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Abstract—1 To tackle the unavoidable self-suspension behavior
due to I/O-intensive interactions, multi-core processors, computa-
tion offloading systems with coprocessors, etc., the dynamic and
the segmented self-suspension sporadic task models have been
widely used in the literature. We propose new self-suspension
models that are hybrids of the dynamic and the segmented
models. Those hybrid models are capable of exploiting knowledge
about execution paths, potentially reducing modelling pessimism.
In addition, we provide the corresponding schedulability analysis
under fixed-relative-deadline (FRD) scheduling and explain how
the state-of-the-art FRD scheduling strategy can be applied.
Empirically, these hybrid approaches are shown to be effective
with regards to the number of schedulable task sets.

I. Introduction
To ensure safe operations of hard real-time embedded

systems, worst-case timeliness needs to be verified, i.e., task
instances always have to finish before a certain deadline. Since
most real-time embedded systems require periodic or regular
sampling and control of the physical plant, the periodic task
model and the sporadic task model are widely used in the
literature as the basic system models. In such models, a task is
an infinite sequence of task instances, referred to as jobs, where
two consecutive jobs of a task should arrive exactly periodi-
cally in the periodic task model or with a minimum inter-arrival
time separation in the sporadic task model. Extensive research
results have been obtained for both task models and a verity
of different settings has been considered. One assumption of
the majority of analyses and scheduling algorithms is that
a job does not voluntarily suspend its execution. However,
self-suspension behavior is widely spread in many real-time
applications due to unavoidable 1) interactions with external
devices and accelerators [14], 2) resource competitions in mul-
ticore systems with shared resources [13], 3) suspension-aware
multiprocessor synchronization protocols [4], etc. Although the
impact of self-suspension behavior in real-time systems has
been investigated since 1990, the literature of this research
topic has been seriously flawed as reported in [8].

Two concrete models have been studied in the literature:
the dynamic and the segmented self-suspension (sporadic) task
model.2 In the dynamic self-suspension model a task τi is
specified like an ordinary sporadic task that has its worst-
case self-suspension time Si as an additional parameter. A
job of task τi can suspend itself at any moment and several
times if needed before it finishes as long as the total self-
suspension time of the job is not more than Si. By contrast,

1This paper is supported by DFG, as part of the Collaborative Research
Center SFB876 (http://sfb876.tu-dortmund.de/).

2One exception is Bletsas’ dissertation [3], where a directed acyclic graph
(DAG) was used to represent the task control flow and reduced to the seg-
mented or dynamic self-suspension model. However, the DAG self-suspension
model by Bletsas [3] has never been directly used in the literature to make
better scheduling decisions or to improve scheduling analyses.

the segmented self-suspension model defines an interleaved
execution and self-suspension pattern for any job of a task τi
that is composed of mi + 1 computation segments separated
by mi suspension intervals, where Ci,j is the worst-case
execution time of a computation segment, and Si,j is the worst-
case length of a self-suspension interval, i.e., the execution/
suspension pattern is (Ci,1, Si,1, Ci,2, Si,2, ..., Si,mi

, Ci,mi+1).
These two models are applicable in different scenarios with a
high tradeoff between flexibility and accuracy:

• The dynamic self-suspension model can be used when
only limited information about the suspension behavior
is known. It has higher flexibility at the sacrifice of pes-
simistic analyses and designs of scheduling policies if the
suspending pattern can be defined precisely. Specifically,
this model has been studied in [5], [7], [11], [15].

• The segmented self-suspension model has lower flexi-
bility, but the self-suspending structure can be exploited
by the scheduling algorithms to make better decisions.
However, such a concrete segmented pattern is only
achievable if the structure of the program is well designed
and the execution pattern is determinable. Specifically,
this model has been studied in [5], [6], [12], [17]–[21].

A well-known approach to schedule a set of segmented self-
suspension tasks is the fixed-relative deadline (FRD) schedul-
ing policy, originally proposed by Chen and Liu [6]. An
FRD approach assigns an individual relative deadline to each
subtask, i.e., to each computation segment, and all subtasks are
scheduled according to Earliest Deadline First (EDF). When
each task only has one self-suspension interval, the state-of-
the-art FRD deadline assignment policy is the Shortest Execu-
tion Interval First Deadline Assignment (SEIFDA), proposed
by von der Brüggen et al. [21]. For a detailed review of self-
suspension please refer to [8].

As mentioned before, the majority of the literature assumes
either dynamic or segmented self-suspension patterns. On
the one hand, the dynamic self-suspension model is very
flexible but inaccurate. On the other hand, the segmented self-
suspension model is very restrictive but very accurate. There
is a big gap between these two widely-adopted self-suspension
task models, which can be potentially filled by the hybrid self-
suspension task models proposed in this paper.

Contributions: In this paper, we propose several hybrid self-
suspension task models that are more flexible than the seg-
mented self-suspension task model and less pessimistic than
the dynamic self-suspension task model, therefore achieving
different levels of tradeoff between flexibility and precision.

• The proposed hybrid self-suspension task models
are specified in Section II. Compared to the spo-
radic task model, the hybrid models have an ad-
ditional parameter mi predefining the number of



self-suspension intervals. However, instead of using
(Ci,1, Si,1, Ci,2, Si,2, ..., Si,mi , Ci,mi+1) as the concrete
execution/suspension pattern, the hybrid self-suspension
task models provide several options to model the tasks,
depending on whether the execution/suspension pattern of
a job can be known when it arrives to the system or not:
◦ Pattern-oblivious Models: The execution pattern of a

job is unknown. This model only assumes that the
number of self-suspension intervals of a job of task τi is
at most mi. However, all possible execution paths may
be known offline. We specifically explore two cases:

Individual Upper Bounds: Bounded execution time
of the j-th computation segment.
Multiple Paths: Each task τi is described by a
set of p patterns of worst-case execution times
and maximum suspension times where each pattern
describes a possible execution path.

◦ Pattern-clairvoyant Model: The individual execu-
tion/suspension pattern of each job is of τi is known
the moment the job arrives.

