases:

o Case 1, there is only one job of task 75 executed in the
time interval [t_1,tg): We can move the release of the
job of task 75, from ¢’ to t_;. The response time of the
job of task 7 is not decreased.

o Case 2, there are at least two jobs of task 75 executed
in the time interval [t_;,tg): By the definition that the
schedule is busy for executing either task 7, or hp(7y)
in [t_1,tR), the response time of the first job of task 7
executed in this window must be greater than 7},. We can
move the release time of this first job of task 75 to t_1
as well. The response time of the first job of task 7 in
the time interval [t_1,1R) is still greater than T}.

In short, in both cases above, we can safely consider that
task 7, releases a job at time f_;. In the first case, the
deadline misses happen when the accumulated workload (sum
of the requested execution time of the jobs released by 75 and
hp(7x)) executed from ¢_; to t_q +¢ is greater than ¢ for any
0 <t < Dyg. In the second case, the deadline misses happen
when the accumulated workload from ¢_; to t_; +¢ is greater
than ¢ for any 0 < t < T}. By the assumption Dy < Ty, the
probability that the accumulated workload executed from ¢_1
to t_1 +t is greater than or equal to ¢ for any 0 <t < Dy is

a safe upper bound of the probability of deadline misses.
For notational brevity, let £_; be 0. There are at most ’VT%_‘
jobs of task 7; and one job of task 74 released from time 0
to time ¢ for any 0 < ¢t < Dj. When a job of task 7, misses
its deadline, by the above analysis, we can safely take {TLZ—‘
jobs of task 7; and one job of task 7 and evaluate the sum of
their execution times up to time ¢. As a result the condition in
Eq. (7) provides an upper bound on the probability of deadline

misses of task 7. O

However, there is an infinite number of points in the interval
(0, Dg] in Eq. (7). The following lemma shows that it is
sufficient to test only a pseudo-polynomial number of time
points:

Lemma 2: Let L be a set of time interval lengths, where
Li = {r -Ti|m € hp(ri);r =1,...,|Di/T:]} U {Ds}. The

upper-bounded probability @, of deadline misses derived by
using Eq. (7) is exactly the same as only testing the discretized
points ¢ € Ly, defined as follows:

®;, = min P(S'>1t), 8

k= mnin, (5" =1) (8)

where P(S* > t) is derived by taking the right-hand side
from Eq. (4) under p;; = TLJ for each task 7; in hp(7y) and

Pkt = 1.

Proof Suppose for contradiction that the minimum P(S* > ¢)
(by using Eq. (7)) happens when ¢ = ¢’ and t’ lies in an interval
(a, B), where « and 3 are two consecutive discretized points in

Ly, ie., P (y € Ly and v € (a, 8)). More specifically, [%—/-‘ is

B
the same as {T—‘

each task 7; in hep(7y), we know that p; » is also the same
as p; g
With this, mgf),,,,,,(s) is the same when ¢ is set to ¢’

and S for any s > 0. Therefore, for any given s > 0, we

mgf s mgf s
have ge;;fs(%() ge;‘;fs(r;;))() since B > t, in which the

contradiction is reached. O

for any task 7; € hep(7y). Therefore, for

To efficiently analyze the probability of deadline misses, by
the definition in Eq. (8), we can select a few testing points
in L and the minimum value among the probability in these
points is still a safe upper bound on the probability of deadline
misses. We here introduce a k-point probabilistic deadline-
miss test to trade off the time complexity with the quality
of delivered results, which is motivated by Chen et al. in [7]
and Bini et al. in [5]. By following the rationale, we define &
selected points by the k — 1 higher-priority tasks and task 7.
At each point ¢, we verify if the total released workload up
to time ¢ from hep(7y) can be finished. With Theorem 1, the
proposed k-point probabilistic deadline-miss test is defined as
follows:

Theorem 2: Given a set of constrained-deadline sporadic
tasks I', the probability of deadline misses of task 7 is upper
bounded by <i>k, defined as follows:

P(S*>1t), (9

e = min

SIETUAL
where P(S* > t) can be derived from Eq. (4) by setting p; ; =
[TLW for each task 7; in hp(7y) and pg; = 1.