• We show how these models can be applied by carefully
examining the special case that each task has only one
self-suspension interval, i.e., mi = 1. The applicability
of FRD and extensions of SEIFDA for the different
hybrid self-suspension task models are provided in Sec-
tion IV. For completeness, the FRD scheduling policy,
related schedulability tests using Demand Bound Func-
tions (DBF), and SEIFDA are explained in Sec. III.

• Empirically, these approaches are shown effective in
terms of the number of task sets that are schedulable in
Section V. Compared to the dynamic self-suspension task
model and the segmented self-suspension task model (that
enforces the execution upper bounds on the computation
segments), the hybrid self-suspension task models can
achieve different degrees of improvement, depending on
the properties of the execution/suspension patterns.

Although we focus on one self-suspension interval in our
analyses, Huang and Chen [12] already showed that FRD is
also a valid approach for multiple self-suspension intervals. We
strongly believe that the results in this paper open a new dimen-
sion for suspension-aware real-time embedded systems. For
example, in the past, the dynamic self-suspension task model
has been widely used for analyzing the multiprocessor syn-
chronization protocols, e.g., [4]. If the number of suspension
intervals is small, our conclusion shows that quantifying the
execution/suspension patterns can potentially help to improve
the schedulability significantly.

II. The Hybrid Self-suspension Task Models
In this section we explain the basic task models and

terminology used in this paper and introduce the different
hybrid self-suspension task models we propose.

We consider n independent sporadic self-suspending real-
time tasks T = {τ1, τ2, . . . , τn} in a uniprocessor system.
Each task can release an infinite number of jobs (or task
instances) under a given minimum inter-arrival time (temporal)
constraints Ti, also called the tasks period. The relative dead-
line of a task τi is denoted as Di and the Worst-Case Execution
Time (WCET) is denoted as Ci. This means if a job of task
τi arrives at time θa, 1) the job should finish Ci time units

of execution by θa +Di and 2) the next instance of the task
must arrive not earlier than θa + Ti. In this work, we restrict
our attention to implicit-deadline systems, i.e., Di = Ti.

In addition to Ti, Di, and Ci, in self-suspension task
models the maximum suspension time Si is introduced as
an additional parameter. If task τi may suspend itself, then
Si is positive; otherwise Si is 0, i.e., the task is an ordi-
nary sporadic task. In the dynamic self-suspension model,
a job of task τi can suspend its execution at any moment
as long as the total self-suspension time of the job is not
more than Si, i.e., the concrete execution/suspension pat-
tern is unknown. In the segmented self-suspension model a
task τi is defined by a concrete execution/suspension pattern
(Ci,1, Si,1, Ci,2, Si,2, ..., Si,mi

, Ci,mi+1), i.e., any job of τi is
composed of mi + 1 computation segments that are separated
by mi suspension intervals. Si,j is the worst-case length of
the j-th self-suspension interval while Ci,k is the WCET of
the k-th computation segment for a segmented self-suspension
task τi. The total WCET Ci =

∑mi+1
j=1 Ci,j and the total self-

suspension time Si =
∑mi

j=1 Si,j in the segmented model.

In the hybrid self-suspension task models, we assume that
in addition to Si the number of self-suspension intervals mi

is known as well for each task. This means that the execution
of each job of τi is composed of at most mi +1 computation
segments separated by mi suspension intervals, similar to the
segmented self-suspension model. The sum of the execution
times of the computation segments of a job of task τi is at
most its worst-case execution time Ci, while the sum of the
lengths of the self-suspension intervals of a job of task τi is
at most its worst-case suspension time Si. All these values are
positive for self-suspending tasks. For a non-suspending task
Si and mi are both 0. These models are

• more precise than the traditional dynamic self-suspension
task model, where mi is not considered, and

• more flexible and less precise than the traditional seg-
mented self-suspension task model, where the worst-
case execution time of each of the mi + 1 computation
segments and the worst case suspension time for each of
the mi suspension intervals is fixed and specified.

For the rest of this paper, we implicitly call such tasks
as self-suspending tasks if the context is clear. As we will
adopt the Fixed-Relative-Deadline strategy [6], each subtask
will be assigned to its own relative deadline. All subtasks are
scheduled according to Earliest Deadline First (EDF). We do
not assume that each task in the task set must be a self-
suspending task. If a task has no self-suspension behavior,
such an ordinary (non-suspending) sporadic task should still
be scheduled by using its original deadline. However, for the
simplicity of presentation, we do not consider these tasks here.

The hybrid self-suspension task models are applicable
under the assumption that each task can be described by
a set of p disjunct execution/suspension patterns3 similar to
the patterns used in the segmented self-suspension model.
As briefly explained in Section I, the hybrid self-suspension
task models provide several options depending on the number
of possible execution/suspension patterns, how detailed the

3The pattern-oblivious approach with individual upper bounds can also be
applied if only the individual bounds, Smax

i , Cmax
i , and mi are known but

further information about the internal structure of the task is not available.



suspension model flexibility? accuracy?
dynamic [7], [11], [15] very flexible (high) inaccurate (low), over flexible
pattern-oblivious (hybrid, this paper) less flexible than dynamic applicable in most cases for known mi

(medium to high) (low to medium)
pattern-clairvoyant (hybrid, this paper) less flexible than pattern-oblivious

(medium to low)
more accurate than patter-oblivious
(medium to high)

segmented [6], [12], [17]–[21] very restrictive (low) only accurate and applicable for fixed pat-
terns (high), over restrictive

TABLE I: High-level comparison of different self-suspension models.

informations we can derive for each of these patterns are, and
whether the execution pattern of a job can be known when the
job arrives to the system or not. Suppose that a job of task τi
is released at time θa. If the (high-level) execution/suspension
pattern of the job cannot be identified at time θa, such a
scenario is called Pattern-oblivious. If the pattern can be
identified, e.g., by checking (some of) the known input values
when a job arrives at time θa (potentially with approximations),
such a scenario is called Pattern-clairvoyant. Clearly, pattern-
clairvoyant approaches only work if the overhead for the iden-
tification is negligible. We consider the following scenarios:

• Pattern-oblivious: Depending on the knowledge of the
execution times of the computation segments and the self-
suspension time, we consider two cases:
◦ Individual Upper Bounds: We assume known bounds

on the execution time of the j-th computation segment,
i.e., Ci,j is no more than the individually specified
Cmaxi,j for each j = 1, 2, . . . ,mi + 1. In addition, the
suspension of a job of task τi takes place at most mi

times and the j-th suspension is for at most Smaxi,j
amount of time for each j = 1, 2, . . . ,mi. Moreover,
we further assume that the worst-case execution time
of a job of task τi is at most Cmaxi while the max-
imum suspension time is at most Smaxi . Specifically,
by the above definition

∑mi+1
j=1 Cmaxi,j ≥ Cmaxi and∑mi

j=1 S
max
i,j ≥ Si. This scenario also covers a special

case when Cmaxi,j is set to Cmaxi for each j, i.e., no
specific segmented information is revealed.
◦ Multiple Paths: A task τi is described by p different

execution paths with known execution/suspension pat-
terns, in which a job of task τi can suspend at most
mi times. For the special case mi = 1 this results in a
set of p triples:

{
(C1

i,1, S
1
i , C

1
i,2), . . . , (C

p
i,1, S

p
i , C

p
i,2)
}

.
Note that we know all possible paths, but the system is
not able to identify which path will be executed during
runtime, i.e., at the moment a job arrives.

• Pattern-clairvoyant: Each job of task τi has its individual
execution/suspension pattern and the pattern that will
be executed is known at the beginning of a job. Note
that different jobs of a task may have different execu-
tion/suspension patterns. As mentioned earlier, we assume
such an identification takes negligible time.4 This is more
precise than the two models above. If all the jobs of task
τi have the same pattern, then the model becomes the
segmented self-suspension task model.

Table I provides a summary of the flexibility and the accuracy
of different self-suspension task models.

4It is also possible to include the time for identifying the execution pattern of the job
as part of the first computation segment(s) in all the paths. For such a case, our analysis
has to be revised and adjusted to give the identification process the highest priority.

The utilization of task τi is defined as Ui = Ci/Ti. We
implicitly assume that Ci + Si ≤ Ti. We use the following
definitions of feasibility and schedulability in this paper:

• A schedule is feasible if there is no deadline miss and all
the timing constraints are respected.

• A task system T is called schedulable if there exists
a feasible schedule for the task system for any release
patterns under the temporal constraints.

• A task system T is schedulable under a scheduling
algorithm if the schedule produced by the algorithm for
the task system is always feasible.

III. Introduction of FRD Strategies
When a Fixed-Relative-Deadline (FRD) strategy [6], [12],

[19], [21] is adopted, for each τi ∈ T an individual relative
deadline Di,j is assigned for the j-th computation segment of
task τi. When a job of task τi arrives at time t,

• its first subjob (i.e., its first computation segment) arrives
at time t and has its absolute deadline set to t+Di,1,

• its first self-suspension has to be finished before t+Di,1+
Si,1, and

• its j-th subjob, with j ≥ 2, (i.e., its j-th computation
segment) arrives at the time when the (j − 1)-th self-
suspension interval finishes and has its absolute deadline
at t+

∑j−1
`=1(Di,`+Si,`)+Di,j for j = 2, 3, . . . ,mi+1.5

All subjobs of the tasks are scheduled according to the well-
known Earliest-Deadline-First (EDF) scheduling strategy, i.e.,
the subjob in the ready queue with the earliest absolute
deadline has the highest priority. We will focus on a special
case in which each task has at most one self-suspension
interval, i.e., mi = 1 for every τi.

The general schedulability tests for FRD strategies under
the segmented self-suspension model were presented by von
der Brüggen et al. in [21]. As we adopt those scheduling tests
here, we will briefly introduce the Demand Bound Functions
(DBF) and schedulability tests presented in [21] now. The
DBFs are used to calculate the maximum possible interference
of a task over a given interval [t0, t0 + t] where t0 = 0 can
be implicitly assumed for the simplicity of presentation.

Since we will use EDF for scheduling the subjobs, we
recall the following property derived by Chetto and Chetto [9].

Lemma 1 (Chetto and Chetto [9]). We are given a set J of
jobs, in which each job Jj has its arrival time aj , worst-case
execution time Cj and, absolute deadline dj . The set J can

5The FRD here is a non-enforced FRD. Note that it has been already explained in [6],
[21] that releasing its j-th subjob at the moment when its j−1-th self-suspension interval
finishes (instead when t +

∑j−1
`=1 (Di,` + Si,`)) does not change the schedulability

condition, as the subjobs are scheduled using EDF.
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Fig. 1: An example of dbfFRDi (t,Di,1) (red, solid) and the
functions dbf1i (t,Di,1) (gray, dashed) and dbf2i (t,Di,1) (blue,
dotted) it is composed of, for Di,1 = 4, Ci,1 = 2, Ci,2 = 3,
Si = 4, and Ti = 20, which leads to Di,2 = 12.

meet the deadlines on one processor by using EDF, if and only
if the following condition holds:

∀ai < dk,
∑

τj :ai≤aj and dj≤dk

Cj ≤ dk − ai (1)

The concept of the DBF can be explained by using Eq. (1).
For a task τi in a given interval [t0, t0+t], i.e., ai is t0 and dk is
t0+t in Eq. (1), its maximum contribution to the left-hand side
of Eq. (1) is due to the jobs arrived at or after t0 with absolute
deadlines at or before t0+ t. Regardless of the considered task
models, as long as (working conserving) EDF scheduling is
applied, the schedulability analysis is simply to first quantify
dbfAi (t) as the maximum demand requested by a task τi in
any given interval [t0, t0 + t], and then to validate whether∑
τi
dbfAi (t) ≤ t for every t ≥ 0, where A is a specific

algorithm for deciding the relative deadline assignments.