Proof Since these k selected points, i.e., {%J T, {%J T,

. {Tl;fl Ti—1, D, lie in the range of [0, Dy], thus, it is

sufficient to only test those (up to) k selected points (by
removing 0). It is clear that ®; > . U

The following example illustrates how Lemma 2 and Theo-
rem 2 work for calculating the probability of deadline misses.
Suppose a task set has three sporadic tasks:

7 :Ty =Dy =10,CN =4,04 =6,P{ =107°,

o Ty : Ty =Dy =145 0N =10,04 = 15,P5 = 1077,

o 73:T3=D3 =75 0N =10,04 =30,P4 =106,
to be scheduled on a uniprocessor with the rate-monotonic
(RM) fixed-priority scheduling policy. In this example,
we evaluate the probability of deadline misses of task
T3, 1.e., K = 3. At first three time points are selected
accordingly: t € {45,70,75}. The upper bound probability
P(S* > 45) is at most 0.05551 when s is around 0.6358:
[(exp(65)-107° +exp(4s)-(1—107°))* x (exp(155)-10~°+exp(10s)-(1—
107%)) x (exp(30s)-10~O+exp(10s)-(1—107%))]/ exp(45s). For time
point 70, the upper bound is 0.000492 when s is around
0.711. For time point 75, the upper bound is 0.00024 when
s is around 0.721. Therefore, ﬁ)k is set to 0.00024. We also
provide the results gathered from Lemma 2 in Table I. In
this example, by applying Eq. (4), we can observe that the
minimum probability among all the time points ¢ in Ly is
0.00024 while ¢ = 75, which is the same as the delivered
result from Theorem 2, i.e., ®;, = ﬁ)k in this example.

B. 0-Consecutive Deadline Misses

After addressing the probability of deadline misses of task
Tk, now we consider how to handle more general cases for
the upper bound on the probability of ¢-consecutive deadline
misses. For the rest of this section, we reform the notation
of the probability of deadline misses from ®j, to ®;, , for the
probability of ¢-consecutive deadline misses. While £ is 1, we
define the probability ®; ; as ®;, delivered by Theorem 1, i.e.,
®j 1 = ®. The following theorem shows that we can extend
the probabilistic analysis in Eq. (7) and recursively obtain a
safe upper bound on the probability of ¢-consecutive deadline
misses:

Theorem 3: Given a set of constrained-deadline sporadic
tasks I'. Suppose that

7] .
Qpw = min P(

s> 1),
0<t<(w—1)Tk+Dg

(10)

where P(S? > t) can be derived from Eq. (4) by setting p; ; =
[Ti—‘ for each task 7; in hep(7y.). That is, ®] is the upper
bound on the probability of w-consecutive deadline misses
when the processor executes at least w (consecutively released)
jobs of task 7, without any idling. For notational brevity, let
@, 0 be 1. The probability of ¢-consecutive deadline misses
of task 7, is upper bounded by @, ,, defined as follows:

$y = max {@Zﬁw Bpwlw e (1,2, .e}} (11)

Proof We prove this theorem by constructing ®; ; from
j=1,2,...,¢sequentially. When j is 1, the upper bound ®;, ;
is equal to ®; and can be derived by using Theorem 1 or 2.
Therefore, suppose that ®; ; for j € {1,2,...,0—1} is
already calculated by the previous steps. For a preemptive

fixed-priority schedule, removing tasks with priority lower
than 75, does not change the schedule of task 7;. As a result,
we only consider hep(7y) in the proof. To have ¢-consecutive
jobs of task 73 with deadline misses, there must be at least ¢
consecutively released jobs of task 75 missing t heir deadlines.
Let J; be a job of task 75 in which its previous ¢ — 1 jobs,
Ji,Ja, ..., Jy_1, released by task 7 all miss their deadlines.
Let ¢; be the arrival time of job J; released by task 7. Let
t r be the completion time of job .J,. Since task 7y, is a sporadic
task with a minimum inter-arrival time 7;, by definition, we
have t; —t; > ({—1)T} and tg —ty > Dy. Thatis, tg —t; >
(¢ — 1)Tx + Dy. Let t_y be the latest instant before tg, at
which either the processor idles at time ¢_;, or all the jobs
of task 73 before t_; have finished their executions. Suppose
that there are w™ jobs of task 7 released after or at time ¢_;.
We consider two different cases in this interval [t_1,tg):