A. Schedulability Tests for FRD Scheduling
One intuitive way to develop the DBFs of a task under an

FRD scheduling policy is to represent the task as a generalized
multiframe (GMF) task [1]. We explain the case with one self-
suspension interval for each task but the approach can be easily
extended to cover multiple self-suspension intervals.

In general, a multiframe task is described by a 3-
tuple of vectors with identical length (

−→
Ci,

−→
Di,

−→
Ti) rep-

resenting the WCETs, relative deadlines, and interarrival
times of the frames, respectively. For a one-segment self-
suspending task, there are two frames in the GMF task model:
τi = {(Ci,1, D1

i , T
1
i ), (Ci,2, D

2
i , T

2
i )}.6 The j-th frame of a

task τi has the WCET, relative deadline, and interarrival
time of the (j mod 2)-th frame. As the second computation
segment is released after the suspension interval we know that
D1
i = Di,1 and T 1

i = Di,1 + Si. Moreover, T 2
i = Ti − T 1

i =
Ti − Di,1 − Si and D2

i = Di,2 = Ti − Di,1 − Si. To get
the maximum demand over an interval [t0, t0 + t] for a GMF
task one of the frames must be released at time t0 and all
consecutive frames are released as early as possible.

If Ci,1 is released at t0 it has to be finished not later than
t0 +Di,1. Ci,2 is released at Di,1 + Si and has to be finished

6 Superscripts are used for terms when referring to the GMF task.

at t0+Di,1+Si+Di,2 = Ti. This pattern repeats periodically
with period Ti. As shown in [21] this leads to

dbf1i (t,Di,1) =

⌊
t+ (Ti −Di,1)

Ti

⌋
Ci,1 +

⌊
t

Ti

⌋
Ci,2 (2)

When Ci,2 is released at t0 it has to be finished at t0 +Di,2.
Ci,1 is released at t0 + Di,2 and has to be finished at t0 +
Di,1 +Di,2. Therefore, the resulting DBF is

dbf2i (t,Di,1) =

⌊
t+ (Di,1 + Si)

Ti

⌋
Ci,2+

⌊
t+ Si
Ti

⌋
Ci,1 (3)

Lemma 2. The DBF for τi under an FRD assignment is the
maximum of the two patterns:

dbfFRDi (t,Di,1) = max(dbf1i (t,Di,1), dbf
2
i (t,Di,1)) (4)

Proof: This follows from Eqs. (2) and (3).

An example that shows how dbf1i (t,Di,1), dbf2i (t,Di,1)
and the resulting dbfFRDi (t,Di,1) are constructed for given
values of Ci,1, Ci,2, Si, Ti, and Di,1 can be found in Figure 1.

Lemmas 1 and 2 directly lead to the following exact
schedulability test for a given Di,1 as presented in [21]:

Theorem 1 (Theorem 1 in [21]). An FRD schedule is feasible
if and only if∑

τi∈T

dbfFRDi (t,Di,1) ≤ t, ∀t ≥ 0. (5)

We note that in [21] only the segmented self-suspension
model is considered. For the hybrid models the DBFs have to
be extended to cover all possible cases.

B. Deadline Assignments
The key question for FRD strategies is the assignment of

the relative deadlines of the subjobs, i.e., how to distribute the
execution interval Ti − Si among the subjobs. The following
approaches have been used in the literature:

• Proportional (Proportional relative deadline assignment):
Di,1 =

Ci,1

Ci,1+Ci,2
· (Ti−Si); Di,2 =

Ci,2

Ci,1+Ci,2
· (Ti−Si),

introduced by Liu et al. [16] in 2014.
• EDA (Equal relative Deadline Assignment):
Di,1 = Di,2 = (Ti−Si)/2, by Chen and Liu [6] in 2014.

• SEIFDA (Shortest Execution Interval First Deadline As-
signment): task deadlines are assigned in increasing order
of the tasks execution interval Ti−Si, introduced by von
der Brüggen et al. [21] in 2016.

While Proportional looks reasonable and EDA looks pes-
simistic it was shown in [6] that Proportional can perform
poorly in the worst case while EDA has a speedup factor of
3 with respect to an optimal algorithm and a speedup factor
for 2 compared to an optimal FRD algorithm. Note that EDA
can be adopted with no information about the WCET of the
subtasks while Proportional can only (directly) be adopted if
the WCETs of both subjobs are known. Both Proportional and
EDA have in common that the deadline assignment of a task
τi is independent from the other tasks in the set.

SEIFDA [21] is a greedy approach that assigns the relative
deadlines of tasks in increasing order of the tasks execution



interval Ti − Si with respect to the previously assigned dead-
lines of tasks with smaller execution interval. The workload
provided by these tasks is considered by adding up the related
demand bound functions. As SEIFDA assigns the deadlines of
the tasks individually, suppose that Ti−Si ≤ Tk−Sk and that
Di,1 and Di,2 with Di,1+Di,2 = Ti−Si are already assigned
for i = 1, 2, . . . , k − 1. The interesting question is how to
assign the deadlines for Dk,1 and Dk,2. The general approach
is that SEIFDA assigns the deadline Dk,1 for the shorter
computation segment Ck,1 and Dk,2 is set accordingly. Note
that the assumption that Ck,1 ≤ Ck,2 is just for the simplicity
of presentation. If Ck,1 > Ck,2 the two computation segments
can be swapped before the assignment and then swapped back
with the related deadlines afterwards as shown in [21]. When
SEIFDA assigns Dk,1, first the possible values for Dk,1 are
determined. If x is a possible value for Dk,1 then

dbfFRDk (t, x) +

k−1∑
i=1

dbfFRDi (t,Di,1) ≤ t, ∀t ≥ 0 (6)

holds. Let X = {x ∈ [Ck,1, (Tk − Sk)/2] | x is a valid Dk,1}
denote the set of all possible values for the deadline assignment
of Dk,1. The upper bound of (Tk − Sk)/2 for the possible
deadline values is due to the assumption that Ck,1 ≤ Ck,2
and the observation that it does not make sense to assign the
smaller deadline to the longer execution segment. If X is
∅ for a task τk the task set is not schedulable by SEIFDA.
Otherwise, the assignment of Dk,1 depends on the chosen
deadline assignment strategy:

• minD: Dk,1 is the minimum x in X.
• maxD: Dk,1 is the maximum x in X.
• Proportionally-Bounded-Min (denoted by PBminD):
Dk,1 is the minimum x such that x is in X and
x ≥ Ck,1

Ck,1+Ck,2
(Tk − Sk) holds.