1) Case 1 - if t; > t_1: This implies that w* > ¢ and
the processor is busy from time £_; to time {p executing
the jobs released at or after £_;. Similar to the proof of
Theorem 1, we can remove all the jobs executed before
t_; and set the release time of the first job of 75 released
in this interval to time t_; in the schedule.” Similarly,
we can also advance the subsequent jobs of 71 to release
at time t_1 + T%,t_1 + 2Tk, This adjustment does
not decrease the response times of these consecutively
released jobs of task 7. Therefore, all of these w* jobs of
task 75, still miss their deadlines. With a similar argument
to the one made in the proof of Theorem 1, the processor
is busy executing the periodically released workload from
time ¢y to time t_1 + ({ — 1)Tx + Dy, < t_q1 + (w* —
1)T} + Dy. Hence, the upper bound on the probability of
this case is @ ,.

2) Case 2 - if t; < t_q: This implies that w* < ¢ and the
processor is busy from time ¢_; to time ¢r executing the
jobs released at or after ¢t_;. Therefore, we know that
from time ¢; to time ¢_;, there must be at least £ — w*
consecutive jobs of task 7, with deadline misses and
probability upper bounded by @ ,_.~). We now only
have to evaluate the probability of the w* consecutive
deadline misses of task 75, from time ¢{_; to time tg,
which is upper bounded by @,‘Zyw*, as an identical scenario
to Case 1. Therefore, the upper bound on the probability
of this case is hence @Z’w* “ P (=)

If w* is known, one of these two cases defines the upper bound
on the probability of /-consecutive deadline misses of task 7y.
However, even though w* is unknown, we can iterate all the
possible values from 1 to ¢. Therefore, the upper bound on
the probability of /-consecutive deadline misses can be found
by Eq. (11).]

Fig. 1 illustrates the two cases in the proof of Theorem 3.
Suppose that 75 is the targeted task 7, in Theorem 3. As shown
in Fig. 1a, the execution of the second job released at time 9 is
pushed by the overrun of the first job, i.e., the first blue block.

2The first job of task 7, released at or after t_; may not be Ji.

T T T T T T 1
T T T T T T T T T T T T T T T T T 1

1t 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
ta tr

(a) Case 1:t1 >ty

fom | em e fem |
I

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Il t
1 T R

(b) Case 2: t1 <to=1t_1

Fig. 1: Example of the two release scenarios in the proof of
Theorem 3. In this example, 7, and 7o are implicit-deadline
sporadic tasks with C{* = 2,7} = Dy = 4,C35' = 5,1y =
Dy = 9. The blue marked blocks are overrunning executions.

Therefore, the analyzed window should cover the time interval
[t1,tRr). Due to the space limitation, in Fig. 1b, there are only
two jobs of 7o with an idle instant, but in fact the second job
can be followed by the other w* —1 jobs consecutively without
any idle instants. We can find that the analyzed schedule of
the jobs finished before ¢ and the jobs released after ¢, can
be individual.

With Theorem 3, we can obtain ®,, for the up-
per bound on the probability of ¢-consecutive deadline
misses. To avoid testing all time points in the interval
(0,(w —)Ty, + Dg] in Eq. (10), we can again apply
the same strategy as in Lemma 2 to generate a pseudo-
polynomial number of time points Ly to test. That is, Ly =
{’I’ . Ti‘Ti S hp(Tk);T =1,..., L((Z - 1)Tk + Dk)/TZJ} U
{(w - 1)Tk + Dk|w =1,... ,f}

To efficiently analyze the probability ®;, of /-
consecutive deadline misses, we propose to choose only
up to k - £ testing points to derive éu, which can
be similarly proved as Theorem 2, i.e., (i)k,e > Dy
That is, Lg = {(w—l)Tk+Dk|w:1,...,€} U

{r-Tilr € hp(r)sr = [Di/Ti) o, (£ = DT+ Dy) /T }.