The task set is feasible using FRD under EDF if we can find a
feasible deadline assignment for each task in τi, . . . , τn using
the given strategy and the task set is schedulable under the
given assignment, i.e., Eq. 5 and therefore Theorem 1 holds.

It was shown in [21] that SEIFDA-maxD strictly dominates
EDA and SEIFDA-PBminD strictly dominates the Proportional
relative deadline assignment.7 Therefore, in this paper, we will
adopt only SEIFDA in the experiments. Note that while EDA
can directly be applied without any information about Ck,1
and Ck,2, and only knowing Sk, while SEIFDA needs those
information. However, if Cmaxk is known SEIFDA can be
applied using Ck,1 = Ck,2 = Cmaxk if Sk is know.

IV. FRD for Hybrid Self-Suspension
In this section, we present how FRD strategies can be

applied for hybrid self-suspension task models when each task
has at most one suspension interval. Existing FRD strategies
assume the segmented self-suspension model, i.e., Ci,j is the
WCET of the j-th computation segment of each job of τi. This
is different from the hybrid self-suspension task models that
assume a set of given patterns and not only a single pattern.

Depending on the priorly known or determinable knowl-
edge about Ck,1, Ck,2, and Sk, different FRD strategies for

7The dominance of SEIFDA-PBminD over Proportional was not stated in [21].
However, the argumentation is identical to the case that SEIFDA-maxD dominates EDA.

the pattern-oblivious scenarios are presented in Sec. IV-A and
Sec. IV-B while pattern-clairvoyant scenarios are discussed
in Sec. IV-C. To perform the schedulability tests efficiently,
approximated DBFs are explained in Sec. IV-D.

As a running example we use a task τi with three execution
patterns (paths) provided in Table II. The execution patterns are
denoted τ1i , τ2i , and τ3i . While the period Ti = 30 is identical
for all execution patterns, Ci,1, Ci,2, Ci = Ci,1+Ci,2, and Si
depend on the execution pattern. We assume that when a job
of τi arrives one of these execution patterns is executed.

A. Pattern-Oblivious: Individual Upper Bounds
We assume to know individual upper bounds (IUB)

of the execution time of each computation segment, i.e.,
Cpi,j ≤ Cmaxi,j for each execution pattern p with j ∈ {1, 2},
and the maximum suspension time8 Smaxi = max {Spi }. Let
the maximum total execution time among all patterns be
Cmaxi = max

{
Cpi,1 + Cpi,2 | p is a possible execution pattern

}
.

Note that to apply this model no explicit knowledge about
the individual execution/suspension patterns is needed as long
as Cmaxi , Cmaxi,1 , Cmaxi,2 , and Smaxi can be determined.

We construct the two resulting DBFs for the case where
Ci,1 is released at t0 and for the case where Ci,2 is released
at t0 in Eq. (8) and Eq. (9), respectively. If Ci,1 be released at
t0 the DBF is periodic with period Ti. Cmaxi is the workload
considered for every period but the last one. Note, that it is
possible that there are 0 full periods before the time t that is
analyzed. To take care of the workload in a period that has
started before the analyzed time t but did not finish at time t,
i.e., the last period, we define a function GIi that helps us to
sum up the workload inside one period for notational brevity:

GIi (t,Di,1) =

{
0 if 0 ≤ t < Di,1

Cmaxi,1 if Di,1 ≤ t < Ti
(7)

Therefore, the corresponding demand bound function is

dbfI,1
i (t,Di,1) =

⌊
t

Ti

⌋
Cmax

i +GI
i

(
t−

⌊
t

Ti

⌋
Ti, Di,1

)
(8)

if Ci,1 is released at t0. In Eq. (8) the first part determines the
maximum execution time of the released jobs for completed
periods, i.e., both computation segments are finished, while
the second part adds a computation segment Ci,1 if needed.
If the first computation segment of task τi released after or at
t0 is from Ci,2, then we have to consider one Cmaxi,2 at Di,2

and the first release of Ci,1 happens at Di,2. Therefore, the
corresponding demand bound function is

dbf
I,2
i (t,Di,1) =

{
0 if 0 ≤ t < Di,2

Cmax
i,2 + dbfI,1

i (t−Di,2, Di,1) if t ≤ Di,2
(9)

where Di,2 is Ti−Si−Di,1. From the discussion for deriving
Eqs. (8) and (9) the DBF directly follows:

Lemma 3. The DBF of τi for the pattern-obvious model with
individual upper bounds under an FRD assignment is:

dbf Ii (t,Di,1) = max(dbf I,1i (t,Di,1), dbf
I,2
i (t,Di,1)) (10)

Considering Eq. (10) it is not difficult to show that Di,1

should be no more than (Ti − Si)/2 if Cmaxi,1 ≤ Cmaxi,2 and

8If mi > 1, one would consider Smax
i,j individually for each suspension

interval and Smax
i would be defined similar to Cmax

i .



Hybrid Self-Suspension Model
Given Task Parameters IUB MP SSSD PDAB, Bias 2

Ti = 30 Ci,1 Ci,2 Ci Si Di,1 Di,2 Di,1 Di,2 Di,1 Di,2 Ratio Di,1 Di,2

τ1i 2 3 5 5
8 14 8

17 8 17 10/15 12 13
τ2i 4 3 7 8 14 14 8 12.6/9.4 11 11
τ3i 2 7 9 7 15 8 15 5.1/17.9 7.1 15.9

max 4 7 9 8

TABLE II: Example: τi with 3 versions and deadline assignment for the strategies presented from Sec. IV-A to Sec. IV-C.
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Fig. 2: IUB: dbfI
i for τi in Table II, linear approximation (solid line)

for g = 1, i.e., after t = g · Ti +Di,2 = 44.

vice versa. Therefore, we can apply SEIFDA. However, we
should note that the assignment strategies in SEIFDA focuses
on Di,1 when Cmaxi,1 ≤ Cmaxi,2 and Di,2 if Cmaxi,1 > Cmaxi,2 .