V. REMARK: GENERAL DISTRIBUTION

With the assumption we made in Section II-B that all the
tasks only have two different WCETs, we have presented
how to use the Chernoff bounds and the mgf to derive the
upper bound on the probability of /-consecutive deadline
misses. Generally, the proposed approaches in fact can be
directly applied for any general execution time distributions.
To release the assumption, for each task, we can generalize
the distribution of execution time to a probabilistic worst case
execution time model like in [16], in which each probabilistic
execution time has a given corresponding probability. With
respect to our approaches, the definition of the mgf should use
Eq.(2) rather than Eq.(1), then all the theorems in this paper
can be applied for any general execution time distributions.

VI. RESULT AND DISCUSSION

This section presents simulations with different synthesized
task sets to analyze the performance of our proposed ap-
proaches with respect to the accuracy and the needed calcula-
tion times of the probabilistic analyses.

A. Experimental Setup

For the evaluation, we implement our efficient schedulabil-
ity tests with Python 2.7 on Linux kernel 3.13.0. The adopted
machine has an Intel Core i7-4770 CPU and 8GB DDR3
RAM. The complete scripts are all available at [8]. In the
experiments, we synthesize random task sets with a given
utilization value U™, ie., U* = > U} according to the
UUniFast method [4], where UiN is defined as CiN /T;. We
follow the suggestion from Davis and Burns [10] to generate
the task periods according to an log-uniform distribution with
two orders of magnitude, i.e., [1 — 100]. With the generated
utilization U}Y, the normal execution time C. is set to UN -T;.
The cardinalities of the task sets are: 10, 20, and 30 tasks.
After observing that the results among these three cardinalities
are similar, we only show the case for 10 tasks due to the
space limitation. For each given error rate }P’f‘, we record 100
synthesized task sets. For each task set, we take the maximum
deadline-miss probability (DMP) @Z ¢ among all the tasks with
the given /, i.e., 7, € I'. We adopt Eq. (9) when ¢ = 1 and
adopt Eq. (11) when ¢ > 1. To find the s with the minimal
probability in Eq. (4), we use SciPy library [!]. Among these
recorded 100 values for each error rate, we report the medians
(red lines), the interquartile range of the sample (the width
of the boxes), the maximums (top lines), and the minimums
(bottom lines) with the box plots, where a base-10 log scale is
used for the Y-axis. To consider the overhead of error recovery,
i.e., one re-execution, we assume the error detection costs 20%
of the task execution time and set C* by 22 ~ 1.83-C}Y for
all tasks 7; € I'. For the simplicity of presentation, Lemma 2
is called EPST and Theorem 2 is called EPST-K in the rest
of this section.

B. Evaluation of Deadline-Miss Probability

Fig. 2a shows the relationship between the error rates
and the maximum DMP among all the tasks when U™ is
60% by adopting EPST-K. The medians start to downgrade
significantly when the error rate is 10~%. However, the ranges
between the maximums and minimums are slightly changed
when the error rate goes down. Fig. 2b and Fig. 2¢ present the
relationship for the probability of {2, 3}-consecutive deadline
misses. They are similar to Fig. 2a, the upper interquartiles
are all close to the maximums. The interquartile ranges are
changed significantly when ¢ becomes larger.

We also compare the results derived by EPST and EPST-
K to evaluate the approximation by testing only k time
points. However, the results are totally the same. That is, the
probability (i)i,l of deadline misses delivered by EPST-K is
always the same as ®; ; delivered by EPST. Although we know
that testing a pseudo-polynomial number of time points may
give us a tighter upper bound on the deadline-miss probability,

Tasks: 10, NumMisses:1, Utilization:60%

Tasks: 10, NumMisses:2, Utilization:60%

Tasks: 10, NumMisses:3, Utilization:60%

1019 = 1040 10°%°
102 = 10 107
25 -50 10

SE o i
10731 10 10-90
10 10

e 10 109

-37 107° ! 10102
< 10 107 10-123
2107 10°% ! 10"
Lo e
-46 90 ! ! i 10
10 9 Bl El EE 109 o ; T ! 1071;2
-4 ! 95 —i . — — !
10 10° 107 10°° 1077 10 10° 10+’7 10°° 107° 10 10°° 1077 10°° 107
Error rate Error rate Error rate
(a) DMP (probability of deadline misses) (b) DMP of 2-consecutive deadline misses (c) DMP of 3-consecutive deadline misses
Fig. 2: Maximum DMPs with U* = 60.0%, varying error rates and ¢
100 Tasks:5, ErrorRates: 1e-06, NumMisses:1 accepted UUniFast method for generating the task sets, we
10-19 T note that the convolution takes much longer time to compute.
Lo-38 Thus, such convolution-based approaches would be very time

a consuming and are not suitable for large task sets.

= 107% .

o Moreover, we compare the derived DMPs of CPRTA and
10770 EPST-K under different U* for the lowest priority task in each
109 set. In Fig. 3, the results in the left-hand side are derived

* = 0 * = 0 . . .
10-114 Ul =60% U =70%| ynder U* = 60%, whereas the results in the right-hand side
CPRTA EPST-K CRPTA EPST-K

Fig. 3: DMPs under different approaches, varying U*

our experiments empirically show that it may be sufficient
to test only k-points derived by EPST-K to obtain the upper
bound on the probability efficiently.

C. Chernoff-Bound-Based vs. Convolution-Based Approaches

In order to evaluate the pessimism and the efficiency, we
compare our approaches, i.e., EPST and EPST-K, with the
tighter convolution-based approach proposed in [16] without
any approximation, called CPRTA in the paper. We used the
released scripts in MATLAB and only changed the input
of the simulation by using the task generator described in
Section VI-A.> In this evaluation, the period of a task is
uniformly distributed between [1, 50]. Comparing to typically
using [1, 100], this is needed to reduce the number of iterations
in CPRTA.

In Table II, we also present the analysis time of different
analyses. We test over 100 task sets for each configuration and
we set at most 10 minutes as the timeout threshold in each task
sets. Unfortunately, CPRTA is not able to derive the DMP for
10, 20 and 30 tasks. Without setting the timeout threshold, we
also use 6 computers in our local cluster to derive the results
by using CPRTA for 12 hours for task sets with 10 tasks.
To the end, however, none of the CPRTA analyses is able
to finish. The run time reported in [16] was 140 seconds in
average for task sets with 16 tasks. However, the convolution-
based approaches for testing the generated task sets in [16]
were usually quite easy to finish. When we used the widely-

3The scripts were downloaded from https://who.rocq.inria.fr/Dorin.Maxim/
on Jan. 24 in 2017. The modified scripts and the input generated by UUniFast
method can be found in [8].

are derived under U* = 70%. As shown in Fig. 3, besides
the extreme cases, our method is a bit pessimistic (the lower
the tighter). However, if the pessimism of sufficient tests
is acceptable especially under a large number of tasks, the
proposed approaches can efficiently derive the upper bound
on the probability of deadline misses instead of unnecessarily
deriving the whole response time distribution.