Figure 2 shows the above functions for task τi as listed
in Table II. Cmaxi,1 , Cmaxi,2 , Cmaxi and Smaxi are calculated as
the maximum of the 3 execution/suspension patterns. As these
values are independent from the deadline assignment, they are
listed as Given Task Parameters in Table II. For IUB the value
of Di,1 is chosen using SEIFDA under the given strategy and
Di,2 is set accordingly using to Di,2 = Ti − Smaxi −Di,1. For
the example in Table II using IUB we assume the deadline as-
signment strategy sets Di,1 = 8, and, therefore, with Smaxi = 8
we get Di,2 = 30− 8− 8 = 14. The resulting dbf I,1i (t,Di,1),
dbf I,2i (t,Di,1), and dbf Ii (t,Di,1) are shown in Figure 2.

B. Pattern-Oblivious: Multiple Paths
We assume that a task τi is described by a set of p

triples of worst-case execution times and maximum suspension
times

{
(C1

i,1, S
1
i , C

1
i,2), . . . , (C

p
i,1, S

p
i , C

p
i,2)
}

, each describing
a possible execution/suspension pattern. However, when a job
arrives in the system at time t, we do not know which path will
be executed. When adopting FRD for such a scenario, we will
use a fixed Di,1 across all the execution paths. Note that the
second computation segment of the job always has an absolute
deadline of t+ Ti. If the first computation segment can meet
its deadline, then the second computation segment is released
at time t+Di,1 + Sji for the j-th execution path.

For the deadline assignment of τi, first Cmaxi,1 , Cmaxi,2 , and
Smaxi are calculated. The actual deadline assignment is based
on these values. Especially, they are used to calculate the
minimum value for Di,1 if PBminD is used. GMP

i (t,Di,1)
is defined identically to the related function in Eq. (7) for
the case when individual upper bounds are used, as Di,1 is
identical over all execution patterns.

Similar to the analysis in Sec. IV-A, we consider two gen-
eral cases. If the first computation segment of task τi released
after or at t0 is from Ci,1, then the corresponding demand
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Fig. 3: MP: dbfMP
i for τi in Table II. For each path i the DBF when

Ci,2 is released at 0 is considered individually. However, for clarity,
dbfMP,2

i,1 is omitted as it is strictly smaller than dbfMP,2
i,2 .

bound function dbfMP,1
i (t,Di,1) is the same as dbf I,1i (t,Di,1)

in Eq. (8) as Di,1 is identical for all patterns:

dbfMP,1
i (t,Di,1) =

⌊
t

Ti

⌋
Cmax

i +GMP
i

(
t−

⌊
t

Ti

⌋
Ti, Di,1

)
(11)

While dbfMP,1
i (t,Di,1) is independent from the version that

is executed as Di,1 is the same for each version, the DBF for
the case where the second computation segment is released at
t0 depends on the version of the task. If the first computation
segment of task τi released after or at t0 is from Cji,2, i.e., from
version j, then the corresponding demand bound function is

dbf
MP,2
i,j (t,Di,1) =

{
0 if 0 ≤ t < Dj

i,2

Cj
i,2 + dbfMP,1

i (t−Dj
i,2, Di,1) if t ≤ Dj

i,2
(12)

where Dj
i,2 is Ti − Sji −Di,1.

Lemma 4. The DBF of τi for the pattern-obvious model with
multiple paths under an FRD assignment is as follows:

dbf
MP
i (t,Di,1) = max

(
dbf

MP,1
i (t,Di,1), max

j∈{1,...p}
dbf

MP,2
i,j (t,Di,1)

)
(13)

Proof: This follows from the above discussions when
deriving Eq. (11) and Eq. (12).

With the DBF defined in Eq. (13), the same approach as at
the end of Sec. IV-A by using SEIFDA can be applied. Note,
that in Table II for pattern oblivious multiple paths (MP) the
value of Di,2 differs due to the different suspension intervals
of τ1i , τ2i , and τ3i . This leads to a tighter DBF as the jump to
7 happens at t = 15 instead of t = 14 as shown in Figure 3.

C. Pattern-Clairvoyant
We assume that a task τi is described by a set of p

triples
{
(C1

i,1, S
1
i , C

1
i,2), . . . , (C

p
i,1, S

p
i , C

p
i,2)
}

each describing
a possible execution pattern. We first present the corre-
sponding demand bound functions when Dj

i,1 and Dj
i,2 with

Dj
i,1 + Sji +Dj

i,2 = Ti are already assigned for j = 1, 2, . . . , p
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Fig. 4: SSSD: dbfclair
i (t) for τi in Table II, approximation for g = 1

(dotted line) after t = g · Ti + Dmax
i,2 = 30 + 17 = 47. Since

dbfclair,2
i,1 (t) ≤ dbfclair,2

i,3 (t) ∀t, the curve dbfclair,2
i,1 (t) is omitted,

but D2
i,2 is Dmax

i,2 in the approximation.

before considering the individual deadline assignment. For the
rest of this section we implicitly assume Dj

i,1+S
j
i +D

j
i,2 = Ti.