D. CPRTA with Re-Sampling Approximation vs. EPST-K

As shown in the previous subsection, we can see that
CPRTA without any approximation is very time consuming
even with 10 tasks. In [16], the re-sampling technique by
manually introducing a threshold of the valid number of data
points was shown to improve the needed calculation time of
CPRTA by orders of magnitudes faster. However, with the task
sets generated by applying the UUniFast method, the results
derived from the re-sampling technique may be worse than the
results derived from EPST-K even for 10 tasks as shown in
Fig. 4. Although for 10 tasks using re-sampling in CPRTA with
a threshold set to 100 indeed reduces the calculation time, i.e.,
around 1 second in average, the derived results are all worse
than our analysis in medians and the interquartile ranges of
the sample as shown in Fig. 4. Especially when U* = 70%,
the DMPs derived from CPRTA with re-sampling are really
closed to 1. For 20 tasks and above, we can not obtain any
result by using re-sampling with a threshold set to 100 within
6 hours. With threshold 1000, none of the CPRTA analyses is
able to finish even with U* = 60% in 6 hours. With threshold
50, the calculation time of CPRTA is extremely fast, but the
results are all close to 1 even under utilization U* = 60%.

After all, we know that CPRTA with re-sampling could
provide tighter results with a higher threshold but require much
more time to calculate the probability. Conversely, CPRTA
with re-sampling could need less time for calculation with

Methods Cardinality 5 tasks | 10 tasks | 20 tasks | 30 tasks
CPRTA | Avg. Time (sec) | 7.4812 - - -
Successful Runs | 98/100 0/100 0/100 0/100
EPST Avg. Time (sec) | 0.1406 0.4855 1.6738 2.7545
Successful Runs | 100/100 | 100/100 | 100/100 | 100 /100
EPST-K | Avg. Time (sec) | 0.0418 0.1253 0.4760 0.7917
Successful Runs | 100/100 | 100/100 | 100/100 | 100/100

TABLE II: Analysis time need for 100 synthesized task sets per configuration.

Tasks: 10, ErrorRate: 1e-06, NumMisses: 1

10°
10-2° % %
o BN Median
S 1074 M First to Third Quartiles
(a)] N Whiskers
10-60
10—80
10-100 Ul =60% Ul =70%
CPRTA-resampling EPST-K CPRTA-resampling EPST-K

Fig. 4: Comparison between EPST-K and CPRTA by using the
re-sampling method with a threshold set to 100, varying U*

a lower threshold but provide looser results with respect to
the probability of the deadline-miss rate. If using convolution-
based approaches anyway cannot avoid to use approximations
like the re-sampling technique to reduce the time complexity,
how to properly approximate the convolution for the balance
between the tightness and the calculation time is another
considerable issue, which is the essential problem that needs
to be solved for the convolution-based approached proposed
in the literature.

VII. CONCLUSION

When transient faults occur the execution time of tasks can
be prolonged due to the overhead of software based error
recovery mechanisms. This paper provides a new trail that
allows the system designer to provide probabilistic arguments
for the probability of deadline misses based on the probability
of those soft errors. An upper bound on the probability
of ¢—consecutive deadline misses can be derived as well.
Although Chernoff bounds are known to be pessimistic, it
is efficient (with respect to time complexity) to evaluate the
schedulability of a task instead of using convolution-based
analyses unnecessarily.

Please note that, the proposed approaches can be directly
applied for the other bounds in the literature. In future work,
we plan to study correlated worst-case execution time proba-
bility distributions to handle soft errors that are dependent.

Our studied problem and result are aligned with the design
requirement of safety-critical systems. For example, verifying
if the probability as a threshold to reboot the system for
resolving consecutive deadline misses is acceptable or not.

ACKNOWLEDGMENTS
This paper is supported by DFG, as part of the Collaborative
Research Center SFB876 (http://stb876.tu-dortmund.de/) and

the priority program “Dependable Embedded Systems” (SPP
1500 - spp1500.itec.kit.edu). The authors thank anonymous
reviewers for their suggestions on improving this paper.

REFERENCES

[1] Scipy. http://www.scipy.org/, 2016.

[2] P. Axer and R. Ernst. Stochastic response-time guarantee for non-
preemptive, fixed-priority scheduling under errors. In Design Automation
Conference (DAC), pages 1-7, May 2013.

[3] R. C. Baumann. Radiation-induced soft errors in advanced semiconduc-
tor technologies. IEEE Transactions on Device and Materials Reliability,
5(3):305-316, Sept 2005.