We define Cmaxi,1 as maxj∈{1,...p}

{
Cji,1

}
and Cmaxi as

maxj∈{1,...p}

{
Cji,1 + Cji,2

}
. To calculate the workload in the

period that started before t and did not finish at t, i.e., the last
release before t, let Gclairi (t) be defined for 0 ≤ t < Ti as:

Gclairi (t) = max
j∈{1,...p}

{
0 if t < Dj

i,1

Cji,1 if Dj
i,1 ≤ t < Ti

}
(14)

Note, that we have to consider the maximum Cji,1 for each t
in 0 ≤ t < Ti as the relative deadline for the first segment
of τ ji depends on the concrete execution/suspension pattern
and is independent from the deadlines of other patterns for the
same task. Similar to the analysis in Sec. IV-A and Sec. IV-B,
we consider two general release patterns depending on the
segment that is released at t = 0. If the first computation
segment of task τi released after or at t0 is from Ci,1, then the
corresponding demand bound function dbf clair,1i (t) is

dbfclair,1
i (t) =

⌊
t

Ti

⌋
Cmax

i +Gclair
i

(
t−

⌊
t

Ti

⌋
Ti

)
(15)

If the first computation segment of task τi released at or after
t0 is from Cji,2 the corresponding demand bound function is

dbf
clair,2
i,j (t) =

{
0 if 0 ≤ t < Dj

i,2

Cj
i,2 + dbfclair,1

i (t−Dj
i,2) if t ≤ Dj

i,2

(16)

where Dj
i,2 is Ti − Sji −D

j
i,1.

Lemma 5. The DBF of τi for the pattern-clairvoyant model
an FRD assignment is as follows:

dbfclair
i (t) = max

(
dbfclair,1

i (t), max
j∈{1,...p}

dbfclair,2
i,j (t)

)
(17)

Proof: This follows from the above discussions for deriv-
ing Eqs. (15) and (16).

Until now, we assumed that Dj
i,1 and Dj

i,2 are assigned
for j = 1, 2, . . . , p. For the rest of this subsection, we will
discuss how to assign the relative deadlines. As we consider
the scheduler to be clairvoyant, we could calculate FRDs for
each of the patterns using SEIFDA and schedule the jobs with
specific deadlines calculated for each execution/suspension
pattern, as the pattern is known at the arrival time of a job.
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Fig. 5: Comparison of the related DBFs for the different approaches.

However, this leads to a combinatorial explosion if the number
of execution/suspension patterns is large. Instead of trying to
assign different deadlines for all the paths individually, we
present the two following heuristics.

1) Shorter Segment Shorter Deadline (SSSD): We search
for a constant relative deadline 0 < Dshort

i ≤ (Ti − Si)/2
assigned for the shorter computation segments of all the
possible paths. This means, if Cji,1 ≤ Cji,2, then Dj

i,1 is set
to Dshort

i and Dj
i,2 is set to Ti−Sji −Dshort

i . If Cji,1 > Cji,2,
then Dj

i,2 is set to Dshort
i and Dj

i,1 is set to Ti−Sji −Dshort
i .

Finding a proper Dshort
i can be achieved by using

SEIFDA directly after ordering the tasks according to
Ti −maxj∈{1,...p}

{
Sji

}
in increasing order.

Figure 4 presents the demand bound function of task τi in
Table II under SSSD. Note in Table II that Dshort

i is always
assigned to the smaller computation segment and that the other
deadline depends on Sji . This leads to 3 different dbf clair,2i,j (t).
In Figure 4 only dbf clair,2i,1 (t) and dbf clair,2i,3 (t) are shown as
dbf clair,2i,1 (t) ≤ dbf clair,2i,3 (t) ∀t.

2) Proportional Deadline with A Bias (PDAB): We intend
to assign the relative deadlines proportionally to the required
execution time. To avoid an arbitrarily short computation
segment from being assigned with an arbitrarily short relative
deadline, we introduce a constant bias Dbias

i for the shorter
computation segments. Moreover, the relative deadline of the
shorter computation segment of the j-th execution path of task
τi should be no more than (Ti − Sji )/2.

Therefore, if Cji,1 ≤ Cji,2, the relative deadline Dj
i,1 is set

to min

{
(Ti − Sji )/2, Dbias

i + (Ti − Sji )
Cj

i,1

Cj
i,1+C

j
i,2

}
and Dj

i,2

is set to Ti − Sji − Dj
i,1. If Cji,1 > Cji,2, then Dj

i,2 is set

to min

{
(Ti − Sji )/2, Dbias

i + (Ti − Sji )
Cj

i,2

Cj
i,1+C

j
i,2

}
and Dj

i,1

is set to Ti − Sji − Dj
i,2. For the example in Table II the

bias is set to 2. Note that the case where Di,1 is set to
(Ti−Sji )/2 due to a too large bias increase happens for pattern
2 in Table II. Finding a proper Dbias

i can be achieved by
using SEIFDA directly after ordering the tasks increasingly
according to Ti −maxj∈{1,...p}

{
Sji

}
.

D. Schedulability Tests and Approximations
Following the same argument as in the proof of the schedu-

lability test in Eq. (5), we can replace dbfFRDi (t,Di,1) by
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Fig. 6: Comparison of the hybrid self-suspension models with approaches for the dynamic self-suspension model, considering different
suspension length (sslen) and periods in [10ms− 100ms] ((a)-(c)) or [10ms− 1000ms] ((d)-(f)). Approximated DBFs with g = 2 are used.

dbf Ii (t,Di,1) from Eq. (10), by dbfMP
i (t,Di,1) from Eq. (13),

or by dbf clairi (t) from Eq. (17), depending on the adopted
hybrid self-suspension model.

Theorem 2. An FRD schedule under a deadline assignment
policy A is feasible if∑

τi∈T

dbfAi (t,Di,1) ≤ t, ∀t ≥ 0, (18)

where dbfAi (t,Di,1) is defined by the adopted hybrid self-
suspension strategy. That is, dbfAi (t,Di,1) can be either
dbf Ii (t,Di,1) from Eq. (10), dbfMP

i (t,Di,1) from Eq. (13),
or dbf clairi (t) from Eq. (17),

Proof: This comes from Lemmas 1, 3, 4, and 5.