[4] E. Bini and G. Buttazzo. Measuring the performance of schedulability
tests. 2005.

[5] E. Bini and G. C. Buttazzo. Schedulability analysis of periodic fixed
priority systems. IEEE Transactions on Computers, 53(11):1462-1473,
Nov 2004.

[6] J. Bucklew. Introduction to Rare Event Simulation. Springer-Verlag,
New York, NY, USA, Ist edition, 2004.

[7]1 J. J. Chen, W. H. Huang, and C. Liu. k2u: A general framework from
k-point effective schedulability analysis to utilization-based tests. In
Real-Time Systems Symposium, 2015 IEEE, pages 107-118, Dec 2015.

[8] K.-H. Chen. Efficient Probabilistic Schedulability Test. https://github.
com/kuanhsunchen/EPST/, 2017.

[91 K. H. Chen, J. J. Chen, E Kriebel, S. Rehman, M. Shafique, and
J. Henkel. Task mapping for redundant multithreading in multi-cores
with reliability and performance heterogeneity. IEEE Transactions on
Computers, Nov 2016.

[10] R. Davis, A. Zabos, and A. Burns. Efficient exact schedulability tests
for fixed priority real-time systems. Computers, IEEE Transactions on,
2008.

[11] J. L. Diaz, D. F. Garcia, K. Kim, C.-G. Lee, L. L. Bello, J. M. Lopez,
S. L. Min, and O. Mirabella. Stochastic analysis of periodic real-time
systems. In Real-Time Systems Symposium, 23rd IEEE, pages 289-300,
2002.

[12] J. S. Hu, FE Li, V. Degalahal, M. Kandemir, N. Vijaykrishnan, and M. J.
Irwin. Compiler-directed instruction duplication for soft error detection.
In Design, Automation and Test in Europe, March 2005.

[13] International Electrotechnical Commission (IEC). Functional safety of
electrical / electronic / programmable electronic safety-related systems
ed2.0. 2010.

[14] International Organization for Standardization (ISO).
Road vehicles - functional safety. 2000.

[15] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling
algorithm: exact characterization and average case behavior. In Real
Time Systems Symposium, Proceedings., pages 166-171, Dec 1989.

[16] D. Maxim and L. Cucu-Grosjean. Response time analysis for fixed-
priority tasks with multiple probabilistic parameters. In Real-Time
Systems Symposium (RTSS), IEEE 34th, pages 224-235, 2013.

[17] M. Mitzenmacher and E. Upfal. Probability and computing - randomized
algorithms and probabilistic analysis. Cambridge University Press,
2005.

[18] N. Oh, P. P. Shirvani, and E. J. McCluskey. Error detection by duplicated
instructions in super-scalar processors. IEEE Transactions on Reliability,
51(1):63-75, Mar 2002.

[19] B. Tanasa, U. D. Bordoloi, P. Eles, and Z. Peng. Probabilistic response

Iso/fdis26262:

http://www.scipy.org/
https://github.com/kuanhsunchen/EPST/
https://github.com/kuanhsunchen/EPST/

time and joint analysis of periodic tasks. In 27th Euromicro Conference
on Real-Time Systems, pages 235-246, July 2015.

[20] W. Xu, Z. A. H. Hammadeh, A. Kroller, R. Ernst, and S. Quinton.
Improved deadline miss models for real-time systems using typical
worst-case analysis. In 27th Euromicro Conference on Real-Time
Systems, pages 247-256, 2015.

	Introduction
	System Model and Notation
	Task and Scheduling Models
	Error Handling Model
	Probabilistic Deadline Misses

	Backbone of Our Analyses
	Probabilistic Tests
	Probability of Deadline Misses
	-Consecutive Deadline Misses

	Remark: General Distribution
	Result and Discussion
	Experimental Setup
	Evaluation of Deadline-Miss Probability
	Chernoff-Bound-Based vs. Convolution-Based Approaches
	CPRTA with Re-Sampling Approximation vs. EPST-K

	Conclusion