However, using the DBFs from Eq. (10), Eq. (13), or
Eq. (17) directly will lead to a combinatorial explosion, as
each DBF has multiple jump-points in each period and the
schedulability test would have to be done for each of these
jump points of each task. This problem can be tackled by using
approximated DBFs. To bound the loss of the approximation,
for the first g releases after t0 the exact DBF is used and
a safe linear approximation is taken afterwards, as already
presented in [6], [21]. The linear approximation is taken from
t = g ·Ti+Dmax

i,2 and the slope is given by the task utilization
Ui. To get a safe upper bound, the maximum of lines with
slope Ui through all jump points in the next period is taken
as linear approximation. Examples of this approximation are
shown in Figure 2 and Figure 4 by the red line. This leads to
a 1+ 1

g approximation of the DBFs with a proof similar to the
one presented in [21], that is omitted due to space limitation.

E. Comparison of Demand Bound Functions
As the different hybrid self-suspension models have access

to a different amount of information, the related demand
bound functions become tighter the more information can be
used as shown Figure 5. dbf clairi (t, 8) ≤ dbfMP

i (t, 8) ≤
dbf IUBi (t, 8), as the clairvoyant approach can use more infor-
mation than MP which can use more information than IUB.

V. Simulation Results
We conducted simulations using synthesized task sets to

evaluate the proposed approaches compared with other ap-
proaches based on the acceptance ratio (in percent) with re-
spect to the task set utilization. 100 task sets with a cardinality
of 10 tasks were generated for each utilization level in a range
from 5% to 100% with steps of 5%.

Each task set had a cardinality of 10 and we adopted
the UUniFast method [2] to generated set with a given total
utilization. The task periods were in log-uniform distribution,
as suggested by Emberson et al. [10], with a period range
of 10ms-100ms or 10ms-1000ms, i.e, one or two orders of
magnitude, respectively. Ci and Di where set accordingly, i.e.,
Ci = TiUi and Di = Ti (implicit deadlines). We converted
them to hybrid self-suspending tasks where the suspension
lengths (sslen) of the tasks were generated according to a
uniform distribution, in one of three ranges:

• short suspension: [0.01(Ti − Ci), 0.1(Ti − Ci)]
• moderate suspension: [0.1(Ti − Ci), 0.3(Ti − Ci)]
• long suspension: [0.3(Ti − Ci), 0.6(Ti − Ci)]

Each self-suspension task consisted of two paths:

• We randomly chose a path to have the largest execution
time equal to Ci. The worst-case execution time of
the remaining path was adjusted by multiplying with a
uniformly-distributed random variable in [0.8, 1].

• We randomly chose a path to have the largest suspension
time equal to Si. The worst-case suspension time of
the remaining path was adjusted by multiplying with a
uniformly-distributed random variable in [0.8, 1].

• We then generated Ci,1 as a percentage of Ci, according
to a uniform distribution, and set Ci,2 accordingly.

Note that we consider a discrete time model in the eval-
uation. Therefore, all task parameters were rounded up to
integers. We evaluated the following approaches:

• SCEDF: the suspension-oblivious approach by converting
suspension time into computation time.



• PASS-OPT: The approach for fixed-priority scheduling
presented in [11]. Each interfering job is considered by
running the path with the maximum cumulative execu-
tion time, i.e., Cmaxi . Each task analyzed is considered
as the task running through the path with the maxi-
mum cumulative computation and suspension time, i.e.,
max1≤j≤p{Cji,1 + Sji + Cji,2}.

• Oblivious-IUB: The approach in Sec. IV-A.
• Oblivious-MP: The approach in Sec. IV-B.
• Clairvoyant-SSSD: The approach in Sec. IV-C1.
• Clairvoyant-PDAB: The approach in Sec. IV-C2.

The DBFs were approximated with g = 2 in all calculations.
For Oblivious-IUB and Oblivious-MP, SEIFDA-PBminD was
used, as SEIFDA-PBminD usually is the best deadline assign-
ment strategy according to the experimental results presented
in [21]. For Clairvoyant-SSSD and Clairvoyant-PDAB, we
used SEIFDA-minD as a proportional lower bound is already
part of the assignment in Clairvoyant-PDAB.

For periods in [10ms, 100ms] (Figure 6(a)-(c)) we observe
that the presented approaches achieve a way better acceptance
ratio than state-of-the-art scheduling strategies for the dynamic
self-suspension task model. The more information about the
task system is used, the better the acceptance ratio gets, i.e.,
Clairvoyant approaches use more information than Oblivious-
MP which uses more information than Oblivious-IUB. For the
Clairvoyant case, Clairvoyant-PDAB is nearly always better
than Clairvoyant-SSSD. While the acceptance ratio is a higher
for periods in [10ms, 1000ms] (Figure 6(d)-(f)) the results in
general are similar and therefore further discussion omitted.

The evaluation shows that carefully using the information
of the execution/suspension patterns as much as possible, in
both the self-suspension model and the scheduling algorithms,
will give a significant advantage with regards to schedulability.
Thus, instead of focusing only the segmented and dynamic
self-suspension model, the presented models and scheduling
strategies should be used if possible.

VI. Conclusion
We have carefully examined a special case of the pro-

posed hybrid self-suspension task models, in which the jobs
in the system suspend themselves at most once. Depending
on the knowledge of the execution/suspension patterns, we
design pattern-oblivious approaches (that use the information
of the patterns offline but not online) and pattern-clairvoyant
approaches (using the information both offline and online).
We explain how to design FRD scheduling strategies to
utilize the offline patterns and develop different scheduling
strategies (i.e., deadline assignments), depending on the hybrid
self-suspension task models. Empirically, we show that our
developed approaches are effective in terms of the acceptance
ratio compared to the state-of-the-art scheduling strategies that
assume the dynamic self-suspension task model.

To the best of our knowledge, this is the first result for a
hybrid self-suspension task model. Although we do not explore
systems with multiple self-suspension intervals in this paper,
we believe that similar approaches can also be developed for
the general cases when mi > 1 for some tasks τi, as FRD was
shown to be effective in this case by Huang and Chen [12].
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[21] G. von der Brüggen, W.-H. Huang, J.-J. Chen, and C. Liu. Uniprocessor
scheduling strategies for self-suspending task systems. In International
Conference on Real-Time Networks and Systems (RTNS), pages 119–
128, 2016.


